This invention relates to an adjustable descaler and a method of descaling materials, in particular where the thickness of the material varies along its length.
In the hot rolling of steel and other metals, it is very common to use high pressure water jets to remove the scale which forms on the surface of the material, in particular in plate and Steckel Mills, or hot strip mills, but descaling may be required in other types of mill.
Most high pressure water descaling systems use flat fan shaped jets as illustrated in
One problem with using these flat fan shaped jets is that the overlap area 7 and distance D between adjacent jets 6a, 6b produced by each nozzle is very critical for the performance of the descaling. This is illustrated in
In accordance with a first aspect of the present invention, an adjustable descaling device for a hot rolling mill for hot rolling a metal product on a rolling line comprises one or more descalers, the descalers comprise high pressure water jets; at least one scale detection sensor; and a processor; wherein the sensor is adapted to detect a scale pattern across the width of the product on a surface of the metal product after descaling of the product; and wherein the processor is configured to adjust a descaling impact pattern, according to the detected scale pattern provided by the sensor.
The present invention avoids the problems encountered in conventional descalers by adjusting the descaler impact pattern for a subsequent descaling based on a detected scale pattern from a product after the product has been descaled, so optimizing the interaction of the spray of adjacent jets.
Where more than one descaler is provided, in use, they may all be upstream of the rolling mill, or alternatively one descaler is positioned ahead of the hot rolling mill and the other is positioned after the hot rolling mill along the rolling line.
Preferably, for each descaler a corresponding sensor is provided.
Preferably, the scale detection sensor comprises one of a scanning pyrometer; a CCD camera system; an X-ray device; a scale thickness sensor; or a spectral analysis system.
Preferably, a single sensor is adapted to detect scale on opposing surfaces of the metal product.
Preferably, the or each descaler comprises a header and a series of nozzles set at a predetermined pitch.
Preferably, the or each descaler comprises a set of two descaler modules, mounted such that one descaler module is operable to descale one surface of the metal product and the other descaler module is operable to descale an opposite surface of the metal product.
Preferably, at least one of the descaler modules comprises a height adjustable descaler module. Adjusting the height of the descaler module alters the descaling impact pattern.
Preferably, at least one of the descaler modules comprises a descaling pressure control mechanism.
Adjusting the descaling pressure alters the descaling impact pattern. The mechanism by which the descaling impact pattern is adjusted is not limited to adjusting the height of the descaler module or controlling descaling pressure of the jet for the material being descaled. Other parameters may be adjusted.
Preferably, the nozzles of one descaler in the device are set at a different nozzle pitch to the nozzles of another descaler in the device. This helps the correlation to identify which header needs to be adjusted.
Preferably, the nozzles of one descaler in the device have a different linear offset along the axis of the header to the nozzles of another descaler in the device. This also helps the correlation to identify which header needs to be adjusted.
In accordance with a second aspect of the present invention, a method of operating an adjustable descaling device for a hot rolling mill for hot rolling metal comprises: descaling a metal product using high pressure water jets; using one or more scale detecting sensors to determine a representation of a scale pattern across the width of the metal product on a surface of a metal product being rolled, after descaling; in a processor, comparing the determined scale pattern with a stored correlation pattern; determining if the result of the comparison is outside an acceptable range of tolerance and, if so, adjusting one or more descalers of the descaling device according to the result of the comparison.
Preferably, the adjustment of the one or more descalers comprises at least one of adjusting the height of one or more of the descalers relative to a roller table on which the product is supported, or relative to the top or bottom surface of the material; adjusting the pressure in a header of the one or more descalers.
Preferably, the method further comprises using a 1-D Rosenbrock type algorithm to adjust the height of the one or more descalers in response to the correlation.
Preferably, the stored correlation pattern comprises a representation of nozzle pitch of a header of the descaler.
Preferably, the method further comprises compensating for width spread during rolling, or for the effects of initial broadside rolling.
Preferably, the method further comprises monitoring which of the one or more descalers have been in operation in order to generate a scale pattern and adapting the results of the correlation comparison accordingly.
Preferably, the method further comprises filtering and averaging signals from the one or more sensors representing the scale pattern over a period of time before carrying out the comparison.
Preferably, the method further comprises calibrating the correlation system by introducing a height offset in a test measurement stage.
An example of an adjustable descaler and a method of its operation are now described with reference to the accompanying drawings in which:
As described above with respect to
In conventional designs, the nozzle spacing, E in
Descalers are often described as either primary descalers or secondary descalers. The primary descaler is the descaler which is used to descale the slab when it comes out of the furnace and before rolling starts. The secondary descaler is usually located on the rolling mill itself in the case of plate mills and roughing mills, or just in front of the mill in the case of finishing mills. It is very common for primary descalers to have adjustable height top headers, for example as illustrated in
If the mill has any descaling problems—which are usually detected by visual observation—then it might do a descaling impact test, such as that illustrated in
Whilst the top headers in primary descalers are easily adjusted for height, the bottom descaling headers are usually fixed. Generally, the bottom headers do not need to be moved because the bottom surface of the slab is always in the same place, on top of the rollers. If any adjustment is possible, it is only by changing the shims or packers which support the bottom headers and pipework.
The top headers in most secondary descaling systems are attached to the entry or exit guide assemblies on the mill, in such a way that as the top work roll of the mill moves up and down to accommodate different slab and plate thicknesses the header moves up and down with the roll. An example of this is shown in
Other examples of systems in which the problem of maintaining the correct overlap between the jets has been recognised and solutions for compensating for changes in the water pressure, the rolling draft and the thickness have been proposed include KR2003030183, which describes a system in which the height of the descaling header is adjusted according to the actual descaling pressure in order to keep the spraying width constant, KR100779683 which describes a system in which the descaling height and the water pressure are adjusted to give optimum descaling according to the thickness and temperature of the bar, KR20040056057 which describes a system in which the height of the descaling header can be adjusted for turned up ends on the plate and KR20040024022 which describes another system in which the height of the descaling header can be adjusted.
Other patents or patent applications describe using measurements of the scale pattern on the surface of the plate to control operation of the descaler. This feature is present for example in JP07256331, which describes a descaling system in which there is a scale thickness sensor which measures the distribution of scale across the surface of the plate. The signal from the scale thickness sensor is used to control additional descaling nozzles which can be positioned near the edge of the plate. JP10282020 describes an X-ray scale thickness and composition measuring device, which uses this information to determine the optimum removing conditions for the scale. JP11010204 describes using a scale defects detector to control the rolling temperature and the draft in the stands of a finishing mill in order to influence the amount and type of scale produced. JP55040978 describes a system for detecting scale defects and displaying these to the operator. KR100349170 describes a system for detecting scale using CCD cameras.
The present invention addresses the problem of how to improve the descaling. One embodiment of the invention adjusts the standoff distance to improve the descaling. In the present invention, the standoff distance h2 may be adjusted for some, or for all of the descaling headers in the mill, ideally to achieve optimum descaling, but at least to reduce the incidence of stripes on the material. In order to achieve the desired improvement, the system must be able to change the height of the headers relative to the surface of the material and to detect when an acceptable descaling result has been achieved, or that the descaling has not reached the required quality and that adjustment is required.
An example of an adjustable descaler according to the present invention is illustrated in
Downstream of the descalers, top and bottom surface scale sensors 17, 18 are positioned above and below the roller table respectively, in order to detect the descaling pattern on the surface of the plate 10. These sensors are coupled to a controller 19 which uses information derived from the sensed descaling pattern to adjust a parameter of the descaling device to alter the resultant descaling pattern. In one example, the height of the descaling headers is adjusted. Alternatively, the pressure of the descaling headers may be controlled. The controller has connections to each of the descalers 13a, 13b, 14a, 14b, 15a, 15b and can cause actuators, on whichever of the descalers needs to be moved, to operate to reposition the descaler relative to the roller table and hence the plate. The height adjustment may be limited to only one of the descalers in a set, usually the upper descaler, 13a, 14a, 15a but ideally both top and bottom descalers in each set are height adjustable.
For existing installations height adjustment of both of a set of descalers may not be practical, in which case the system of the present invention may be used with the headers which are height adjustable. In addition, a pressure control mechanism may be provided and the device is set to have a higher or lower pressure to change the jet from the nozzle header and hence the descaling impact pattern. Generally, this is done for the headers which are not height adjustable, rather than independently of the height adjustment, using the information from the sensor to adjust the descaling pressure, for example using variable speed pumps or a flow control valve, in order to adjust the descaling spray width. This is because reducing the descaling pressure also reduces the effectiveness of the descaling and conversely it may not be possible to increase the descaling pressure. However, using pressure adjustment alone is not excluded.
One of a number of different sensors may be used to detect the surface scale. The simplest and most versatile sensor to use is a scanning pyrometer. Many mills already have scanning pyrometer equipment installed and it is well known that scale stripes can be detected by this type of sensor. An alternative sensor is a CCD camera system looking at the surface for visible defects. These systems are widely used for detecting surface defects during rolling and are readily available. Other alternatives include X-ray or scale thickness sensors and spectral analysis type systems (e.g. FTIR systems). As long as the sensor can detect stripes with poor descaling on the surface of the material, it may be used. Some sensors are able to measure scale on both the top surface and the bottom surface. Where this is not possible, separate sensors are used for each surface, as shown in the example of
The signal from the sensor 17, 18 is analyzed by the controller 19 to determine whether there is any correlation between the measured scale pattern across the width of the material and the known pitch E of the descaling nozzles. If there is a correlation between the measured scale pattern across the width of the material and the pitch of the nozzles then this suggests that the standoff distance of the nozzles may not be optimum. Examples of this effect are illustrated in
In the case where there is only one sensor located after the mill there is the additional complication that variations in the descaling effectiveness might be due to either the primary descaler or the entry side secondary descaler or the exit side secondary descaler. In the case of the secondary descalers, ideally the exit side descaler is offset by half a nozzle pitch (the spacing between the nozzles) relative to the entry side descaler so that the system can easily distinguish one from the other. In the case of the primary descaler the pitch is chosen to be different from the secondary descaling so that the pattern due to the primary descaler can be distinguished compared to the pattern from the secondary descaling. The system also takes into account which descaling headers have actually been used during the rolling of the piece being measured; for example if only the entry side descaling has been used then the system does not look for any correlation with the exit side descaling pattern.
Another complication is that in plate mills the slab is often rolled broadside on for one or more passes in order to achieve the required plate width. This results in two effects. Firstly, any descaling pattern across the width that has been created before the turning of the slab will end up being spread out to the new width. Consequently when the descaling pattern is measured by the sensor, the pattern will have a spacing between stripes of the pattern, the pattern pitch, which is related to the actual spacing of the nozzles, the nozzle pitch, times the ratio of the final width of the slab to the width when the slab was first descaled in its broadside orientation. Secondly, any descaling pattern which is produced during the broadside rolling phase will become a longitudinal pattern along the length of the rolled piece and the longitudinal pitch will be the nozzle pitch times the ratio of the final length to the broadside width. A related point is that the width of the slab generally increases slightly during rolling which will alter the pitch observed by the sensor. If the mill is equipped with an edger, then it is possible for the final width to be narrower than the initial width. It is relatively simple for the system to account for these changes in width relative to the width at which the piece was descaled by adjusting the pitch for the correlation analysis.
Usually the piece being rolled is descaled several times during the rolling sequence. If the sensor is sufficiently close to the mill then it is possible to analyze the scale pattern after each pass for at least part of the length of material rolled in that pass. If the sensor is some distance from the mill, then it might only be possible to analyze the scale pattern after all the rolling and descaling has been completed. In this case, any width changes during the rolling will tend to blur the pattern, but in most cases there will still be some correlation with the nozzle pitch.
Having analyzed the scale pattern and found a correlation with the pitch of a particular descaling header, the system then needs to determine whether to move the descaling headers up or down. The problem is that both excessive overlap and insufficient overlap both lead to poor descaling and stripes on the surface. As set out in the ‘Audits ’ article referred to above and shown, conventional methods of determining whether the descaler has excessive overlap, or insufficient overlap, can only be carried out when the mill is not rolling.
Although, with certain types of sensor, such as a scanning pyrometer, it is possible, for example to distinguish between a plate with insufficient overlap which has hot stripes and a plate with excessive overlap which does not have hot stripes, this method is complicated by the different emissivity of a surface which has not been properly descaled compared to the surface that has been properly descaled. Most pyrometers would detect the change in emissivity as a change in temperature and this confuses the analysis of the signal.
Therefore a simple iterative scheme based on a 1 dimensional Rosenbrock optimization method is proposed. If the system detects a correlation between the pitch of the scale measurement and the pitch of a descaling header, then the system moves the height of that header a small distance in one direction or the other. This initial direction may be selected at random, but it is preferred that the choice of likely direction is based on historical data. For example, the spray angle usually increases with nozzle wear and so a movement towards the strip would compensate for this. In the case of a new installation which has not been calibrated at all, the system may start with header height deliberately offset in one direction away from the theoretical optimum and with the direction of the first movement towards the theoretical position. Alternatively, the system may start with the header at the theoretical optimum position and with a preset or random initial movement direction. Having moved the header, the system then waits for another plate to be rolled, ideally a similar plate with similar descaling and compares the correlation. If the correlation is stronger, then the movement was clearly in the wrong direction, whereas if the correlation is weaker, then the movement was in the right direction. If the movement seems to be in the right direction, then the system makes another movement in that direction. If the movement seems to be in the wrong direction then the system moves the height in the opposite direction.
If data is only available after each plate has been rolled, then this simple iterative scheme moves the header to the optimum height after a few plates have been rolled. If data is available during the rolling of a plate then the system can optimize the height within a few passes. To prevent the system from hunting around the optimum height, a threshold correlation can be set such that if the correlation is less than this threshold, the system keeps the header at the same height. If desired, the algorithm makes larger or smaller movements, depending on the level of the correlation, or the algorithm may use a variable step size type algorithm where the step size gradually increases for every movement in the same direction, but reduces quickly when the direction of movement changes. Filtering and averaging of the signals over part or the entire surface of one or more plates may be used to ensure that the system does not overact to errors in the measurements.
Optionally, the pattern against which the measurements are correlated is calibrated by deliberately introducing a significant error in the header height and making a measurement on a test plate.
If the correlation does exceed 45 the threshold and it has been determined that adjustment 48 is required, further steps (not shown) may be required, for example to determine whether there are multiple descalers, some or all of which are in use and whether each of those descalers has its own associated sensor (in which case the pattern can be attributed to each specific descaler) or whether there is only a single sensor for all of the descalers, or fewer sensors than descalers. Additionally, if compensation for initial broadside rolling is required, this is applied at this stage. The controller then determines whether the descaler to be adjusted is able to have its height adjusted 49 and if not 51, then whether it is able to have its header pressure adjusted 52. If adjustment is possible, the appropriate height and/or header pressure adjustment 50, 54 is then applied and the detection of scale pattern by the sensor continues, or rolling finishes. If neither height nor pressure 55 can be adjusted further for a particular descaler, no adjustment is made and detection continues, or rolling finishes. In this example, adjustment of height or pressure are proposed in order to adjust the descaling impact pattern, but any suitable parameter may be adjusted for this purpose.
Although, as discussed above, detecting scale is well known, as is adjusting the height of the spray nozzles, none of the prior art makes any suggestion of using measurements of the scale pattern on the surface of the plate as the basis for controlling adjustment of the height or other characteristics of the descaling headers in order to improve or optimize the descaling operation.
Different nozzle pitches or different linear offsets along the axis of the header may be set in different headers of the descalers, to assist in identifying which header needs adjusting.
In summary, a sensor may be used to detect scale stripes on the surface of the plate which correlate with known positions of the overlap between adjacent descaling nozzles and this correlation is used to adjust the descaling system to minimize the stripes. The adjustment may be in the form of adjusting the height of the headers in response to the sensor correlation, or adjusting the descaling pressure (e.g. for those headers which are not height adjustable) in response to the sensor correlation. The measured pattern may be compensated for width spread and broadside rolling etc. Information on which headers have been in operation when carrying out the correlation analysis may be used. The sensor signals may be filtered and averaged. The sensor signal may be used to identify whether the header is too high or too low. A 1-D Rosenbrock type algorithm may be used to adjust the height of the headers in response to the correlation. A height offset may be deliberately introduced for a test to calibrate the correlation system.
Number | Date | Country | Kind |
---|---|---|---|
1309698.7 | May 2013 | GB | national |
The present application is a 35 U.S.C. §§371 national phase conversion of PCT/EP2014/059186, filed May 6, 2014, which claims priority of British Patent Application No. 1309698.7, filed May 30, 2013, the contents of which are incorporated by reference herein. The PCT International Application was published in the English language.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/059186 | 5/6/2014 | WO | 00 |