The field of the invention generally relates to medical devices for treating knee osteoarthritis.
Knee osteoarthritis is a degenerative disease of the knee joint that affects a large number of patients, particularly over the age of 40. The prevalence of this disease has increased significantly over the last several decades, attributed partially, but not completely, to the rising age of the population as well as the increase in obesity. The increase may also be due to the increase in highly active people within the population. Knee osteoarthritis is caused mainly by long term stresses on the knee that degrade the cartilage covering the articulating surfaces of the bones in the knee joint. Oftentimes, the problem becomes worse after a particular trauma event, but it can also be a hereditary process. Symptoms include pain, stiffness, reduced range of motion, swelling, deformity, muscle weakness, and several others. Osteoarthritis may include one or more of the three compartments of the knee: the medial compartment of the tibiofemoral joint, the lateral compartment of the tibiofemoral joint, and the patellofemoral joint. In severe cases, partial or total replacement of the knee is performed in order to replace the diseased portions with new weight bearing surfaces for the knee, typically made from implant grade plastics or metals. These operations involve significant post-operative pain and require substantial physical therapy. The recovery period may last weeks or months. Several potential complications of this surgery exist, including deep venous thrombosis, loss of motion, infection and bone fracture. After recovery, surgical patients who have received uni-compartmental or total knee replacement must significantly reduce their activity, removing running and high energy sports completely from their lifestyle.
For these reasons, surgeons are attempting to intervene early in order to delay or even preclude knee replacement surgery. Osteotomy surgeries may be performed on the femur or tibia, in order to change the angle between the femur and tibia, and thus adjust the stresses on the different portions of the knee joint. In closed wedge or closing wedge osteotomy, an angled wedge of bone is removed, and the remaining surfaces are fused together, creating a new improved bone angle. In open wedge osteotomy, a cut is made in the bone and the edges of the cut are opened, creating a new angle. Bone graft is often used to fill in the new opened wedge-shaped space, and often, a plate is attached to the bone with bone screws. Obtaining the correct angle during either of these types of osteotomy is almost always suboptimal, and even if the result is close to what was desired, there can be a subsequent loss of the correction angle. Some other complications experienced with this technique include nonunion and material failure.
In a first embodiment of the invention, a system for changing an angle of a bone of a subject includes an adjustable actuator having an outer housing and an inner shaft, telescopically disposed in the outer housing, a magnetic assembly configured to adjust the length of the adjustable actuator though axial movement of the inner shaft and outer housing in relation to one another, a first bracket configured for coupling to the outer housing, and a second bracket configured for coupling to the inner shaft, wherein application of a moving magnetic field externally to the subject moves the magnetic assembly such that the inner shaft and the outer housing move in relation to one another.
In another embodiment of the invention, a system for changing an angle of a bone of a subject includes a magnetic assembly having a radially-poled magnet coupled to a shaft having external threads, and a block having internal threads and coupled to the shaft, wherein rotational movement of the radially-poled magnet causes the shaft to turn and to move axially in relation to the block. The system further includes an upper bone interface and a lower bone interface having an adjustable distance, wherein axial movement of the shaft in a first direction causes the distance to increase.
In another embodiment of the invention, a system for changing an angle of a bone of a subject includes a scissors assembly having first and second scissor arms pivotably coupled via a hinge, the first and second scissor arms coupled, respectively, to upper and lower bone interfaces configured to move relative to one another. The system further includes a hollow magnetic assembly containing an axially moveable lead screw disposed therein, wherein the hollow magnetic assembly is configured to rotate in response to a moving magnetic field and wherein said rotation translations into axial movement of the lead screw. The system further includes a ratchet assembly coupled at one end to the lead screw and at another end to one of the first and second scissor arms, the ratchet assembly comprising a pawl configured to engage teeth disposed in one of the upper and lower bone interfaces, and wherein axial movement of the lead screw advances the pawl along the teeth and moves the upper and lower bone interfaces away from one another.
In another embodiment of the invention, a method of preparing a tibia for implantation of an offset implant includes making a first incision in the skin of a patient at a location adjacent the tibial plateau of the tibia of the patient, creating a first cavity in the tibia by removing bone material along a first axis extending in a substantially longitudinal direction from a first point at the tibial plateau to a second point, placing an excavation device within the first cavity, the excavation device including a main elongate body and configured to excavate the tibia asymmetrically in relation to the first axis, creating a second cavity in the tibia with the excavation device, wherein the second cavity communicates with the first cavity and extends substantially towards one side of the tibia, and removing the excavation device.
In another embodiment of the invention, a method of implanting a non-invasively adjustable system for changing an angle of the tibia of a patient includes creating an osteotomy between a first portion and a second portion of the tibia, making a first incision in the skin of a patient at a location adjacent the tibial plateau of the tibia of the patient, creating a first cavity in the tibia along a first axis extending in a substantially longitudinal direction from a first point at the tibial plateau to a second point, placing an excavation device within the first cavity, the excavation device configured to excavate the tibia asymmetrically in relation to the first axis, creating a second cavity in the tibia with the excavation device, wherein the second cavity extends substantially towards one side of the tibia, placing a non-invasively adjustable implant through the first cavity and at least partially into the second cavity, the non-invasively adjustable implant comprising an adjustable actuator having an outer housing and an inner shaft, telescopically disposed in the outer housing, coupling the outer housing to the first portion of the tibia, and coupling the inner shaft to the second portion of the tibia. In some embodiments, the implant could also be adjusted invasively, such as minimally invasively.
In another embodiment of the invention, a method of preparing a bone for implantation of an implant includes making a first incision in the skin of a patient, creating a first cavity in the bone by removing bone material along a first axis extending in a substantially longitudinal direction from a first point at the tibial plateau to a second point, placing an excavation device within the first cavity, the excavation device including a main elongate body and configured to excavate the bone asymmetrically in relation to the first axis, the excavation device further comprising an articulating arm having a first end and a second end, the arm including a compaction surface, creating a second cavity in the bone with the excavation device, wherein the second cavity communicates with the first cavity and extends substantially towards one side of the bone, and removing the excavation device.
In another embodiment of the invention, a method of preparing a bone for implantation of an implant includes making a first incision in the skin of a patient, creating a first cavity in the bone by removing bone material along a first axis extending in a substantially longitudinal direction from a first point at the tibial plateau to a second point, placing an excavation device within the first cavity, the excavation device including a main elongate body and configured to excavate the bone asymmetrically in relation to the first axis, the excavation device further comprising an articulating arm having a first end and a second end, the arm including an abrading surface, creating a second cavity in the bone with the excavation device, wherein the second cavity communicates with the first cavity and extends substantially towards one side of the bone, and removing the excavation device.
In another embodiment of the invention, a method of preparing a bone for implantation of an implant includes making a first incision in the skin of a patient, creating a first cavity in the bone by removing bone material along a first axis extending in a substantially longitudinal direction from a first point at the tibial plateau to a second point, placing an excavation device within the first cavity, the excavation device including a main elongate body and configured to excavate the bone asymmetrically in relation to the first axis, the excavation device further comprising a rotational cutting tool configured to be moved substantially towards one side of the bone while the rotational cutting tool is being rotated, creating a second cavity in the bone with the excavation device, wherein the second cavity communicates with the first cavity and extends substantially towards one side of the bone, and removing the excavation device.
In another embodiment of the invention, a system for changing an angle of a bone of a subject includes a non-invasively adjustable implant comprising an adjustable actuator having an outer housing and an inner shaft, telescopically disposed in the outer housing, the outer housing configured to couple to a first portion of the bone, and the inner shaft configured to couple to a second portion of the bone, a driving element configured to move the inner shaft in relation to the outer housing, and an excavation device including a main elongate body configured to insert within a first cavity of the bone along a first axis, the excavation device configured to excavate the bone asymmetrically in relation to the first axis to create a second cavity communicating with the first cavity, wherein the adjustable actuator is configured to be coupled to the bone at least partially within the second cavity.
In another embodiment of the invention, a method of changing a bone angle includes creating an osteotomy between a first portion and a second portion of a tibia of a patient; creating a cavity in the tibia by removing bone material along an axis extending in a substantially longitudinal direction from a first point at the tibial plateau to a second point; placing a non-invasively adjustable implant into the cavity, the non-invasively adjustable implant comprising an adjustable actuator having an outer housing and an inner shaft, telescopically disposed in the outer housing, and a driving element configured to be remotely operable to telescopically displace the inner shaft in relation to the outer housing; coupling one of the outer housing or the inner shaft to the first portion of the tibia; coupling the other of the outer housing or the inner shaft to the second portion of the tibia; and remotely operating the driving element to telescopically displace the inner shaft in relation to the outer housing, thus changing an angle between the first portion and second portion of the tibia.
In another embodiment of the invention, a system for changing an angle of a tibia of a subject having osteoarthritis of the knee includes a non-invasively adjustable implant comprising an adjustable actuator configured to be placed inside a longitudinal cavity within the tibia, and having an outer housing and an inner shaft, telescopically disposed in the outer housing, the outer housing configured to couple to a first portion of the tibia, and the inner shaft configured to couple to a second portion of the tibia, the second portion of the tibia separated at least partially from the first portion of the tibia by an osteotomy; and a driving element comprising a permanent magnet and configured to be remotely operable to telescopically displace the inner shaft in relation to the outer housing.
In another embodiment of the invention, a system for changing an angle of a bone of a subject includes a non-invasively adjustable implant comprising an adjustable actuator having an outer housing and an inner shaft, telescopically disposed in the outer housing, the outer housing associated with a first anchor hole, and the inner shaft associated with a second anchor hole, the first anchor hole configured to pass a first anchor for coupling the adjustable actuator to a first portion of the bone and the second anchor hole configured to pass a second anchor for coupling the adjustable actuator to a second portion of the bone, the second portion of the bone separated at least partially from the first portion of the bone by an osteotomy; a driving element configured to be remotely operable to telescopically displace the inner shaft in relation to the outer housing; and wherein the non-invasively adjustable implant is configured to be angularly unconstrained in relation to at least one of the first portion of the bone or the second portion of the bone when coupled to both the first portion and second portion of the bone.
Returning to
The components of the magnetic handpiece 1178 are held together between a magnet plate 1190 and a front plate 1192. Most of the components are protected by a cover 1216. The magnets 1186 rotate within a static magnet cover 188, so that the magnetic handpiece 1178 may be rested directly on the patient, while not imparting any motion to the external surfaces of the patient. Prior to distracting the intramedullary lengthening device 1110, the operator places the magnetic handpiece 1178 over the patient near the location of the cylindrical magnet 1134. A magnet standoff 1194 that is interposed between the two magnets 1186 contains a viewing window 1196, to aid in the placement. For instance, a mark made on the patient's skin at the appropriate location with an indelible marker may be viewed through the viewing window 1196. To perform a distraction, the operator holds the magnetic handpiece 1178 by its handles 1200 and depresses a distract switch 1228, causing motor 1202 to drive in a first direction. The motor 1202 has a gear box 1206 which causes the rotational speed of an output gear 1204 to be different from the rotational speed of the motor 1202 (for example, a slower speed). The output gear 1204 then turns a reduction gear 1208 which meshes with center gear 1210, causing it to turn at a different rotational speed than the reduction gear 1208. The center gear 1210 meshes with both the first magnet gear 1212 and the second magnet gear 1214 turning them at a rate which is identical to each other. Depending on the portion of the body where the magnets 1186 of the external adjustment device 1180 are located, it is desired that this rate be controlled, to minimize the resulting induced current density imparted by magnet 1186 and cylindrical magnet 1134 though the tissues and fluids of the body. For example a magnet rotational speed of 60 RPM or less is contemplated although other speeds may be used such as 35 RPM or less. At any time, the distraction may be lessened by depressing the retract switch 1230, which can be desirable if the patient feels significant pain, or numbness in the area holding the device.
The contents of the magnetically adjustable actuator 342 are protected from body fluids by one or more o-rings 334 which reside within circumferential grooves 382 in the inner shaft 332, dynamically sealing along the inner surface of the distraction housing 312. The inner shaft 332 is driven axially with respect to the outer housing 330 by a lead screw 348 which is turned by a cylindrical radially poled magnet 368. The cylindrical radially poled magnet 368 is bonded within a first magnet housing 308 and a second magnet housing 310 and is rotatably held at a pin 336 on one end by a radial bearing 378, which directly engages the counterbore 304 of the end cap 302. The second magnet housing 310 outputs into a first stage 367 of three planetary gear stages 370. The planet gears 387 of the three planetary gear stages 370 turn within inner teeth 321 within the gear housing 306. The first stage 367 outputs to a second stage 369, and the second stage 369 outputs to a third stage 371. The third stage 371 is coupled to the lead screw 348 by a locking pin 385, which passes through holes 352 in both the output of the third stage 371 and in the lead screw 348. A lead screw coupler 339 is also held to the lead screw 348 by the pin 385, which passes through a hole 359. The lead screw 348 threadingly engages with a nut 376 which is bonded within the cavity 374 of the inner shaft 332. Each planetary gear stage 370 incorporates a 4:1 gear ratio, producing an overall gear ratio of 64:1, so that 64 turns of the cylindrical radially poled magnet 368 cause a single turn of the lead screw 348. A thrust bearing 380, is held loosely in the axial direction between ledges in the gear housing 306. The lead screw coupler 339 includes a ledge 355, which is similar to an opposing ledge (not shown) at the base of the lead screw 348. If the inner shaft 332 is retracted to the minimum length, the ledge at the base of the lead screw 348 abuts the ledge 355 of the lead screw coupler, assuring that the lead screw 348 cannot be jammed against the nut with too high of a torque. The thrust bearing 380 is held between a ledge 393 in the gear housing 306 and an insert 395 at the end of the gear housing 306. The thrust bearing 380 serves to protect the cylindrical radially poled magnet 368, the planetary gear stages 370, the magnet housings 308 and 310, and the radial bearing 378 from damage due to compression. A maintenance member 346 comprising a thin arc of magnetic material, such as ‘400 series’ stainless steel, is bonded within the gear housing 306, adjacent to the cylindrical radially poled magnet 368, and can attract a pole of the cylindrical radially poled magnet 368, in order to minimize the chance of the cylindrical radially poled magnet 368 turning when not being adjusted by the external adjustment device 1180, for example during patient movement.
The non-invasively adjustable wedge osteotomy device 300 has the capability to increase or decrease its length at least about three millimeters in each direction in one embodiment, and about nine millimeters in each direction in another embodiment. The non-invasively adjustable wedge osteotomy device 300 can achieve a distraction force of 240 pounds when the magnetic handpiece 1178 of the external adjustment device 1180 is placed so that the magnets 1186 are about one-half inch from the cylindrical radially poled magnet 368. The majority of the components of the non-invasively adjustable wedge osteotomy device may be made from Titanium or Titanium alloys such as Titanium-6Al-4V, Cobalt Chromium, Stainless Steel or other alloys. When implanted, the non-invasively adjustable wedge osteotomy device 300 may be inserted by hand or may be attached to an insertion tool (for example a drill guide). An interface 366 comprising an internal thread 397 is located in the end cap 302 for reversible engagement with the male threads of an insertion tool. Alternatively, these features may be located on the end 360 of the inner shaft 332. Additionally a detachable tether may be attached to either end of the non-invasively adjustable wedge osteotomy device 300, so that it may be easily removed if placed incorrectly.
As seen in
In
An alternative manner of quantifying the amount of opening of the open wedge osteotomy 118, is to measure, for example via radiography, the gap G1, G2 at the medial edge 181 of the open wedge osteotomy 118. At the typical range of angles of open wedge osteotomies 118, and the typical range of patient tibia 102 sizes, the gap G1, G2, in millimeters tends to approximate the wedge angle α1, α2 in degrees. For example, G1 (mm)≈α1(°); G2 (mm)≈α2 (°). It is expected that, assuming correction is required, productive lengthening will be done at a rate in the range of about 2 mm gap (G) increase per day or less. Gap increase rate (GIR) may be defined as the change in gap in millimeters per day. One consideration in determining the gap increase rate (GIR) to use is the pain tolerance of the patient. Some patients may tolerate a larger amount of pain, for example the pain caused by stretching of soft tissue, and thus a higher gap increase rate (GIR). Another consideration is the amount of bone growth that is occurring. One method of assessing the amount of bone growth is via radiography. The preferred gap increase rate (GIR) is that at which bone growth is occurring within the open wedge osteotomy 118, but early consolidation of the bone is not occurring (consolidation that would “freeze” the mobility of the open wedge osteotomy 118, making it unable to be opened more). It may be desired to purposely implant the non-invasively adjustable wedge osteotomy device 125 with an undersized initial gap (G0), so that an ideal gap (G1) may be gradually achieved via non-invasive adjustments. It is contemplated that over the adjustment period, a total of one to twenty or more adjustment procedures may be performed, for a total amount of about 1 mm to about 20 mm of gap (G) increase, such as during an adjustment period of one month or less. Typically, the adjustment period may span approximately ten days, involve approximately ten adjustment procedures and involve a total amount of about 5 mm to about 12 mm gap increase.
By locating the non-invasively adjustable wedge osteotomy device 125 medially in the tibia, instead of near the centerline, a larger moment may be placed on the first portion 119 and second portion 121 to open the open wedge osteotomy 118 in relation to the hinge point 107. Additionally, for any particular distraction force applied by the non-invasively adjustable wedge osteotomy device 125, a larger amount of distraction may be achieved. In
A shaft 428 (
The flexible drive train 408 comprises a small timing belt, for example an about 3 mm wide Kevlar® or fiberglass reinforced polyurethane belt having a slippage torque of greater than 10 inch-ounces when used with the large pulley 450 or the circumferential engagement member 434. One potential example slippage torque for is 13 inch-ounces. The teeth of the flexible drive train may be located at a pitch of two millimeters.
In
The arm 504 comprises an abrading surface 506 for removing bone material. As seen in
As seen in
As seen in more detail in
Though not shown in
The use of the non-invasively adjustable wedge osteotomy device 900 or the non-invasively adjustable wedge osteotomy device 1000, which do not require any removal of bone at the tibial plateau 101, may be preferred in certain patients in whom it is desired to maintain the knee joint 104 in as original a condition as possible. This may include younger patients, patients who may be able to avoid later partial or total knee replacement, or patients with deformities at the knee joint 104. It may also include small patients who have small medullary canal dimensions, in whom intramedullary devices will not fit well.
Throughout the embodiments presented, a radially-poled permanent magnet (e.g. 168 of
In one embodiment a system for changing an angle of a bone of a subject includes an adjustable actuator having an outer housing and an inner shaft, telescopically disposed in the outer housing; a magnetic assembly configured to adjust the length of the adjustable actuator though axial movement of the inner shaft and outer housing in relation to one another; a first bracket configured for coupling to the outer housing; a second bracket configured for coupling to the inner shaft; and wherein application of a moving magnetic field externally to the subject moves the magnetic assembly such that the inner shaft and the outer housing move in relation to one another.
In another embodiment, a system for changing an angle of a bone of a subject includes a magnetic assembly comprising a radially-poled magnet coupled to a shaft having external threads; a block having internal threads and coupled to the shaft, wherein rotational movement of the radially-poled magnet causes the shaft to turn and to move axially in relation to the block; an upper bone interface and a lower bone interface having an adjustable distance; and wherein axial movement of the shaft in a first direction causes the distance to increase. The upper and lower bone interfaces may be formed as part of a plate spring. The upper and lower bone interfaces may be formed as part of a plurality of interlinked plates.
In another embodiment, a system for changing an angle of a bone of a subject includes a scissors assembly comprising first and second scissor arms pivotably coupled via a hinge, the first and second scissor arms coupled, respectively, to upper and lower bone interfaces configured to move relative to one another; a hollow magnetic assembly containing an axially moveable lead screw disposed therein, wherein the hollow magnetic assembly is configured to rotate in response to a moving magnetic field and wherein said rotation translations into axial movement of the lead screw; a ratchet assembly coupled at one end to the lead screw and at another end to one of the first and second scissor arms, the ratchet assembly comprising a pawl configured to engage teeth disposed in one of the upper and lower bone interfaces; and wherein axial movement of the lead screw advances the pawl along the teeth and moves the upper and lower bone interfaces away from one another
In another embodiment, a method of preparing a tibia for implantation of an offset implant includes making a first incision in the skin of a patient at a location adjacent the tibial plateau of the tibia of the patient; creating a first cavity in the tibia by removing bone material along a first axis extending in a substantially longitudinal direction from a first point at the tibial plateau to a second point; placing an excavation device within the first cavity, the excavation device including a main elongate body and configured to excavate the tibia asymmetrically in relation to the first axis; creating a second cavity in the tibia with the excavation device, wherein the second cavity communicates with the first cavity and extends substantially towards one side of the tibia; and removing the excavation device. The second cavity may extend substantially laterally in the patient. The second cavity may extend substantially medially in the patient. The method may further include compacting a portion of the cancellous bone of the tibia in the creating a second cavity step. The excavation device may comprise an articulating arm having a first end and a second end, the arm including a compaction surface. The compaction surface may include a leading edge and at least one angled surface. The arm may be adjustable in relation to the main elongate body. The first end of the arm may be pivotally coupled to the main elongate body and the second end of the arm may be adjustable to a plurality of distances from the main elongate body. The excavation device may be coupled to an adjustment member configured to move the second end of the arm into at least one of the plurality of distances from the main elongate body. The creating a second cavity step may further comprise adjusting the adjustment member to move the second end of the arm along at least several of the plurality of distances from the main elongate body such that the compaction surface compacts cancellous bone against cortical bone. The creating a second cavity step may comprise removing bone material from the tibia. The excavation device may comprise an articulating arm having a first end and a second end, the arm including an abrading surface. The abrading surface may comprise a rasp. The arm may be adjustable in relation to the main elongate body. The first end of the arm may be pivotally coupled to the main elongate body and the second end of the arm may be adjustable to a plurality of distances from the main elongate body. The excavation device may be coupled to an adjustment member configured to move the second end of the arm into at least one of the plurality of distances from the main elongate body. The creating a second cavity step may further comprise moving the excavation device longitudinally along a bidirectional path approximating the first axis and adjusting the adjustment member to move the second end of the arm to at least one of the plurality of distances from the main elongate body such that the abrading surface removes bone material. The main elongate body may comprise a rotational cutting tool having a first end, a second end, a cutting region extending at least partially between the first end and second end, and a circumferential engagement member and the excavation device may further comprise a flexible drive train configured to engage the circumferential engagement member. The placing an excavation device step may further comprise creating a pathway through cortical bone on at least one side of the tibia, inserting the flexible drive train through a the pathway, and coupling the flexible drive train to the rotational cutting tool so that movement of the flexible drive train causes rotation of the rotational cutting tool. The creating a second cavity step may further comprise moving the circumferential engagement member of the rotational cutting tool substantially towards one side of the tibia while the rotational cutting tool is being rotated by the flexible drive train. The flexible drive train may be moved by drive unit. The rotational cutting tool may be used to create the first cavity. The rotational cutting tool may comprise a reamer. The first end of the rotational cutting tool may comprise a blunt tip. The second end of the rotational cutting tool may be coupled to a retrieval tether extending from the first incision. The retrieval tether may be coupled to the rotational cutting tool by a swivel joint. The removing step may comprise removing the rotational cutting tool by applying tension to the retrieval tether from a location external to the patient. The method may further comprise the step of creating an osteotomy between a first portion and a second portion of the tibia, wherein the flexible drive train extends through the osteotomy.
In another embodiment, a method of implanting a non-invasively adjustable system for changing an angle of the tibia of a patient includes creating an osteotomy between a first portion and a second portion of the tibia; making a first incision in the skin of the patient at a location adjacent the tibial plateau of the tibia of the patient; creating a first cavity in the tibia along a first axis extending in a substantially longitudinal direction from a first point at the tibial plateau to a second point; placing an excavation device within the first cavity, the excavation device configured to excavate the tibia asymmetrically in relation to the first axis; creating a second cavity in the tibia with the excavation device, wherein the second cavity extends substantially towards one side of the tibia; placing a non-invasively adjustable implant through the first cavity and at least partially into the second cavity, the non-invasively adjustable implant comprising an adjustable actuator having an outer housing and an inner shaft, telescopically disposed in the outer housing; coupling the outer housing to the first portion of the tibia; and coupling the inner shaft to the second portion of the tibia. The first portion may be above the osteotomy and the second portion may be below the osteotomy. The first portion may be below the osteotomy and the second portion may be above the osteotomy. The second cavity may communicate with the first cavity. The method may further comprise the step of non-invasively causing the inner shaft to move in relation to the outer housing. The non-invasively adjustable implant may comprise a driving element configured to move the inner shaft in relation to the outer housing. The driving element may be selected from the group comprising: a permanent magnet, an inductively coupled motor, an ultrasonically actuated motor, a subcutaneous hydraulic pump, a subcutaneous pneumatic pump, and a shape-memory driven actuator.
In another embodiment, a method of preparing a bone for implantation of an implant includes making a first incision in the skin of a patient; creating a first cavity in the bone by removing bone material along a first axis extending in a substantially longitudinal direction from a first point at the to a second point; placing an excavation device within the first cavity, the excavation device including a main elongate body and configured to excavate the bone asymmetrically in relation to the first axis, the excavation device further comprising an articulating arm having a first end and a second end, the arm including a compaction surface; creating a second cavity in the bone with the excavation device, wherein the second cavity communicates with the first cavity and extends substantially towards one side of the bone; and removing the excavation device.
In another embodiment, a method of preparing a bone for implantation of an implant includes making a first incision in the skin of a patient; creating a first cavity in the bone by removing bone material along a first axis extending in a substantially longitudinal direction from a first point at the to a second point; placing an excavation device within the first cavity, the excavation device including a main elongate body and configured to excavate the bone asymmetrically in relation to the first axis, the excavation device further comprising an articulating arm having a first end and a second end, the arm including an abrading surface; creating a second cavity in the bone with the excavation device, wherein the second cavity communicates with the first cavity and extends substantially towards one side of the bone; and removing the excavation device.
In another embodiment, a method of preparing a bone for implantation of an implant includes making a first incision in the skin of a patient; creating a first cavity in the bone by removing bone material along a first axis extending in a substantially longitudinal direction from a first point at the to a second point; placing an excavation device within the first cavity, the excavation device including a main elongate body and configured to excavate the bone asymmetrically in relation to the first axis, the excavation device further comprising a rotational cutting tool configured to be moved substantially towards one side of the bone while the rotational cutting tool is being rotated; creating a second cavity in the bone with the excavation device, wherein the second cavity communicates with the first cavity and extends substantially towards one side of the bone; and removing the excavation device.
In another embodiment, a system for changing an angle of a bone of a subject includes a non-invasively adjustable implant comprising an adjustable actuator having an outer housing and an inner shaft, telescopically disposed in the outer housing, the outer housing configured to couple to a first portion of the bone, and the inner shaft configured to couple to a second portion of the bone; a driving element configured to move the inner shaft in relation to the outer housing; and an excavation device including a main elongate body configured to insert within a first cavity of the bone along a first axis, the excavation device configured to excavate the bone asymmetrically in relation to the first axis to create a second cavity communicating with the first cavity, wherein the adjustable actuator is configured to be coupled to the bone at least partially within the second cavity. The driving element may be selected from the group comprising: a permanent magnet, an inductively coupled motor, an ultrasonically actuated motor, a subcutaneous hydraulic pump, a subcutaneous pneumatic pump, and a shape-memory driven actuator. The excavation device may be configured to compact cancellous bone. The excavation device may comprise an articulating arm having a first end and a second end, the arm including an abrading surface. The abrading surface may comprise a rasp. The excavation device may comprise a rotational cutting tool having a first end, a second end, a cutting region extending at least partially between the first end and second end, and a circumferential engagement member, and the excavation device may further comprise a flexible drive train configured to engage the circumferential engagement member.
In another embodiment, a system for changing an angle of a bone of a subject includes a non-invasively adjustable implant comprising an adjustable actuator having an outer housing and an inner shaft, telescopically disposed in the outer housing, the outer housing configured to couple to a first portion of the bone, and the inner shaft configured to couple to a second portion of the bone; and a driving element configured to move the inner shaft in relation to the outer housing, wherein the driving element is selected from the group comprising: a permanent magnet, an inductively coupled motor, an ultrasonically actuated motor, a subcutaneous hydraulic pump, a subcutaneous pneumatic pump, and a shape-memory driven actuator. The driving element may comprise a permanent magnet.
In another embodiment, a system for changing an angle of a tibia of a subject having osteoarthritis of the knee includes a non-invasively adjustable implant comprising an adjustable actuator having an outer housing and an inner shaft, telescopically disposed in the outer housing, the outer housing having a first transverse hole, and the inner shaft having a second transverse hole; a driving element configured to move the inner shaft in relation to the outer housing, wherein the driving element is selected from the group comprising: a permanent magnet, an inductively coupled motor, an ultrasonically actuated motor, a subcutaneous hydraulic pump, a subcutaneous pneumatic pump, and a shape-memory driven actuator; a first anchor configured to place through the first transverse hole and to couple to a first portion of the tibia; and a second anchor configured to place through the second transverse hole and to couple to a second portion of the tibia, wherein at least one of the first anchor and second anchor is configured to be pivotable in relation to the non-invasively adjustable implant when coupled to either the first portion or second portion of the tibia. The driving element may comprise a permanent magnet.
In another embodiment, a method of changing a bone angle includes creating an osteotomy between a first portion and a second portion of a tibia of a patient; creating a cavity in the tibia by removing bone material along an axis extending in a substantially longitudinal direction from a first point at the tibial plateau to a second point; placing a non-invasively adjustable implant into the cavity, the non-invasively adjustable implant comprising an adjustable actuator having an outer housing and an inner shaft, telescopically disposed in the outer housing, and a driving element configured to be remotely operable to telescopically displace the inner shaft in relation to the outer housing; coupling one of the outer housing or the inner shaft to the first portion of the tibia; coupling the other of the outer housing or the inner shaft to the second portion of the tibia; and remotely operating the driving element to telescopically displace the inner shaft in relation to the outer housing, thus changing an angle between the first portion and second portion of the tibia.
While embodiments of the present invention have been shown and described, various modifications may be made without departing from the scope of the present invention. Any of the embodiments of the non-invasively adjustable wedge osteotomy device may be used for gradual distraction (Ilizarov osteogenesis) or for acute correction of an incorrect angle. The implant itself may be used as any one of the elements of the excavation device, for example, the external portion of the implant may have features that allow it to be used as a reamer, rasp or bone compactor. As an alternative, remote adjustment described above may be replaced by manual control of any implanted part, for example manual pressure by the patient or caregiver on a button placed under the skin. The invention, therefore, should not be limited, except to the following claims, and their equivalents.
It is contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments disclosed above may be made and still fall within one or more of the inventions. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with an embodiment can be used in all other embodiments set forth herein. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed inventions. Thus, it is intended that the scope of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above. Moreover, while the invention is susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the invention is not to be limited to the particular forms or methods disclosed, but to the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the various embodiments described and the appended claims. Any methods disclosed herein need not be performed in the order recited. The methods disclosed herein include certain actions taken by a practitioner; however, they can also include any third-party instruction of those actions, either expressly or by implication. For example, actions such as “inserting a bone reamer into the first portion” include “instructing the inserting of a bone reamer into the first portion.” The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “approximately”, “about”, and “substantially” as used herein include the recited numbers, and also represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount.
This application is a continuation of U.S. patent application Ser. No. 14/379,742 filed on Aug. 19, 2014, a National Stage Entry of International Application No. PCT/US/2013/067142 filed on Oct. 28, 2013 which claims priority under 35 U.S.C. § 119(c) to the U.S. Provisional Application Ser. No. 61/868,535 filed on Aug. 21, 2013, entitled “Adjustable Devices For Treating Arthritis Of The Knee,” and to U.S. Provisional Application Ser. No. 61/719,887 filed on Oct. 29, 2012, entitled “Adjustable Devices For Treating Arthritis Or The Knee,” the contents of all of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1599538 | Ludger | Sep 1926 | A |
3111945 | Von | Nov 1963 | A |
3372476 | Richard et al. | Mar 1968 | A |
3377576 | Edwin et al. | Apr 1968 | A |
3397928 | Galle | Aug 1968 | A |
3512901 | Law | May 1970 | A |
3527220 | Summers | Sep 1970 | A |
3597781 | Eibes et al. | Aug 1971 | A |
3726279 | Barefoot et al. | Apr 1973 | A |
3749098 | De Bennetot | Jul 1973 | A |
3750194 | Summers | Aug 1973 | A |
3810259 | Summers | May 1974 | A |
3840018 | Heifetz | Oct 1974 | A |
3866510 | Eibes et al. | Feb 1975 | A |
3900025 | Barnes, Jr. | Aug 1975 | A |
3915151 | Kraus | Oct 1975 | A |
RE28907 | Eibes et al. | Jul 1976 | E |
3976060 | Hildebrandt et al. | Aug 1976 | A |
4010758 | Rockland et al. | Mar 1977 | A |
4056743 | Clifford et al. | Nov 1977 | A |
4068821 | Morrison | Jan 1978 | A |
4078559 | Nissinen | Mar 1978 | A |
4118805 | Reimels | Oct 1978 | A |
4204541 | Kapitanov | May 1980 | A |
4222374 | Sampson et al. | Sep 1980 | A |
4235246 | Weiss | Nov 1980 | A |
4256094 | Kapp et al. | Mar 1981 | A |
4286584 | Sampson et al. | Sep 1981 | A |
4300223 | Make | Nov 1981 | A |
4357946 | Dutcher et al. | Nov 1982 | A |
4386603 | Mayfield | Jun 1983 | A |
4395259 | Prestele et al. | Jul 1983 | A |
4448191 | Rodnyansky et al. | May 1984 | A |
4486176 | Tardieu et al. | Dec 1984 | A |
4501266 | McDaniel | Feb 1985 | A |
4522501 | Shannon | Jun 1985 | A |
4537520 | Ochiai et al. | Aug 1985 | A |
4550279 | Klein | Oct 1985 | A |
4561798 | Elcrin et al. | Dec 1985 | A |
4573454 | Hoffman | Mar 1986 | A |
4592339 | Kuzmak et al. | Jun 1986 | A |
4592355 | Antebi | Jun 1986 | A |
4595007 | Mericle | Jun 1986 | A |
4642257 | Chase | Feb 1987 | A |
4658809 | Ulrich et al. | Apr 1987 | A |
4696288 | Kuzmak et al. | Sep 1987 | A |
4700091 | Wuthrich | Oct 1987 | A |
4747832 | Buffet | May 1988 | A |
4760837 | Petit | Aug 1988 | A |
4854304 | Zielke | Aug 1989 | A |
4872515 | Lundell | Oct 1989 | A |
4904861 | Epstein et al. | Feb 1990 | A |
4931055 | Bumpus et al. | Jun 1990 | A |
4940467 | Tronzo | Jul 1990 | A |
4957495 | Kluger | Sep 1990 | A |
4973331 | Pursley et al. | Nov 1990 | A |
4978323 | Freedman | Dec 1990 | A |
4998013 | Epstein et al. | Mar 1991 | A |
5010879 | Moriya et al. | Apr 1991 | A |
5025183 | Fuschetto | Jun 1991 | A |
5030235 | Campbell, Jr. | Jul 1991 | A |
5041112 | Mingozzi et al. | Aug 1991 | A |
5053047 | Yoon | Oct 1991 | A |
5064004 | Lundell | Nov 1991 | A |
5074868 | Kuzmak | Dec 1991 | A |
5074882 | Grammont et al. | Dec 1991 | A |
5092889 | Campbell, Jr. | Mar 1992 | A |
5133716 | Plaza | Jul 1992 | A |
5142407 | Varaprasad et al. | Aug 1992 | A |
5152770 | Bengmark et al. | Oct 1992 | A |
5156605 | Pursley et al. | Oct 1992 | A |
5176618 | Freedman | Jan 1993 | A |
5180380 | Pursley et al. | Jan 1993 | A |
5222976 | Yoon | Jun 1993 | A |
5226429 | Kuzmak | Jul 1993 | A |
5261908 | Campbell, Jr. | Nov 1993 | A |
5263955 | Baumgart et al. | Nov 1993 | A |
5290289 | Sanders et al. | Mar 1994 | A |
5306275 | Bryan | Apr 1994 | A |
5330503 | Yoon | Jul 1994 | A |
5334202 | Carter | Aug 1994 | A |
5336223 | Rogers | Aug 1994 | A |
5356411 | Spievack | Oct 1994 | A |
5356424 | Buzerak et al. | Oct 1994 | A |
5360407 | Leonard et al. | Nov 1994 | A |
5364396 | Robinson et al. | Nov 1994 | A |
5381943 | Allen et al. | Jan 1995 | A |
5399168 | Wadsworth, Jr. et al. | Mar 1995 | A |
5403322 | Herzenberg et al. | Apr 1995 | A |
5429638 | Muschler et al. | Jul 1995 | A |
5433721 | Hooven et al. | Jul 1995 | A |
5437266 | McPherson et al. | Aug 1995 | A |
5449368 | Kuzmak | Sep 1995 | A |
5466261 | Richelsoph | Nov 1995 | A |
5468030 | Walling | Nov 1995 | A |
5480437 | Draenert | Jan 1996 | A |
5498262 | Bryan | Mar 1996 | A |
5509888 | Miller | Apr 1996 | A |
5516335 | Kummer et al. | May 1996 | A |
5527309 | Shelton | Jun 1996 | A |
5536269 | Spievack | Jul 1996 | A |
5536296 | Ten Eyck et al. | Jul 1996 | A |
5549610 | Russell et al. | Aug 1996 | A |
5573496 | McPherson et al. | Nov 1996 | A |
5575790 | Chen et al. | Nov 1996 | A |
5582616 | Bolduc et al. | Dec 1996 | A |
5601224 | Bishop et al. | Feb 1997 | A |
5620445 | Brosnahan et al. | Apr 1997 | A |
5620449 | Faccioli et al. | Apr 1997 | A |
5626579 | Muschler et al. | May 1997 | A |
5626613 | Schmieding | May 1997 | A |
5628888 | Bakhir et al. | May 1997 | A |
5632744 | Campbell, Jr. | May 1997 | A |
5659217 | Petersen | Aug 1997 | A |
5662683 | Kay | Sep 1997 | A |
5672175 | Martin | Sep 1997 | A |
5672177 | Seldin | Sep 1997 | A |
5676162 | Larson, Jr. et al. | Oct 1997 | A |
5693091 | Larson, Jr. et al. | Dec 1997 | A |
5700263 | Schendel | Dec 1997 | A |
5702430 | Larson, Jr. et al. | Dec 1997 | A |
5704893 | Timm | Jan 1998 | A |
5704938 | Staehlin et al. | Jan 1998 | A |
5704939 | Justin | Jan 1998 | A |
5720746 | Soubeiran | Feb 1998 | A |
5722429 | Larson, Jr. et al. | Mar 1998 | A |
5722930 | Larson, Jr. et al. | Mar 1998 | A |
5743910 | Bays et al. | Apr 1998 | A |
5758666 | Larson, Jr. et al. | Jun 1998 | A |
5762599 | Sohn | Jun 1998 | A |
5766208 | McEwan | Jun 1998 | A |
5771903 | Jakobsson | Jun 1998 | A |
5800434 | Campbell, Jr. | Sep 1998 | A |
5810815 | Morales | Sep 1998 | A |
5824008 | Bolduc et al. | Oct 1998 | A |
5827286 | Incavo | Oct 1998 | A |
5829662 | Allen et al. | Nov 1998 | A |
5830221 | Stein et al. | Nov 1998 | A |
5843129 | Larson, Jr. et al. | Dec 1998 | A |
5874796 | Petersen | Feb 1999 | A |
5879375 | Larson, Jr. et al. | Mar 1999 | A |
5902304 | Walker et al. | May 1999 | A |
5935127 | Border | Aug 1999 | A |
5938669 | Klaiber et al. | Aug 1999 | A |
5945762 | Chen et al. | Aug 1999 | A |
5954915 | Voorhees et al. | Sep 1999 | A |
5961553 | Coty et al. | Oct 1999 | A |
5964763 | Incavo et al. | Oct 1999 | A |
5976138 | Baumgart et al. | Nov 1999 | A |
5979456 | Magovern | Nov 1999 | A |
5985110 | Bakhir et al. | Nov 1999 | A |
5997490 | McLeod et al. | Dec 1999 | A |
6009837 | McClasky | Jan 2000 | A |
6022349 | McLeod et al. | Feb 2000 | A |
6033412 | Losken et al. | Mar 2000 | A |
6034296 | Elvin et al. | Mar 2000 | A |
6067991 | Forsell | May 2000 | A |
6074341 | Anderson et al. | Jun 2000 | A |
6074882 | Eckardt | Jun 2000 | A |
6092531 | Chen et al. | Jul 2000 | A |
6102922 | Jakobsson et al. | Aug 2000 | A |
6106525 | Sachse | Aug 2000 | A |
6126660 | Dietz | Oct 2000 | A |
6126661 | Faccioli et al. | Oct 2000 | A |
6138681 | Chen et al. | Oct 2000 | A |
6139316 | Sachdeva et al. | Oct 2000 | A |
6162223 | Orsak et al. | Dec 2000 | A |
6183476 | Gerhardt et al. | Feb 2001 | B1 |
6200317 | Aalsma et al. | Mar 2001 | B1 |
6210347 | Forsell | Apr 2001 | B1 |
6217847 | Contag et al. | Apr 2001 | B1 |
6221074 | Cole et al. | Apr 2001 | B1 |
6234299 | Voorhees et al. | May 2001 | B1 |
6234956 | He et al. | May 2001 | B1 |
6241730 | Alby | Jun 2001 | B1 |
6245075 | Betz et al. | Jun 2001 | B1 |
6283156 | Motley | Sep 2001 | B1 |
6296643 | Hopf et al. | Oct 2001 | B1 |
6296656 | Bolduc et al. | Oct 2001 | B1 |
6299613 | Ogilvie et al. | Oct 2001 | B1 |
6315784 | Djurovic | Nov 2001 | B1 |
6319255 | Grundei et al. | Nov 2001 | B1 |
6321106 | Lemelson | Nov 2001 | B1 |
6325805 | Ogilvie et al. | Dec 2001 | B1 |
6327492 | Lemelson | Dec 2001 | B1 |
6331744 | Chen et al. | Dec 2001 | B1 |
6336929 | Justin | Jan 2002 | B1 |
6343568 | McClasky | Feb 2002 | B1 |
6358283 | Hogfors et al. | Mar 2002 | B1 |
6375682 | Fleischmann et al. | Apr 2002 | B1 |
6386083 | Hwang | May 2002 | B1 |
6389187 | Greenaway et al. | May 2002 | B1 |
6400980 | Lemelson | Jun 2002 | B1 |
6402753 | Cole et al. | Jun 2002 | B1 |
6409175 | Evans et al. | Jun 2002 | B1 |
6416516 | Stauch et al. | Jul 2002 | B1 |
6417750 | Sohn | Jul 2002 | B1 |
6423061 | Bryant | Jul 2002 | B1 |
6432040 | Meah | Aug 2002 | B1 |
6450173 | Forsell | Sep 2002 | B1 |
6450946 | Forsell | Sep 2002 | B1 |
6453907 | Forsell | Sep 2002 | B1 |
6454698 | Forsell | Sep 2002 | B1 |
6454699 | Forsell | Sep 2002 | B1 |
6454700 | Forsell | Sep 2002 | B1 |
6454701 | Forsell | Sep 2002 | B1 |
6460543 | Forsell | Oct 2002 | B1 |
6461292 | Forsell | Oct 2002 | B1 |
6461293 | Forsell | Oct 2002 | B1 |
6463935 | Forsell | Oct 2002 | B1 |
6464628 | Forsell | Oct 2002 | B1 |
6470892 | Forsell | Oct 2002 | B1 |
6471635 | Forsell | Oct 2002 | B1 |
6475136 | Forsell | Nov 2002 | B1 |
6482145 | Forsell | Nov 2002 | B1 |
6494879 | Lennox et al. | Dec 2002 | B2 |
6499907 | Baur | Dec 2002 | B1 |
6500110 | Davey et al. | Dec 2002 | B1 |
6503189 | Forsell | Jan 2003 | B1 |
6508820 | Bales | Jan 2003 | B2 |
6510345 | Van Bentem | Jan 2003 | B1 |
6511490 | Robert | Jan 2003 | B2 |
6527701 | Sayet et al. | Mar 2003 | B1 |
6527702 | Whalen et al. | Mar 2003 | B2 |
6536499 | Voorhees et al. | Mar 2003 | B2 |
6537196 | Creighton, IV et al. | Mar 2003 | B1 |
6547801 | Dargent et al. | Apr 2003 | B1 |
6554831 | Rivard et al. | Apr 2003 | B1 |
6558400 | Deem et al. | May 2003 | B2 |
6562051 | Bolduc et al. | May 2003 | B1 |
6565573 | Ferrante et al. | May 2003 | B1 |
6565576 | Stauch et al. | May 2003 | B1 |
6573706 | Mendes et al. | Jun 2003 | B2 |
6582313 | Perrow | Jun 2003 | B2 |
6583630 | Mendes et al. | Jun 2003 | B2 |
6587719 | Barrett et al. | Jul 2003 | B1 |
6595912 | Lau et al. | Jul 2003 | B2 |
6602184 | Lau et al. | Aug 2003 | B2 |
6604529 | Kim | Aug 2003 | B2 |
6607363 | Domroese | Aug 2003 | B1 |
6609025 | Barrett et al. | Aug 2003 | B2 |
6612978 | Lau et al. | Sep 2003 | B2 |
6612979 | Lau et al. | Sep 2003 | B2 |
6616669 | Ogilvie et al. | Sep 2003 | B2 |
6621956 | Greenaway et al. | Sep 2003 | B2 |
6626899 | Houser et al. | Sep 2003 | B2 |
6626917 | Craig | Sep 2003 | B1 |
6627206 | Lloyd | Sep 2003 | B2 |
6649143 | Contag et al. | Nov 2003 | B1 |
6656135 | Zogbi et al. | Dec 2003 | B2 |
6656194 | Gannoe et al. | Dec 2003 | B1 |
6657351 | Chen et al. | Dec 2003 | B2 |
6667725 | Simons et al. | Dec 2003 | B1 |
6669687 | Saadat | Dec 2003 | B1 |
6673079 | Kane | Jan 2004 | B1 |
6676674 | Dudai | Jan 2004 | B1 |
6682474 | Lau et al. | Jan 2004 | B2 |
6689046 | Sayet et al. | Feb 2004 | B2 |
6702732 | Lau et al. | Mar 2004 | B1 |
6702816 | Buhler | Mar 2004 | B2 |
6706042 | Taylor | Mar 2004 | B2 |
6709293 | Mori et al. | Mar 2004 | B2 |
6709385 | Forsell | Mar 2004 | B2 |
6730087 | Butsch | May 2004 | B1 |
6749556 | Banik | Jun 2004 | B2 |
6752754 | Feng et al. | Jun 2004 | B1 |
6761503 | Breese | Jul 2004 | B2 |
6765330 | Baur | Jul 2004 | B2 |
6769499 | Cargill et al. | Aug 2004 | B2 |
6773437 | Ogilvie et al. | Aug 2004 | B2 |
6774624 | Anderson et al. | Aug 2004 | B2 |
6789442 | Forch | Sep 2004 | B2 |
6796984 | Soubeiran | Sep 2004 | B2 |
6802844 | Ferree | Oct 2004 | B2 |
6802847 | Carson et al. | Oct 2004 | B1 |
6809434 | Duncan et al. | Oct 2004 | B1 |
6835183 | Lennox et al. | Dec 2004 | B2 |
6835207 | Zacouto et al. | Dec 2004 | B2 |
6849076 | Blunn et al. | Feb 2005 | B2 |
6852113 | Nathanson et al. | Feb 2005 | B2 |
6864647 | Duncan et al. | Mar 2005 | B2 |
6884248 | Bolduc et al. | Apr 2005 | B2 |
6890515 | Contag et al. | May 2005 | B2 |
6908605 | Contag et al. | Jun 2005 | B2 |
6915165 | Forsell | Jul 2005 | B2 |
6916462 | Contag et al. | Jul 2005 | B2 |
6918838 | Schwarzler et al. | Jul 2005 | B2 |
6918910 | Smith et al. | Jul 2005 | B2 |
6921360 | Banik | Jul 2005 | B2 |
6921400 | Sohngen | Jul 2005 | B2 |
6923951 | Contag et al. | Aug 2005 | B2 |
6926719 | Sohngen et al. | Aug 2005 | B2 |
6939533 | Contag et al. | Sep 2005 | B2 |
6953429 | Forsell | Oct 2005 | B2 |
6961553 | Zhao et al. | Nov 2005 | B2 |
6971143 | Domroese | Dec 2005 | B2 |
6980921 | Anderson et al. | Dec 2005 | B2 |
6997952 | Furukawa et al. | Feb 2006 | B2 |
7001327 | Whalen et al. | Feb 2006 | B2 |
7001346 | White | Feb 2006 | B2 |
7008425 | Phillips | Mar 2006 | B2 |
7011621 | Sayet et al. | Mar 2006 | B2 |
7011658 | Young | Mar 2006 | B2 |
7011682 | Lashinski et al. | Mar 2006 | B2 |
7018380 | Cole | Mar 2006 | B2 |
7029475 | Panjabi | Apr 2006 | B2 |
7041105 | Michelson | May 2006 | B2 |
7060075 | Govari et al. | Jun 2006 | B2 |
7060080 | Bachmann | Jun 2006 | B2 |
7063706 | Wittenstein | Jun 2006 | B2 |
7077802 | Lau et al. | Jul 2006 | B2 |
7081086 | Lau et al. | Jul 2006 | B2 |
7083629 | Weller et al. | Aug 2006 | B2 |
7096148 | Anderson et al. | Aug 2006 | B2 |
7097611 | Lau et al. | Aug 2006 | B2 |
7105029 | Doubler et al. | Sep 2006 | B2 |
7105968 | Nissen | Sep 2006 | B2 |
7114501 | Johnson et al. | Oct 2006 | B2 |
7115129 | Heggeness | Oct 2006 | B2 |
7115130 | Michelson | Oct 2006 | B2 |
7124493 | Lau et al. | Oct 2006 | B2 |
7128707 | Banik | Oct 2006 | B2 |
7135022 | Kosashvili et al. | Nov 2006 | B2 |
7160312 | Saadat | Jan 2007 | B2 |
7163538 | Altarac et al. | Jan 2007 | B2 |
7172607 | Hofle et al. | Feb 2007 | B2 |
7175589 | Deem et al. | Feb 2007 | B2 |
7175660 | Cartledge et al. | Feb 2007 | B2 |
7186262 | Saadat | Mar 2007 | B2 |
7188627 | Nelson et al. | Mar 2007 | B2 |
7189005 | Ward | Mar 2007 | B2 |
7189202 | Lau et al. | Mar 2007 | B2 |
7189251 | Kay | Mar 2007 | B2 |
7191007 | Desai et al. | Mar 2007 | B2 |
7194297 | Talpade et al. | Mar 2007 | B2 |
7195608 | Burnett | Mar 2007 | B2 |
7198774 | Contag et al. | Apr 2007 | B2 |
7211094 | Gannoe et al. | May 2007 | B2 |
7216648 | Nelson et al. | May 2007 | B2 |
7217284 | Houser et al. | May 2007 | B2 |
7218232 | DiSilvestro et al. | May 2007 | B2 |
7232449 | Sharkawy et al. | Jun 2007 | B2 |
7234468 | Johnson et al. | Jun 2007 | B2 |
7234544 | Kent | Jun 2007 | B2 |
7238152 | Lau et al. | Jul 2007 | B2 |
7238191 | Bachmann | Jul 2007 | B2 |
7241300 | Sharkawy et al. | Jul 2007 | B2 |
7243719 | Baron et al. | Jul 2007 | B2 |
7255682 | Bartol, Jr. et al. | Aug 2007 | B1 |
7255714 | Malek | Aug 2007 | B2 |
7255851 | Contag et al. | Aug 2007 | B2 |
7276022 | Lau et al. | Oct 2007 | B2 |
7282023 | Frering | Oct 2007 | B2 |
7285087 | Moaddeb et al. | Oct 2007 | B2 |
7288064 | Boustani et al. | Oct 2007 | B2 |
7288099 | Deem et al. | Oct 2007 | B2 |
7288101 | Deem et al. | Oct 2007 | B2 |
7296577 | Lashinski et al. | Nov 2007 | B2 |
7297150 | Cartledge et al. | Nov 2007 | B2 |
7299091 | Barrett et al. | Nov 2007 | B2 |
7302858 | Walsh et al. | Dec 2007 | B2 |
7306614 | Weller et al. | Dec 2007 | B2 |
7311690 | Burnett | Dec 2007 | B2 |
7314372 | Belfor et al. | Jan 2008 | B2 |
7314443 | Jordan et al. | Jan 2008 | B2 |
7320706 | Al-Najjar | Jan 2008 | B2 |
7331995 | Eisermann et al. | Feb 2008 | B2 |
7333013 | Berger | Feb 2008 | B2 |
7338433 | Coe | Mar 2008 | B2 |
7340306 | Barrett et al. | Mar 2008 | B2 |
7351198 | Byrum et al. | Apr 2008 | B2 |
7351240 | Hassler, Jr. et al. | Apr 2008 | B2 |
7353747 | Swayze et al. | Apr 2008 | B2 |
7357037 | Hnat et al. | Apr 2008 | B2 |
7357635 | Belfor et al. | Apr 2008 | B2 |
7360542 | Nelson et al. | Apr 2008 | B2 |
7361192 | Doty | Apr 2008 | B2 |
7364542 | Jambor et al. | Apr 2008 | B2 |
7364589 | Eisermann | Apr 2008 | B2 |
7367340 | Nelson et al. | May 2008 | B2 |
7367937 | Jambor et al. | May 2008 | B2 |
7367938 | Forsell | May 2008 | B2 |
7371244 | Chatlynne et al. | May 2008 | B2 |
7374557 | Conlon et al. | May 2008 | B2 |
7390007 | Helms et al. | Jun 2008 | B2 |
7390294 | Hassler, Jr. | Jun 2008 | B2 |
7400926 | Forsell | Jul 2008 | B2 |
7402134 | Moaddeb et al. | Jul 2008 | B2 |
7402176 | Malek | Jul 2008 | B2 |
7410461 | Lau et al. | Aug 2008 | B2 |
7416528 | Crawford et al. | Aug 2008 | B2 |
7422566 | Miethke | Sep 2008 | B2 |
7429259 | Cadeddu et al. | Sep 2008 | B2 |
7431692 | Zollinger et al. | Oct 2008 | B2 |
7441559 | Nelson et al. | Oct 2008 | B2 |
7442196 | Fisher et al. | Oct 2008 | B2 |
7445010 | Kugler et al. | Nov 2008 | B2 |
7455690 | Cartledge et al. | Nov 2008 | B2 |
7458981 | Fielding et al. | Dec 2008 | B2 |
7468060 | Utley et al. | Dec 2008 | B2 |
7476195 | Sayet et al. | Jan 2009 | B2 |
7476238 | Panjabi | Jan 2009 | B2 |
7481224 | Nelson et al. | Jan 2009 | B2 |
7481763 | Hassler, Jr. et al. | Jan 2009 | B2 |
7481841 | Hazebrouck et al. | Jan 2009 | B2 |
7485149 | White | Feb 2009 | B1 |
7489495 | Stevenson | Feb 2009 | B2 |
7494459 | Anstadt et al. | Feb 2009 | B2 |
7500484 | Nelson et al. | Mar 2009 | B2 |
7503922 | Deem et al. | Mar 2009 | B2 |
7503934 | Eisermann et al. | Mar 2009 | B2 |
7507252 | Lashinski et al. | Mar 2009 | B2 |
7510559 | Deem et al. | Mar 2009 | B2 |
7530981 | Kutsenko | May 2009 | B2 |
7531002 | Sutton et al. | May 2009 | B2 |
7547291 | Lennox et al. | Jun 2009 | B2 |
7553298 | Hunt et al. | Jun 2009 | B2 |
7559951 | DiSilvestro et al. | Jul 2009 | B2 |
7561916 | Hunt et al. | Jul 2009 | B2 |
7562660 | Saadat | Jul 2009 | B2 |
7566297 | Banik | Jul 2009 | B2 |
7569057 | Liu et al. | Aug 2009 | B2 |
7578821 | Fisher et al. | Aug 2009 | B2 |
7584788 | Baron et al. | Sep 2009 | B2 |
7594887 | Moaddeb et al. | Sep 2009 | B2 |
7601156 | Robinson | Oct 2009 | B2 |
7601162 | Hassler, Jr. et al. | Oct 2009 | B2 |
7601171 | Ainsworth et al. | Oct 2009 | B2 |
7611526 | Carl et al. | Nov 2009 | B2 |
7615001 | Jambor et al. | Nov 2009 | B2 |
7615068 | Timm et al. | Nov 2009 | B2 |
7618435 | Opolski | Nov 2009 | B2 |
7621886 | Burnett | Nov 2009 | B2 |
7635379 | Callahan et al. | Dec 2009 | B2 |
7651483 | Byrum et al. | Jan 2010 | B2 |
7658753 | Carl et al. | Feb 2010 | B2 |
7666132 | Forsell | Feb 2010 | B2 |
7666184 | Stauch | Feb 2010 | B2 |
7666210 | Franck et al. | Feb 2010 | B2 |
7678136 | Doubler et al. | Mar 2010 | B2 |
7678139 | Garamszegi et al. | Mar 2010 | B2 |
7691144 | Chang et al. | Apr 2010 | B2 |
7695512 | Lashinski et al. | Apr 2010 | B2 |
7704279 | Moskowitz et al. | Apr 2010 | B2 |
7704282 | Disilvestro et al. | Apr 2010 | B2 |
7708737 | Kraft et al. | May 2010 | B2 |
7708762 | McCarthy et al. | May 2010 | B2 |
7708765 | Carl et al. | May 2010 | B2 |
7708779 | Edie et al. | May 2010 | B2 |
7713287 | Timm et al. | May 2010 | B2 |
7717959 | William et al. | May 2010 | B2 |
7727141 | Hassler, Jr. et al. | Jun 2010 | B2 |
7727143 | Birk et al. | Jun 2010 | B2 |
7749224 | Cresina et al. | Jul 2010 | B2 |
7753913 | Szakelyhidi, Jr. et al. | Jul 2010 | B2 |
7753915 | Eksler et al. | Jul 2010 | B1 |
7757552 | Bogath et al. | Jul 2010 | B2 |
7762998 | Birk et al. | Jul 2010 | B2 |
7763053 | Gordon | Jul 2010 | B2 |
7763080 | Southworth | Jul 2010 | B2 |
7766815 | Ortiz | Aug 2010 | B2 |
7775099 | Bogath et al. | Aug 2010 | B2 |
7775215 | Hassler, Jr. et al. | Aug 2010 | B2 |
7776061 | Garner et al. | Aug 2010 | B2 |
7776068 | Ainsworth et al. | Aug 2010 | B2 |
7776075 | Bruneau et al. | Aug 2010 | B2 |
7776091 | Mastrorio et al. | Aug 2010 | B2 |
7780590 | Birk et al. | Aug 2010 | B2 |
7787958 | Stevenson | Aug 2010 | B2 |
7789912 | Manzi et al. | Sep 2010 | B2 |
7793583 | Radinger et al. | Sep 2010 | B2 |
7794447 | Dann et al. | Sep 2010 | B2 |
7794476 | Wisnewski | Sep 2010 | B2 |
7798954 | Birk et al. | Sep 2010 | B2 |
7799080 | Doty | Sep 2010 | B2 |
7803106 | Whalen et al. | Sep 2010 | B2 |
7803157 | Michelson | Sep 2010 | B2 |
7811275 | Birk et al. | Oct 2010 | B2 |
7811298 | Birk | Oct 2010 | B2 |
7811328 | Molz, IV et al. | Oct 2010 | B2 |
7815643 | Johnson et al. | Oct 2010 | B2 |
7828714 | Feng et al. | Nov 2010 | B2 |
7828813 | Mouton | Nov 2010 | B2 |
7833228 | Hershberger | Nov 2010 | B1 |
7835779 | Anderson et al. | Nov 2010 | B2 |
7837669 | Dann et al. | Nov 2010 | B2 |
7837691 | Cordes et al. | Nov 2010 | B2 |
7842036 | Phillips | Nov 2010 | B2 |
7845356 | Paraschac et al. | Dec 2010 | B2 |
7846188 | Moskowitz et al. | Dec 2010 | B2 |
7850660 | Uth et al. | Dec 2010 | B2 |
7850735 | Eisermann et al. | Dec 2010 | B2 |
7854769 | Hershberger | Dec 2010 | B2 |
7862546 | Conlon et al. | Jan 2011 | B2 |
7862574 | Deem et al. | Jan 2011 | B2 |
7862586 | Malek | Jan 2011 | B2 |
7867235 | Fell et al. | Jan 2011 | B2 |
7871368 | Zollinger et al. | Jan 2011 | B2 |
7875033 | Richter et al. | Jan 2011 | B2 |
7887566 | Hynes | Feb 2011 | B2 |
7901381 | Birk et al. | Mar 2011 | B2 |
7901419 | Bachmann et al. | Mar 2011 | B2 |
7909790 | Burnett | Mar 2011 | B2 |
7909838 | Deem et al. | Mar 2011 | B2 |
7909839 | Fields | Mar 2011 | B2 |
7909852 | Boomer et al. | Mar 2011 | B2 |
7918844 | Byrum et al. | Apr 2011 | B2 |
7921850 | Nelson et al. | Apr 2011 | B2 |
7922765 | Reiley | Apr 2011 | B2 |
7927354 | Edidin et al. | Apr 2011 | B2 |
7927357 | Sacher et al. | Apr 2011 | B2 |
7931679 | Heggeness | Apr 2011 | B2 |
7932825 | Berger | Apr 2011 | B2 |
7938836 | Ainsworth et al. | May 2011 | B2 |
7938841 | Sharkawy et al. | May 2011 | B2 |
7942903 | Moskowitz et al. | May 2011 | B2 |
7942908 | Sacher et al. | May 2011 | B2 |
7947011 | Birk et al. | May 2011 | B2 |
7951067 | Byrum et al. | May 2011 | B2 |
7951180 | Moskowitz et al. | May 2011 | B2 |
7958895 | Nelson et al. | Jun 2011 | B2 |
7958896 | Nelson et al. | Jun 2011 | B2 |
7959552 | Jordan et al. | Jun 2011 | B2 |
7972315 | Birk et al. | Jul 2011 | B2 |
7972346 | Bachmann et al. | Jul 2011 | B2 |
7972363 | Moskowitz et al. | Jul 2011 | B2 |
7976545 | Hershberger et al. | Jul 2011 | B2 |
7983763 | Stevenson et al. | Jul 2011 | B2 |
7985256 | Grotz et al. | Jul 2011 | B2 |
7987241 | St Jacques, Jr. et al. | Jul 2011 | B2 |
7988707 | Panjabi | Aug 2011 | B2 |
7988709 | Clark et al. | Aug 2011 | B2 |
7993342 | Malandain et al. | Aug 2011 | B2 |
7993397 | Lashinski et al. | Aug 2011 | B2 |
7998174 | Malandain et al. | Aug 2011 | B2 |
7998208 | Kohm et al. | Aug 2011 | B2 |
8002801 | Carl et al. | Aug 2011 | B2 |
8002809 | Baynham | Aug 2011 | B2 |
8007458 | Lennox et al. | Aug 2011 | B2 |
8007474 | Uth et al. | Aug 2011 | B2 |
8007479 | Birk et al. | Aug 2011 | B2 |
8011308 | Picchio | Sep 2011 | B2 |
8012162 | Bachmann | Sep 2011 | B2 |
8016745 | Hassler, Jr. et al. | Sep 2011 | B2 |
8016837 | Giger et al. | Sep 2011 | B2 |
8016860 | Carl et al. | Sep 2011 | B2 |
8026729 | Kroh et al. | Sep 2011 | B2 |
8029477 | Byrum et al. | Oct 2011 | B2 |
8029507 | Green et al. | Oct 2011 | B2 |
8029567 | Edidin et al. | Oct 2011 | B2 |
8034080 | Malandain et al. | Oct 2011 | B2 |
8037871 | McClendon | Oct 2011 | B2 |
8038680 | Ainsworth et al. | Oct 2011 | B2 |
8038698 | Edidin et al. | Oct 2011 | B2 |
8043206 | Birk | Oct 2011 | B2 |
8043290 | Harrison et al. | Oct 2011 | B2 |
8043299 | Conway | Oct 2011 | B2 |
8043338 | Dant | Oct 2011 | B2 |
8043345 | Carl et al. | Oct 2011 | B2 |
8048169 | Burnett et al. | Nov 2011 | B2 |
8057473 | Orsak et al. | Nov 2011 | B2 |
8057513 | Kohm et al. | Nov 2011 | B2 |
8066650 | Lee et al. | Nov 2011 | B2 |
8070670 | Deem et al. | Dec 2011 | B2 |
8070671 | Deem et al. | Dec 2011 | B2 |
8070695 | Gupta et al. | Dec 2011 | B2 |
8070813 | Grotz et al. | Dec 2011 | B2 |
8074654 | Paraschac et al. | Dec 2011 | B2 |
8075577 | Deem et al. | Dec 2011 | B2 |
8079974 | Stergiopulos | Dec 2011 | B2 |
8079989 | Birk et al. | Dec 2011 | B2 |
8080022 | Deem et al. | Dec 2011 | B2 |
8080025 | Deem et al. | Dec 2011 | B2 |
8088166 | Makower et al. | Jan 2012 | B2 |
8092459 | Malandain | Jan 2012 | B2 |
8092499 | Roth | Jan 2012 | B1 |
8095317 | Ekseth et al. | Jan 2012 | B2 |
8096302 | Nelson et al. | Jan 2012 | B2 |
8096938 | Forsell | Jan 2012 | B2 |
8096995 | Kohm et al. | Jan 2012 | B2 |
8097018 | Malandain et al. | Jan 2012 | B2 |
8097038 | Malek | Jan 2012 | B2 |
8100819 | Banik | Jan 2012 | B2 |
8100943 | Malandain et al. | Jan 2012 | B2 |
8100967 | Makower et al. | Jan 2012 | B2 |
8105360 | Connor | Jan 2012 | B1 |
8105363 | Fielding et al. | Jan 2012 | B2 |
8105364 | McCarthy et al. | Jan 2012 | B2 |
8109974 | Boomer et al. | Feb 2012 | B2 |
8114158 | Carl et al. | Feb 2012 | B2 |
8123765 | Deem et al. | Feb 2012 | B2 |
8123805 | Makower et al. | Feb 2012 | B2 |
8128628 | Freid et al. | Mar 2012 | B2 |
8133280 | Voellmicke et al. | Mar 2012 | B2 |
8137349 | Soubeiran | Mar 2012 | B2 |
8137366 | Deem et al. | Mar 2012 | B2 |
8137367 | Deem et al. | Mar 2012 | B2 |
8142454 | Harrison et al. | Mar 2012 | B2 |
8142494 | Randert et al. | Mar 2012 | B2 |
8147517 | Trieu et al. | Apr 2012 | B2 |
8147549 | Metcalf, Jr. et al. | Apr 2012 | B2 |
8157841 | Malandain et al. | Apr 2012 | B2 |
8162897 | Byrum | Apr 2012 | B2 |
8162979 | Sachs et al. | Apr 2012 | B2 |
8163013 | Machold et al. | Apr 2012 | B2 |
8177789 | Magill et al. | May 2012 | B2 |
8182411 | Dlugos | May 2012 | B2 |
8187324 | Webler et al. | May 2012 | B2 |
8197544 | Manzi et al. | Jun 2012 | B1 |
8202305 | Reiley | Jun 2012 | B2 |
8211127 | Uth et al. | Jul 2012 | B2 |
8211149 | Justis | Jul 2012 | B2 |
8211151 | Schwab et al. | Jul 2012 | B2 |
8211179 | Molz, IV et al. | Jul 2012 | B2 |
8216275 | Fielding et al. | Jul 2012 | B2 |
8221420 | Keller | Jul 2012 | B2 |
8226690 | Altarac et al. | Jul 2012 | B2 |
8236002 | Fortin et al. | Aug 2012 | B2 |
8241292 | Collazo | Aug 2012 | B2 |
8241293 | Stone et al. | Aug 2012 | B2 |
8241331 | Arnin | Aug 2012 | B2 |
8246630 | Manzi et al. | Aug 2012 | B2 |
8251888 | Roslin et al. | Aug 2012 | B2 |
8252063 | Stauch | Aug 2012 | B2 |
8257370 | Moskowitz et al. | Sep 2012 | B2 |
8257442 | Edie et al. | Sep 2012 | B2 |
8263024 | Wan et al. | Sep 2012 | B2 |
8267969 | Altarac et al. | Sep 2012 | B2 |
8273112 | Garamszegi et al. | Sep 2012 | B2 |
8278941 | Kroh et al. | Oct 2012 | B2 |
8282671 | Connor | Oct 2012 | B2 |
8287540 | LeCronier et al. | Oct 2012 | B2 |
8298133 | Wiley et al. | Oct 2012 | B2 |
8298240 | Giger et al. | Oct 2012 | B2 |
8308779 | Reiley | Nov 2012 | B2 |
8313423 | Forsell | Nov 2012 | B2 |
8316856 | Nelson et al. | Nov 2012 | B2 |
8317761 | Birk et al. | Nov 2012 | B2 |
8317802 | Manzi et al. | Nov 2012 | B1 |
8323290 | Metzger et al. | Dec 2012 | B2 |
8326435 | Stevenson | Dec 2012 | B2 |
8328807 | Brigido | Dec 2012 | B2 |
8328854 | Baynham et al. | Dec 2012 | B2 |
8333204 | Saadat | Dec 2012 | B2 |
8333790 | Timm et al. | Dec 2012 | B2 |
8353913 | Moskowitz et al. | Jan 2013 | B2 |
8357169 | Henniges et al. | Jan 2013 | B2 |
8357182 | Seme | Jan 2013 | B2 |
8357183 | Seme et al. | Jan 2013 | B2 |
8360955 | Sayet et al. | Jan 2013 | B2 |
8366628 | Denker et al. | Feb 2013 | B2 |
8372078 | Collazo | Feb 2013 | B2 |
8382652 | Sayet et al. | Feb 2013 | B2 |
8382756 | Pool et al. | Feb 2013 | B2 |
8386018 | Stauch et al. | Feb 2013 | B2 |
8388667 | Reiley et al. | Mar 2013 | B2 |
8394124 | Biyani | Mar 2013 | B2 |
8394143 | Grotz et al. | Mar 2013 | B2 |
8403958 | Schwab | Mar 2013 | B2 |
8409203 | Birk et al. | Apr 2013 | B2 |
8409281 | Makower et al. | Apr 2013 | B2 |
8414584 | Brigido | Apr 2013 | B2 |
8414648 | Reiley | Apr 2013 | B2 |
8419755 | Deem et al. | Apr 2013 | B2 |
8419801 | DiSilvestro et al. | Apr 2013 | B2 |
8425570 | Reiley | Apr 2013 | B2 |
8425608 | Dewey et al. | Apr 2013 | B2 |
8433519 | Ekseth et al. | Apr 2013 | B2 |
8435268 | Thompson et al. | May 2013 | B2 |
8439915 | Harrison et al. | May 2013 | B2 |
8439926 | Bojarski et al. | May 2013 | B2 |
8444693 | Reiley | May 2013 | B2 |
8449543 | Pool et al. | May 2013 | B2 |
8449553 | Kam et al. | May 2013 | B2 |
8449580 | Voellmicke et al. | May 2013 | B2 |
8454695 | Grotz et al. | Jun 2013 | B2 |
8469908 | Asfora | Jun 2013 | B2 |
8469978 | Fobi et al. | Jun 2013 | B2 |
8470003 | Voellmicke et al. | Jun 2013 | B2 |
8470004 | Reiley | Jun 2013 | B2 |
8475354 | Phillips et al. | Jul 2013 | B2 |
8475356 | Feng et al. | Jul 2013 | B2 |
8475499 | Cournoyer et al. | Jul 2013 | B2 |
8480554 | Phillips et al. | Jul 2013 | B2 |
8480668 | Fernandez et al. | Jul 2013 | B2 |
8480741 | Grotz et al. | Jul 2013 | B2 |
8486070 | Morgan et al. | Jul 2013 | B2 |
8486076 | Chavarria et al. | Jul 2013 | B2 |
8486110 | Fielding et al. | Jul 2013 | B2 |
8486113 | Malek | Jul 2013 | B2 |
8486147 | de Villiers et al. | Jul 2013 | B2 |
8491589 | Fisher et al. | Jul 2013 | B2 |
8494805 | Roche et al. | Jul 2013 | B2 |
8496662 | Novak et al. | Jul 2013 | B2 |
8500810 | Mastrorio et al. | Aug 2013 | B2 |
8506517 | Stergiopulos | Aug 2013 | B2 |
8506569 | Keefer et al. | Aug 2013 | B2 |
8517973 | Burnett | Aug 2013 | B2 |
8518062 | Cole et al. | Aug 2013 | B2 |
8518086 | Seme et al. | Aug 2013 | B2 |
8522790 | Nelson et al. | Sep 2013 | B2 |
8523865 | Reglos et al. | Sep 2013 | B2 |
8523866 | Sidebotham et al. | Sep 2013 | B2 |
8523883 | Saadat | Sep 2013 | B2 |
8529474 | Gupta et al. | Sep 2013 | B2 |
8529606 | Alamin et al. | Sep 2013 | B2 |
8529607 | Alamin et al. | Sep 2013 | B2 |
8529630 | Bojarski et al. | Sep 2013 | B2 |
8545384 | Forsell | Oct 2013 | B2 |
8545508 | Collazo | Oct 2013 | B2 |
8545814 | Contag et al. | Oct 2013 | B2 |
8551092 | Morgan et al. | Oct 2013 | B2 |
8551142 | Altarac et al. | Oct 2013 | B2 |
8551422 | Wan et al. | Oct 2013 | B2 |
8556901 | Anthony et al. | Oct 2013 | B2 |
8556911 | Mehta et al. | Oct 2013 | B2 |
8556975 | Ciupik et al. | Oct 2013 | B2 |
8562653 | Alamin et al. | Oct 2013 | B2 |
8568416 | Schmitz et al. | Oct 2013 | B2 |
8568457 | Hunziker | Oct 2013 | B2 |
8574267 | Linares | Nov 2013 | B2 |
8579919 | Bolduc et al. | Nov 2013 | B2 |
8579979 | Edie et al. | Nov 2013 | B2 |
8585595 | Heilman | Nov 2013 | B2 |
8585702 | Orsak et al. | Nov 2013 | B2 |
8585738 | Linares | Nov 2013 | B2 |
8585740 | Ross et al. | Nov 2013 | B1 |
8591549 | Lange | Nov 2013 | B2 |
8597362 | Shenoy et al. | Dec 2013 | B2 |
8613749 | Deem et al. | Dec 2013 | B2 |
8613758 | Linares | Dec 2013 | B2 |
8617212 | Linares | Dec 2013 | B2 |
8617220 | Skaggs | Dec 2013 | B2 |
8617243 | Eisermann et al. | Dec 2013 | B2 |
8622936 | Schenberger et al. | Jan 2014 | B2 |
8623036 | Harrison et al. | Jan 2014 | B2 |
8623042 | Roslin et al. | Jan 2014 | B2 |
8623056 | Linares | Jan 2014 | B2 |
8632544 | Haaja et al. | Jan 2014 | B2 |
8632547 | Maxson et al. | Jan 2014 | B2 |
8632548 | Soubeiran | Jan 2014 | B2 |
8632563 | Nagase et al. | Jan 2014 | B2 |
8632594 | Williams et al. | Jan 2014 | B2 |
8636770 | Hestad et al. | Jan 2014 | B2 |
8636771 | Butler et al. | Jan 2014 | B2 |
8636802 | Serhan et al. | Jan 2014 | B2 |
8641719 | Gephart et al. | Feb 2014 | B2 |
8641723 | Connor | Feb 2014 | B2 |
8652175 | Timm et al. | Feb 2014 | B2 |
8657765 | Asfora | Feb 2014 | B2 |
8657856 | Gephart et al. | Feb 2014 | B2 |
8657885 | Burnett et al. | Feb 2014 | B2 |
8663139 | Asfora | Mar 2014 | B2 |
8663140 | Asfora | Mar 2014 | B2 |
8663285 | Dall et al. | Mar 2014 | B2 |
8663287 | Butler et al. | Mar 2014 | B2 |
8663338 | Burnett et al. | Mar 2014 | B2 |
8668719 | Alamin et al. | Mar 2014 | B2 |
8673001 | Cartledge et al. | Mar 2014 | B2 |
8679161 | Malandain et al. | Mar 2014 | B2 |
8690858 | Machold et al. | Apr 2014 | B2 |
8707959 | Paraschac et al. | Apr 2014 | B2 |
8709090 | Makower et al. | Apr 2014 | B2 |
8715243 | Uth et al. | May 2014 | B2 |
8715290 | Fisher et al. | May 2014 | B2 |
8721570 | Gupta et al. | May 2014 | B2 |
8721643 | Morgan et al. | May 2014 | B2 |
8728125 | Bruneau et al. | May 2014 | B2 |
8734318 | Forsell | May 2014 | B2 |
8734516 | Moskowitz et al. | May 2014 | B2 |
8734519 | de Villiers et al. | May 2014 | B2 |
8747444 | Moskowitz et al. | Jun 2014 | B2 |
8752552 | Nelson et al. | Jun 2014 | B2 |
8758303 | Uth et al. | Jun 2014 | B2 |
8758347 | Weiner et al. | Jun 2014 | B2 |
8758355 | Fisher et al. | Jun 2014 | B2 |
8758372 | Cartledge et al. | Jun 2014 | B2 |
8762308 | Najarian et al. | Jun 2014 | B2 |
8764713 | Uth et al. | Jul 2014 | B2 |
8771272 | LeCronier et al. | Jul 2014 | B2 |
8777947 | Zahrly et al. | Jul 2014 | B2 |
8777995 | McClintock et al. | Jul 2014 | B2 |
8781744 | Ekseth et al. | Jul 2014 | B2 |
8784482 | Randert et al. | Jul 2014 | B2 |
8790343 | McClellan et al. | Jul 2014 | B2 |
8790380 | Buttermann | Jul 2014 | B2 |
8790409 | Van den Heuvel et al. | Jul 2014 | B2 |
8794243 | Deem et al. | Aug 2014 | B2 |
8795339 | Boomer et al. | Aug 2014 | B2 |
8801795 | Makower et al. | Aug 2014 | B2 |
8808206 | Asfora | Aug 2014 | B2 |
8813727 | McClendon | Aug 2014 | B2 |
8814869 | Freid et al. | Aug 2014 | B2 |
8828058 | Elsebaie et al. | Sep 2014 | B2 |
8828087 | Stone et al. | Sep 2014 | B2 |
8840623 | Reiley | Sep 2014 | B2 |
8840651 | Reiley | Sep 2014 | B2 |
8845692 | Wisnewski | Sep 2014 | B2 |
8845724 | Shenoy et al. | Sep 2014 | B2 |
8864717 | Conlon et al. | Oct 2014 | B2 |
8864823 | Cartledge et al. | Oct 2014 | B2 |
8870881 | Rezach et al. | Oct 2014 | B2 |
8870918 | Boomer et al. | Oct 2014 | B2 |
8870959 | Arnin | Oct 2014 | B2 |
8882699 | Burnett | Nov 2014 | B2 |
8882830 | Cartledge et al. | Nov 2014 | B2 |
8888672 | Phillips et al. | Nov 2014 | B2 |
8888673 | Phillips et al. | Nov 2014 | B2 |
8894663 | Giger et al. | Nov 2014 | B2 |
8915915 | Harrison et al. | Dec 2014 | B2 |
8915917 | Doherty et al. | Dec 2014 | B2 |
8920422 | Homeier et al. | Dec 2014 | B2 |
8932247 | Stergiopulos | Jan 2015 | B2 |
8945188 | Rezach et al. | Feb 2015 | B2 |
8945210 | Cartledge et al. | Feb 2015 | B2 |
8956407 | Macoviak et al. | Feb 2015 | B2 |
8961386 | Phillips et al. | Feb 2015 | B2 |
8961521 | Keefer et al. | Feb 2015 | B2 |
8961567 | Hunziker | Feb 2015 | B2 |
8968402 | Myers et al. | Mar 2015 | B2 |
8968406 | Arnin | Mar 2015 | B2 |
8986348 | Reiley | Mar 2015 | B2 |
8992527 | Guichet | Mar 2015 | B2 |
9005251 | Heggeness | Apr 2015 | B2 |
9005293 | Moskowitz et al. | Apr 2015 | B2 |
9005298 | Makower et al. | Apr 2015 | B2 |
9011491 | Carl et al. | Apr 2015 | B2 |
9015057 | Phillips et al. | Apr 2015 | B2 |
9022917 | Kasic et al. | May 2015 | B2 |
9028550 | Shulock et al. | May 2015 | B2 |
9033957 | Cadeddu et al. | May 2015 | B2 |
9033988 | Gephart et al. | May 2015 | B2 |
9034016 | Panjabi | May 2015 | B2 |
9044218 | Young | Jun 2015 | B2 |
9060810 | Kercher et al. | Jun 2015 | B2 |
9060844 | Kagan et al. | Jun 2015 | B2 |
9072530 | Mehta et al. | Jul 2015 | B2 |
9072606 | Lucas et al. | Jul 2015 | B2 |
9078703 | Arnin | Jul 2015 | B2 |
9084632 | Orsak et al. | Jul 2015 | B2 |
9089348 | Chavarria et al. | Jul 2015 | B2 |
9095436 | Boyden et al. | Aug 2015 | B2 |
9095437 | Boyden et al. | Aug 2015 | B2 |
9101422 | Freid et al. | Aug 2015 | B2 |
9101427 | Globerman et al. | Aug 2015 | B2 |
9107706 | Alamin et al. | Aug 2015 | B2 |
9113967 | Soubeiran | Aug 2015 | B2 |
9114016 | Shenoy et al. | Aug 2015 | B2 |
9125746 | Clifford et al. | Sep 2015 | B2 |
9138266 | Stauch | Sep 2015 | B2 |
9144482 | Sayet | Sep 2015 | B2 |
9155565 | Boomer et al. | Oct 2015 | B2 |
9161856 | Nelson et al. | Oct 2015 | B2 |
9168071 | Seme et al. | Oct 2015 | B2 |
9168076 | Patty et al. | Oct 2015 | B2 |
9173681 | Seme | Nov 2015 | B2 |
9173715 | Baumgartner | Nov 2015 | B2 |
9186158 | Anthony et al. | Nov 2015 | B2 |
9186185 | Hestad et al. | Nov 2015 | B2 |
9198771 | Ciupik | Dec 2015 | B2 |
9204899 | Buttermann | Dec 2015 | B2 |
9204908 | Buttermann | Dec 2015 | B2 |
9220536 | Skaggs | Dec 2015 | B2 |
9226783 | Brigido | Jan 2016 | B2 |
9242070 | Tieu | Jan 2016 | B2 |
9259243 | Giger et al. | Feb 2016 | B2 |
9272159 | Phillips et al. | Mar 2016 | B2 |
9278004 | Shenoy et al. | Mar 2016 | B2 |
9278046 | Asfora | Mar 2016 | B2 |
9282997 | Hunziker | Mar 2016 | B2 |
9301792 | Henniges et al. | Apr 2016 | B2 |
9301854 | Moskowitz et al. | Apr 2016 | B2 |
9308089 | Vicatos et al. | Apr 2016 | B2 |
9308387 | Phillips et al. | Apr 2016 | B2 |
9320618 | Schmitz et al. | Apr 2016 | B2 |
9326728 | Demir et al. | May 2016 | B2 |
9333009 | Kroll et al. | May 2016 | B2 |
9339197 | Griswold et al. | May 2016 | B2 |
9339300 | Kantelhardt | May 2016 | B2 |
9339307 | McClintock et al. | May 2016 | B2 |
9339312 | Doherty et al. | May 2016 | B2 |
9358044 | Seme et al. | Jun 2016 | B2 |
9364267 | Northcutt et al. | Jun 2016 | B2 |
9370388 | Globerman et al. | Jun 2016 | B2 |
9393123 | Lucas et al. | Jul 2016 | B2 |
9408644 | Zahrly et al. | Aug 2016 | B2 |
9421347 | Burnett | Aug 2016 | B2 |
9427267 | Homeier et al. | Aug 2016 | B2 |
9439744 | Forsell | Sep 2016 | B2 |
9439797 | Baym et al. | Sep 2016 | B2 |
9445848 | Anderson et al. | Sep 2016 | B2 |
9451997 | Carl et al. | Sep 2016 | B2 |
9456953 | Asfora | Oct 2016 | B2 |
9474612 | Haaja et al. | Oct 2016 | B2 |
9492199 | Orsak et al. | Nov 2016 | B2 |
9492276 | Lee et al. | Nov 2016 | B2 |
9498258 | Boomer et al. | Nov 2016 | B2 |
9498366 | Burnett et al. | Nov 2016 | B2 |
9510834 | Burnett et al. | Dec 2016 | B2 |
9532804 | Clifford et al. | Jan 2017 | B2 |
9561062 | Hayes et al. | Feb 2017 | B2 |
9561063 | Reiley | Feb 2017 | B2 |
9572588 | Fisher et al. | Feb 2017 | B2 |
9572746 | Asfora | Feb 2017 | B2 |
9572910 | Messersmith et al. | Feb 2017 | B2 |
9579110 | Bojarski et al. | Feb 2017 | B2 |
9579203 | Soubeiran | Feb 2017 | B2 |
9603605 | Collazo | Mar 2017 | B2 |
9603713 | Moskowitz et al. | Mar 2017 | B2 |
9610161 | Macoviak et al. | Apr 2017 | B2 |
9622875 | Moskowitz et al. | Apr 2017 | B2 |
9642735 | Burnett | May 2017 | B2 |
9655651 | Panjabi | May 2017 | B2 |
9668868 | Shenoy et al. | Jun 2017 | B2 |
9687243 | Burnett et al. | Jun 2017 | B2 |
9687414 | Asfora | Jun 2017 | B2 |
9693867 | Lucas et al. | Jul 2017 | B2 |
9700419 | Clifford et al. | Jul 2017 | B2 |
9700450 | Burnett | Jul 2017 | B2 |
9717537 | Gordon | Aug 2017 | B2 |
9724135 | Koch et al. | Aug 2017 | B2 |
9724265 | Asfora | Aug 2017 | B2 |
9730738 | Gephart et al. | Aug 2017 | B2 |
9743969 | Reiley | Aug 2017 | B2 |
9782206 | Mueckter et al. | Oct 2017 | B2 |
9795410 | Shenoy et al. | Oct 2017 | B2 |
9814600 | Shulock et al. | Nov 2017 | B2 |
9820789 | Reiley | Nov 2017 | B2 |
9826987 | Keefer et al. | Nov 2017 | B2 |
9833291 | Baumgartner | Dec 2017 | B2 |
9848894 | Burley et al. | Dec 2017 | B2 |
9848993 | Moskowitz et al. | Dec 2017 | B2 |
9861376 | Chavarria et al. | Jan 2018 | B2 |
9861390 | Hunziker | Jan 2018 | B2 |
9861404 | Reiley | Jan 2018 | B2 |
9867719 | Moskowitz et al. | Jan 2018 | B2 |
20010011543 | Forsell | Aug 2001 | A1 |
20020019580 | Lau et al. | Feb 2002 | A1 |
20020050112 | Koch et al. | May 2002 | A1 |
20020072758 | Reo et al. | Jun 2002 | A1 |
20020164905 | Bryant | Nov 2002 | A1 |
20020188296 | Michelson | Dec 2002 | A1 |
20030019498 | Forsell | Jan 2003 | A1 |
20030040671 | Somogyi et al. | Feb 2003 | A1 |
20030066536 | Forsell | Apr 2003 | A1 |
20030114731 | Cadeddu et al. | Jun 2003 | A1 |
20030114856 | Nathanson | Jun 2003 | A1 |
20030187447 | Ferrante et al. | Oct 2003 | A1 |
20030208212 | Cigaina | Nov 2003 | A1 |
20030220643 | Ferree | Nov 2003 | A1 |
20030220644 | Thelen et al. | Nov 2003 | A1 |
20040006342 | Altarac et al. | Jan 2004 | A1 |
20040011137 | Hnat et al. | Jan 2004 | A1 |
20040011365 | Govari et al. | Jan 2004 | A1 |
20040019353 | Freid et al. | Jan 2004 | A1 |
20040023623 | Stauch et al. | Feb 2004 | A1 |
20040055610 | Forsell | Mar 2004 | A1 |
20040064030 | Forsell | Apr 2004 | A1 |
20040068205 | Zogbi et al. | Apr 2004 | A1 |
20040092939 | Freid et al. | May 2004 | A1 |
20040098121 | Opolski | May 2004 | A1 |
20040116773 | Furness et al. | Jun 2004 | A1 |
20040133219 | Forsell | Jul 2004 | A1 |
20040138725 | Forsell | Jul 2004 | A1 |
20040153106 | Dudai | Aug 2004 | A1 |
20040158254 | Eisermann | Aug 2004 | A1 |
20040172040 | Heggeness | Sep 2004 | A1 |
20040173222 | Kim | Sep 2004 | A1 |
20040193266 | Meyer | Sep 2004 | A1 |
20040220567 | Eisermann et al. | Nov 2004 | A1 |
20040220668 | Eisermann et al. | Nov 2004 | A1 |
20040230307 | Eisermann | Nov 2004 | A1 |
20040250820 | Forsell | Dec 2004 | A1 |
20040260287 | Ferree | Dec 2004 | A1 |
20040260319 | Egle | Dec 2004 | A1 |
20050002984 | Byrum et al. | Jan 2005 | A1 |
20050043802 | Eisermann et al. | Feb 2005 | A1 |
20050055025 | Zacouto et al. | Mar 2005 | A1 |
20050070937 | Jambor et al. | Mar 2005 | A1 |
20050080427 | Govari et al. | Apr 2005 | A1 |
20050080439 | Carson et al. | Apr 2005 | A1 |
20050090823 | Bartimus | Apr 2005 | A1 |
20050096750 | Kagan et al. | May 2005 | A1 |
20050131352 | Conlon et al. | Jun 2005 | A1 |
20050159754 | Odrich | Jul 2005 | A1 |
20050159755 | Odrich | Jul 2005 | A1 |
20050165440 | Cancel et al. | Jul 2005 | A1 |
20050171543 | Timm et al. | Aug 2005 | A1 |
20050177164 | Walters et al. | Aug 2005 | A1 |
20050182400 | White | Aug 2005 | A1 |
20050182401 | Timm et al. | Aug 2005 | A1 |
20050182412 | Johnson et al. | Aug 2005 | A1 |
20050192629 | Saadat et al. | Sep 2005 | A1 |
20050222489 | Rahdert et al. | Oct 2005 | A1 |
20050234289 | Anstadt et al. | Oct 2005 | A1 |
20050234448 | McCarthy | Oct 2005 | A1 |
20050234462 | Hershberger | Oct 2005 | A1 |
20050246034 | Soubeiran | Nov 2005 | A1 |
20050251109 | Soubeiran | Nov 2005 | A1 |
20050251147 | Novak | Nov 2005 | A1 |
20050261779 | Meyer | Nov 2005 | A1 |
20050272976 | Tanaka et al. | Dec 2005 | A1 |
20050288672 | Ferree | Dec 2005 | A1 |
20060004459 | Hazebrouck | Jan 2006 | A1 |
20060009767 | Kiester | Jan 2006 | A1 |
20060020278 | Burnett et al. | Jan 2006 | A1 |
20060036251 | Reiley | Feb 2006 | A1 |
20060036259 | Carl et al. | Feb 2006 | A1 |
20060036323 | Carl et al. | Feb 2006 | A1 |
20060036324 | Sachs et al. | Feb 2006 | A1 |
20060069447 | Disilvestro | Mar 2006 | A1 |
20060079897 | Harrison et al. | Apr 2006 | A1 |
20060116757 | Lashinski et al. | Jun 2006 | A1 |
20060124140 | Forsell | Jun 2006 | A1 |
20060136062 | DiNello et al. | Jun 2006 | A1 |
20060142634 | Anstadt et al. | Jun 2006 | A1 |
20060142767 | Green et al. | Jun 2006 | A1 |
20060155279 | Ogilvie | Jul 2006 | A1 |
20060155347 | Forsell | Jul 2006 | A1 |
20060184240 | Jimenez et al. | Aug 2006 | A1 |
20060184248 | Edidin et al. | Aug 2006 | A1 |
20060195102 | Malandain | Aug 2006 | A1 |
20060204156 | Takehara et al. | Sep 2006 | A1 |
20060211909 | Anstadt et al. | Sep 2006 | A1 |
20060235299 | Martinelli | Oct 2006 | A1 |
20060235424 | Vitale et al. | Oct 2006 | A1 |
20060241636 | Novak | Oct 2006 | A1 |
20060241746 | Shaoulian et al. | Oct 2006 | A1 |
20060249914 | Dulin | Nov 2006 | A1 |
20060252983 | Lembo et al. | Nov 2006 | A1 |
20060271107 | Harrison et al. | Nov 2006 | A1 |
20060276812 | Hill et al. | Dec 2006 | A1 |
20060282073 | Simanovsky | Dec 2006 | A1 |
20060289014 | Purdy et al. | Dec 2006 | A1 |
20060293671 | Heggeness | Dec 2006 | A1 |
20060293683 | Stauch | Dec 2006 | A1 |
20070010814 | Stauch | Jan 2007 | A1 |
20070015955 | Tsonton | Jan 2007 | A1 |
20070021644 | Woolson et al. | Jan 2007 | A1 |
20070031131 | Griffitts | Feb 2007 | A1 |
20070043376 | Leatherbury et al. | Feb 2007 | A1 |
20070050030 | Kim | Mar 2007 | A1 |
20070055237 | Edidin et al. | Mar 2007 | A1 |
20070055368 | Rhee et al. | Mar 2007 | A1 |
20070118215 | Moaddeb | May 2007 | A1 |
20070135913 | Moaddeb et al. | Jun 2007 | A1 |
20070162032 | Johnson et al. | Jul 2007 | A1 |
20070173837 | Chan et al. | Jul 2007 | A1 |
20070173869 | Gannoe et al. | Jul 2007 | A1 |
20070179493 | Kim | Aug 2007 | A1 |
20070213751 | Scirica et al. | Sep 2007 | A1 |
20070239159 | Altarac et al. | Oct 2007 | A1 |
20070250084 | Sharkawy et al. | Oct 2007 | A1 |
20070255088 | Jacobson et al. | Nov 2007 | A1 |
20070256693 | Paraschac et al. | Nov 2007 | A1 |
20070260270 | Assell et al. | Nov 2007 | A1 |
20070264605 | Belfor et al. | Nov 2007 | A1 |
20070270631 | Nelson et al. | Nov 2007 | A1 |
20070276369 | Allard et al. | Nov 2007 | A1 |
20070276372 | Malandain et al. | Nov 2007 | A1 |
20070276373 | Malandain | Nov 2007 | A1 |
20070276493 | Malandain et al. | Nov 2007 | A1 |
20070288024 | Gollogly | Dec 2007 | A1 |
20070288183 | Bulkes et al. | Dec 2007 | A1 |
20080015577 | Loeb | Jan 2008 | A1 |
20080015604 | Collazo | Jan 2008 | A1 |
20080021454 | Chao et al. | Jan 2008 | A1 |
20080021455 | Chao et al. | Jan 2008 | A1 |
20080021456 | Gupta et al. | Jan 2008 | A1 |
20080033431 | Jung et al. | Feb 2008 | A1 |
20080051784 | Gollogly | Feb 2008 | A1 |
20080051895 | Malandain et al. | Feb 2008 | A1 |
20080058936 | Malandain et al. | Mar 2008 | A1 |
20080058937 | Malandain et al. | Mar 2008 | A1 |
20080065077 | Ferree | Mar 2008 | A1 |
20080065215 | Reiley | Mar 2008 | A1 |
20080066764 | Paraschac et al. | Mar 2008 | A1 |
20080071275 | Ferree | Mar 2008 | A1 |
20080071276 | Ferree | Mar 2008 | A1 |
20080082118 | Edidin et al. | Apr 2008 | A1 |
20080082167 | Edidin et al. | Apr 2008 | A1 |
20080083413 | Forsell | Apr 2008 | A1 |
20080086128 | Lewis | Apr 2008 | A1 |
20080091059 | Machold et al. | Apr 2008 | A1 |
20080097523 | Bolduc et al. | Apr 2008 | A1 |
20080108995 | Conway et al. | May 2008 | A1 |
20080140188 | Randert et al. | Jun 2008 | A1 |
20080147139 | Barrett et al. | Jun 2008 | A1 |
20080147192 | Edidin et al. | Jun 2008 | A1 |
20080161933 | Grotz et al. | Jul 2008 | A1 |
20080167685 | Allard et al. | Jul 2008 | A1 |
20080172063 | Taylor | Jul 2008 | A1 |
20080177319 | Schwab | Jul 2008 | A1 |
20080177326 | Thompson | Jul 2008 | A1 |
20080195104 | Sidebotham | Aug 2008 | A1 |
20080195156 | Ainsworth et al. | Aug 2008 | A1 |
20080226563 | Contag et al. | Sep 2008 | A1 |
20080228186 | Gall et al. | Sep 2008 | A1 |
20080255615 | Vittur et al. | Oct 2008 | A1 |
20080272928 | Shuster | Nov 2008 | A1 |
20080275552 | Makower et al. | Nov 2008 | A1 |
20080275555 | Makower et al. | Nov 2008 | A1 |
20080275557 | Makower et al. | Nov 2008 | A1 |
20080275567 | Makower et al. | Nov 2008 | A1 |
20080293995 | Moaddeb et al. | Nov 2008 | A1 |
20090076597 | Dahlgren et al. | Mar 2009 | A1 |
20090082815 | Zylber et al. | Mar 2009 | A1 |
20090088803 | Justis et al. | Apr 2009 | A1 |
20090093820 | Trieu et al. | Apr 2009 | A1 |
20090093890 | Gelbart | Apr 2009 | A1 |
20090112207 | Walker et al. | Apr 2009 | A1 |
20090112262 | Pool | Apr 2009 | A1 |
20090118699 | Utley et al. | May 2009 | A1 |
20090171356 | Klett | Jul 2009 | A1 |
20090177203 | Reiley | Jul 2009 | A1 |
20090182356 | Coe | Jul 2009 | A1 |
20090192514 | Feinberg et al. | Jul 2009 | A1 |
20090198144 | Phillips et al. | Aug 2009 | A1 |
20090204055 | Lennox et al. | Aug 2009 | A1 |
20090216113 | Meier et al. | Aug 2009 | A1 |
20090216262 | Burnett et al. | Aug 2009 | A1 |
20090222014 | Bojarski | Sep 2009 | A1 |
20090240173 | Hsia et al. | Sep 2009 | A1 |
20090259236 | Burnett et al. | Oct 2009 | A2 |
20090270871 | Liu et al. | Oct 2009 | A1 |
20090275984 | Kim et al. | Nov 2009 | A1 |
20090318919 | Robinson | Dec 2009 | A1 |
20100004654 | Schmitz et al. | Jan 2010 | A1 |
20100030281 | Gollogly | Feb 2010 | A1 |
20100057127 | McGuire et al. | Mar 2010 | A1 |
20100081868 | Moaddeb et al. | Apr 2010 | A1 |
20100087821 | Trip | Apr 2010 | A1 |
20100094293 | Mcclellan | Apr 2010 | A1 |
20100094306 | Chang | Apr 2010 | A1 |
20100094925 | Jacques, Jr. | Apr 2010 | A1 |
20100100185 | Trieu et al. | Apr 2010 | A1 |
20100106192 | Barry | Apr 2010 | A1 |
20100106193 | Barry | Apr 2010 | A1 |
20100106247 | Makower | Apr 2010 | A1 |
20100106248 | Makower | Apr 2010 | A1 |
20100114103 | Harrison et al. | May 2010 | A1 |
20100114322 | Clifford | May 2010 | A1 |
20100121323 | Pool et al. | May 2010 | A1 |
20100121457 | Clifford et al. | May 2010 | A1 |
20100130941 | Conlon et al. | May 2010 | A1 |
20100137872 | Kam et al. | Jun 2010 | A1 |
20100145449 | Makower et al. | Jun 2010 | A1 |
20100145462 | Ainsworth et al. | Jun 2010 | A1 |
20100168751 | Anderson et al. | Jul 2010 | A1 |
20100179601 | Jung et al. | Jul 2010 | A1 |
20100198261 | Trieu et al. | Aug 2010 | A1 |
20100228167 | Ilovich et al. | Sep 2010 | A1 |
20100241168 | Franck et al. | Sep 2010 | A1 |
20100249782 | Durham | Sep 2010 | A1 |
20100249837 | Seme | Sep 2010 | A1 |
20100249839 | Alamin et al. | Sep 2010 | A1 |
20100249847 | Jung et al. | Sep 2010 | A1 |
20100256626 | Muller et al. | Oct 2010 | A1 |
20100256686 | Fisher | Oct 2010 | A1 |
20100274290 | Jung et al. | Oct 2010 | A1 |
20100286730 | Gordon | Nov 2010 | A1 |
20100286791 | Goldsmith | Nov 2010 | A1 |
20100318129 | Seme et al. | Dec 2010 | A1 |
20100324684 | Eisermann et al. | Dec 2010 | A1 |
20100331883 | Schmitz et al. | Dec 2010 | A1 |
20110004076 | Janna et al. | Jan 2011 | A1 |
20110057756 | Marinescu et al. | Mar 2011 | A1 |
20110060336 | Pool et al. | Mar 2011 | A1 |
20110060422 | Makower et al. | Mar 2011 | A1 |
20110098748 | Jangra | Apr 2011 | A1 |
20110130702 | Stergiopulos | Jun 2011 | A1 |
20110137415 | Clifford | Jun 2011 | A1 |
20110184505 | Sharkawy et al. | Jul 2011 | A1 |
20110196371 | Forsell | Aug 2011 | A1 |
20110196435 | Forsell | Aug 2011 | A1 |
20110202138 | Shenoy et al. | Aug 2011 | A1 |
20110213371 | Anthony | Sep 2011 | A1 |
20110257655 | Copf, Jr. | Oct 2011 | A1 |
20110275879 | Nelson et al. | Nov 2011 | A1 |
20110284014 | Cadeddu et al. | Nov 2011 | A1 |
20120004494 | Payne et al. | Jan 2012 | A1 |
20120019341 | Gabay et al. | Jan 2012 | A1 |
20120019342 | Gabay et al. | Jan 2012 | A1 |
20120053633 | Stauch | Mar 2012 | A1 |
20120088953 | King | Apr 2012 | A1 |
20120089186 | Carl et al. | Apr 2012 | A1 |
20120089191 | Altarac et al. | Apr 2012 | A1 |
20120109207 | Trieu | May 2012 | A1 |
20120116522 | Makower et al. | May 2012 | A1 |
20120116535 | Ratron et al. | May 2012 | A1 |
20120130426 | Thompson | May 2012 | A1 |
20120136449 | Makower et al. | May 2012 | A1 |
20120157996 | Walker | Jun 2012 | A1 |
20120172883 | Sayago | Jul 2012 | A1 |
20120179273 | Clifford et al. | Jul 2012 | A1 |
20120185040 | Rahdert et al. | Jul 2012 | A1 |
20120197258 | Chavarria | Aug 2012 | A1 |
20120203282 | Sachs et al. | Aug 2012 | A1 |
20120209265 | Pool | Aug 2012 | A1 |
20120209269 | Pool | Aug 2012 | A1 |
20120221101 | Moaddeb et al. | Aug 2012 | A1 |
20120221106 | Makower et al. | Aug 2012 | A1 |
20120271353 | Barry | Oct 2012 | A1 |
20120277747 | Keller | Nov 2012 | A1 |
20120283781 | Arnin | Nov 2012 | A1 |
20120296234 | Wilhelm et al. | Nov 2012 | A1 |
20120312307 | Paraschac et al. | Dec 2012 | A1 |
20120316568 | Manzi | Dec 2012 | A1 |
20130013066 | Landry et al. | Jan 2013 | A1 |
20130018468 | Moskowitz et al. | Jan 2013 | A1 |
20130018469 | Moskowitz et al. | Jan 2013 | A1 |
20130023991 | Moskowitz et al. | Jan 2013 | A1 |
20130072931 | Homeier | Mar 2013 | A1 |
20130072932 | Stauch | Mar 2013 | A1 |
20130079830 | Garamszegi et al. | Mar 2013 | A1 |
20130138017 | Jundt et al. | May 2013 | A1 |
20130138112 | Young | May 2013 | A1 |
20130138154 | Reiley | May 2013 | A1 |
20130150889 | Fening et al. | Jun 2013 | A1 |
20130178903 | Abdou | Jul 2013 | A1 |
20130184764 | Stone | Jul 2013 | A1 |
20130197639 | Clifford et al. | Aug 2013 | A1 |
20130204266 | Heilman | Aug 2013 | A1 |
20130204376 | DiSilvestro et al. | Aug 2013 | A1 |
20130211521 | Shenoy | Aug 2013 | A1 |
20130238094 | Voellmicke et al. | Sep 2013 | A1 |
20130253344 | Griswold et al. | Sep 2013 | A1 |
20130253587 | Carls et al. | Sep 2013 | A1 |
20130261623 | Voellmicke et al. | Oct 2013 | A1 |
20130261672 | Horvath | Oct 2013 | A1 |
20130296863 | Globerman et al. | Nov 2013 | A1 |
20130296870 | Keefer | Nov 2013 | A1 |
20130296940 | Northcutt et al. | Nov 2013 | A1 |
20130325006 | Michelinie et al. | Dec 2013 | A1 |
20130325071 | Niemiec et al. | Dec 2013 | A1 |
20130331889 | Alamin et al. | Dec 2013 | A1 |
20130345802 | Cartledge et al. | Dec 2013 | A1 |
20140005788 | Haaja et al. | Jan 2014 | A1 |
20140018913 | Cartledge et al. | Jan 2014 | A1 |
20140025172 | Lucas et al. | Jan 2014 | A1 |
20140031826 | Bojarski et al. | Jan 2014 | A1 |
20140031929 | Cartledge et al. | Jan 2014 | A1 |
20140039558 | Alamin et al. | Feb 2014 | A1 |
20140051914 | Fobi et al. | Feb 2014 | A1 |
20140052134 | Orisek | Feb 2014 | A1 |
20140058392 | Mueckter et al. | Feb 2014 | A1 |
20140058450 | Arlet | Feb 2014 | A1 |
20140067075 | Makower et al. | Mar 2014 | A1 |
20140080203 | Wan et al. | Mar 2014 | A1 |
20140107704 | Serhan et al. | Apr 2014 | A1 |
20140128920 | Kantelhardt | May 2014 | A1 |
20140135838 | Alamin et al. | May 2014 | A1 |
20140142631 | Hunziker | May 2014 | A1 |
20140142698 | Landry et al. | May 2014 | A1 |
20140155946 | Skinlo et al. | Jun 2014 | A1 |
20140156004 | Shenoy | Jun 2014 | A1 |
20140156005 | Shenoy | Jun 2014 | A1 |
20140163664 | Goldsmith | Jun 2014 | A1 |
20140172097 | Clifford et al. | Jun 2014 | A1 |
20140194932 | Bruneau et al. | Jul 2014 | A1 |
20140222138 | Machold et al. | Aug 2014 | A1 |
20140296918 | Fening et al. | Oct 2014 | A1 |
20140303538 | Baym et al. | Oct 2014 | A1 |
20140303539 | Baym et al. | Oct 2014 | A1 |
20140303540 | Baym et al. | Oct 2014 | A1 |
20140324047 | Zahrly et al. | Oct 2014 | A1 |
20140336756 | Lee et al. | Nov 2014 | A1 |
20140358150 | Kaufman et al. | Dec 2014 | A1 |
20150013687 | Paraschac et al. | Jan 2015 | A1 |
20150057490 | Forsell | Feb 2015 | A1 |
20150073565 | Nelson et al. | Mar 2015 | A1 |
20150105782 | D'Lima et al. | Apr 2015 | A1 |
20150105824 | Moskowitz et al. | Apr 2015 | A1 |
20150132174 | Marinescu et al. | May 2015 | A1 |
20150134007 | Alamin et al. | May 2015 | A1 |
20150142110 | Myers et al. | May 2015 | A1 |
20150150561 | Burnett et al. | Jun 2015 | A1 |
20150272600 | Mehta et al. | Oct 2015 | A1 |
20150313649 | Alamin et al. | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
20068468 | Mar 2001 | AU |
101040807 | Sep 2007 | CN |
1541262 | Jun 1969 | DE |
8515687 | Dec 1985 | DE |
68515687.6 | Dec 1985 | DE |
19626230 | Jan 1998 | DE |
19751733 | Dec 1998 | DE |
19745654 | Apr 1999 | DE |
102005045070 | Apr 2007 | DE |
102007053362 | May 2009 | DE |
102007053362 | Jun 2014 | DE |
0663184 | Jul 1995 | EP |
1547549 | Jun 2005 | EP |
1745765 | Jan 2007 | EP |
1905388 | Apr 2008 | EP |
2802406 | Jun 2001 | FR |
2823663 | Oct 2002 | FR |
2827756 | Jan 2003 | FR |
2892617 | May 2007 | FR |
2900563 | Nov 2007 | FR |
2901991 | Dec 2007 | FR |
2916622 | Dec 2008 | FR |
2961386 | Dec 2011 | FR |
1174814 | Dec 1969 | GB |
223454 | Apr 2002 | HU |
05-104022 | Apr 1993 | JP |
09-056736 | Mar 1997 | JP |
2001-507608 | Jun 2001 | JP |
2003-172372 | Jun 2003 | JP |
2003-530195 | Oct 2003 | JP |
2007-050339 | Mar 2007 | JP |
WO8604498 | Aug 1986 | WO |
WO8707134 | Dec 1987 | WO |
WO8906940 | Aug 1989 | WO |
WO9601597 | Jan 1996 | WO |
WO9808454 | Mar 1998 | WO |
WO9830163 | Jul 1998 | WO |
WO1998044858 | Oct 1998 | WO |
WO9850309 | Nov 1998 | WO |
WO9903348 | Jan 1999 | WO |
WO9923744 | May 1999 | WO |
WO9951160 | Oct 1999 | WO |
WO1999051160 | Oct 1999 | WO |
WO9963907 | Dec 1999 | WO |
WO0000108 | Jan 2000 | WO |
2000061018 | Oct 2000 | WO |
WO0072768 | Dec 2000 | WO |
WO0105463 | Jan 2001 | WO |
WO0112108 | Feb 2001 | WO |
WO0124742 | Apr 2001 | WO |
WO2001024697 | Apr 2001 | WO |
WO0141671 | Jun 2001 | WO |
WO0145485 | Jun 2001 | WO |
WO0145487 | Jun 2001 | WO |
WO0145597 | Jun 2001 | WO |
WO0158390 | Aug 2001 | WO |
2001067973 | Sep 2001 | WO |
WO0167973 | Sep 2001 | WO |
2001078614 | Oct 2001 | WO |
WO0178614 | Oct 2001 | WO |
WO0236975 | May 2002 | WO |
WO03059215 | Jul 2003 | WO |
WO2004014245 | Feb 2004 | WO |
WO2004019796 | Mar 2004 | WO |
WO2004021870 | Mar 2004 | WO |
WO2004043280 | May 2004 | WO |
WO2005023090 | Mar 2005 | WO |
WO2005072195 | Aug 2005 | WO |
WO2005072664 | Aug 2005 | WO |
2005092219 | Oct 2005 | WO |
WO2005105001 | Nov 2005 | WO |
WO2006019520 | Feb 2006 | WO |
WO2006019521 | Feb 2006 | WO |
WO2006089085 | Aug 2006 | WO |
WO2006090380 | Aug 2006 | WO |
WO2006103071 | Oct 2006 | WO |
WO2006103074 | Oct 2006 | WO |
WO2006105084 | Oct 2006 | WO |
WO2007013059 | Feb 2007 | WO |
WO2007015239 | Feb 2007 | WO |
WO2007025191 | Mar 2007 | WO |
WO2007048012 | Apr 2007 | WO |
WO2007081304 | Jul 2007 | WO |
WO2007118179 | Oct 2007 | WO |
WO2007140180 | Dec 2007 | WO |
WO2007149555 | Dec 2007 | WO |
WO20071144489 | Dec 2007 | WO |
WO2008003952 | Jan 2008 | WO |
WO2008013623 | Jan 2008 | WO |
WO2008015679 | Feb 2008 | WO |
WO2008040880 | Apr 2008 | WO |
WO2008140756 | Nov 2008 | WO |
2010017649 | Feb 2010 | WO |
WO2010017649 | Feb 2010 | WO |
2010050891 | May 2010 | WO |
WO2010050891 | May 2010 | WO |
WO2010056650 | May 2010 | WO |
2011018778 | Feb 2011 | WO |
WO2011018778 | Feb 2011 | WO |
WO2011116158 | Sep 2011 | WO |
WO2013119528 | Aug 2013 | WO |
WO2013181329 | Dec 2013 | WO |
WO2014040013 | Mar 2014 | WO |
WO2011041398 | Apr 2015 | WO |
Entry |
---|
US 9,161,784 B2, 10/2015, Buttermann (withdrawn) |
Abe, Jun, Kensei Nagata, Mamoru Ariyoshi, and Akio Inoue. “Experimental external fixation combined with percutaneous discectomy in the management of scoliosis.” Spine 24, No. 7 (1999): 646-653. |
Amer, A. R. A. L., and Ashraf A. Khanfour. “Evaluation of treatment of late-onset tibia vara using gradual angulationtranslation high tibial osteotomy.” Acta orthopaedica Belgica 76, No. 3 (2010): 360. |
Baumgart, Rainer, Stefan Hinterwimmer, Michael Krammer, Oliver Muensterer, and Wolf Mutschler. “The bioexpandable prosthesis: a new perspective after resection of malignant bone tumors in children.” Journal of pediatric hematology/oncology 27, No. 8 (2005): 452-455. |
Baumgart, R., P. Thaller, S. Hinterwimmer, M. Krammer, T. Hierl, and W. Mutschler. “A fully implantable, programmable distraction nail (Fitbone)—new perspectives for corrective and reconstructive limb surgery.” In Practice of Intramedullary Locked Nails, pp. 189-198. Springer Berlin Heidelberg, 2006. |
Bodó, László, László Hangody, Balázs Borsitzky, György Béres, Gabriella Arató{acute over (,)}, Péter Nagy, and Gábor K. Ráthonyi. “Development of a tension-adjustable implant for anterior cruciate ligament reconstruction.” Eklem Hast Cerrahisi 19, No. 1 (2008): 27-32. |
Boudjemline, Younes, Emmanuelle Pineau, Caroline Bonnet, Alix Mollet, Sylvia Abadir, Damien Bonnet, Daniel Sidi, and Gabriella Agnoletti. “Off-label use of an adjustable gatric banding system for pulmonary artery banding.” The Journal of thoracic and cardiovascular surgery 131, No. 5 (2006): 1130-1135. |
Brown, S. “Single Port Surgery and the Dundee Endocone.” SAGES Annual Scientific Sessions, Poster Abstracts (2007): 323-324. |
Buchowski, Jacob M., Rishi Bhatnagar, David L. Skaggs, and Paul D. Sponseller. “Temporary internal distraction as an aid to correction of severe scoliosis.” The Journal of Bone & Joint Surgery 88, No. 9 (2006): 2035-2041. |
Burghardt, R. D., J. E. Herzenberg, S. C. Specht, and D. Paley. “Mechanical failure of the Intramedullary Skeletal Kinetic Distractor in limb lengthening.” Journal of Bone & Joint Surgery, British vol. 93, No. 5 (2011): 639-643. |
Burke, John Gerard. “Design of a minimally invasive non fusion device for the surgical management of scoliosis in the skeletally immature.” Studies in health technology and informatics 123 (2005): 378-384. |
Carter, D. R., and W. E. Caler. “A cumulative damage model for bone fracture.” Journal of Orthopaedic Research 3, No. 1 (1985): 84-90. |
Chapman, Andrew E., George Kiroff, Philip Game, Bruce Foster, Paul O'Brien, John Ham, and Guy J. Maddern. “Laparoscopic adjustable gastric banding in the treatment of obesity: a systematic literature review.” Surgery 135, No. 3 (2004): 326-351. |
Cole, J. Dean, Daniel Justin, Tagus Kasparis, Derk DeVlught, and Carl Knobloch. “The intramedullary skeletal distractor (ISKD): first clinical results of a new intramedullary nail for lengthening of the femur and tibia.” Injury 32 (2001):129-139. |
Cole, J., D. Paley, and M. Dahl. “Operative Technique. ISKD. Intramedullary Skeletal Kinetic Distractor. Tibial Surgical Technique.” IS-0508 (A)-OPT-US© Orthofix Inc 28 (2005). |
Dailey, Hannah L., Charles J. Daly, John G. Galbraith, Michael Cronin, and James A. Harty. “A novel intramedullary nail for micromotion stimulation of tibial fractures.” Clinical Biomechanics 27, No. 2 (2012): 182-188. |
Daniels, A. U., Patrick Gemperline, Allen R. Grahn, and Harold K. Dunn. “A new method for continuous intraoperative measurement of Harrington rod loading patterns.” Annals of biomedical engineering 12, No. 3 (1984): 233-246. |
De Giorgi, G., G. Stella, S. Becchetti, G. Martucci, and D. Miscioscia. “Cotrel-Dubousset instrumentation for the treatment of severe scoliosis.” European Spine Journal 8, No. 1 (1999): 8-15. |
Dorsey, W. O., Bruce S. Miller, Jared P. Tadje, and Cari R. Bryant. “The stability of three commercially available implants used in medial opening wedge high tibial osteotomy.” The journal of knee surgery 19, No. 2 (2006): 95-98. |
Edeland, H. G., G. Eriksson, and E. Dahlberg. “Instrumentation for distraction by limited surgery in scoliosis treatment.” Journal of biomedical engineering 3, No. 2 (1981): 143-146. |
Ember, T., and H. Noordeen. “Distraction forces required during growth rod lengthening.” Journal of Bone & Joint Surgery, British vol. 88, No. SUPP II (2006): 229-229. |
Fabry, Hans, Robrecht Van Hee, Leo Hendrickx, and Eric Totté. “A technique for prevention of port adjustable silicone gastric banding.” Obesity surgery 12, No. 2 (2002): 285-288. |
Fried, M., W. Lechner, and K. Kormanova. “In vivo measurements of different gastric band pressures towards the gastric wall at the stoma region.” In Obesity Surgery, vol. 14, No. 7, pp. 914-914. 3100 Bayview Ave, Unit 4, Toronto, Ontario M2N 5L3, Canada: F D-Communications Inc, 2004. |
Gao, Xiaochong, Derek Gordon, Dongping Zhang, Richard Browne, Cynthia Helms, Joseph Gillum, Samuel Weber et al. “CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis.” The American Journal of Human Genetics 80, No. 5 (2007): 957-965. |
Gebhart, M., M. Neel, A. Soubeiran, and J. Dubousset. “Early clinical experience with a custom made growing endoprosthesis in children with malignant bone tumors of the lower extremity actioned by an external permanent magnet: the Phenix M system.” In International Society of Limb Salvage 14th International Symposium on Limb Salvage.2007. |
Gillespie, R., and J. Obrien. “Harrington instrumentation without fusion.” In Journal of Bone and Joint Surgerybritish Volume, vol. 63, No. 3, pp. 461-461. 22 Buckingham Street, London, England WC2N 6ET: British Editorial Soc Bone Joint Surgery, 1981. |
Goodship, Allen E., James L. Cunningham, and John Kenwright. “Strain rate and timing of stimulation in mechanical modulation of fracture healing.” Clinical orthopaedics and related research 355 (1998): S105-S115. |
Grass, P. Jose, A. Valentin Soto, and H. Paula Araya. “Intermittent distracting rod for correction of high neurologic risk congenital scoliosis.” Spine 22, No. 16 (1997): 1922-1927. |
Gray's Anatomy, http://education.yahoo.com/reference/gray/subjects/subject/128, published Jul. 1, 2007. |
Grimer, R., S. Carter, R. Tillman, A. Abudu, and L. Jeys. “Non-Invasive Extendable Endoprostheses for Children—Expensive but Worth It!.” Journal of Bone & Joint Surgery, British vol. 93, No. SUPP I (2011): 5-5. |
Grünert, R. D. “[The development of a totally implantable electronic sphincter].” Langenbecks Archiv fur Chirurgie 325 (1968): 1170-1174. |
Guichet, Jean-Marc, Barbara Deromedis, Leo T. Donnan, Giovanni Peretti, Pierre Lascombes, and Flavio Bado. “Gradual femoral lengthening with the Albizzia intramedullary nail.” The Journal of Bone & Joint Surgery 85, No. 5 (2003): 838-848. |
Gupta, A., J. Meswania, R. Pollock, S. R. Cannon, T. W. R. Briggs, S. Taylor, and G. Blunn. “Noninvasive distal femoral expandable endoprosthesis for limb-salvage surgery in paediatric tumours.” Journal of Bone & Joint Surgery, British vol. 88, No. 5 (2006): 649-654. |
Hankemeier S, Gösling T, Pape HC, et al. Limb lengthening with the Intramedullary Skeletal Kinetic Distractor (ISKD) Oper Orthop Traumatol. 2005;17:79-101. |
Harrington PR (1962) Treatment of scoliosis. Correction and internal fixation by spine instrumentation. J Bone Joint Surg Am 44-A:591-610. |
Hazem Elsebaie, M. D. “Single Growing Rods.” Changing the Foundations: Does it affect the Results., J Child Orthop. (2007) 1:258. |
Hennig, Alex C.; Incavo, Stephen J.; Beynnon, Bruce D.; Abate, Joseph A.; Urse, John S.; Kelly, Stephen / The safety and efficacy of a new adjustable plate used for proximal tibial opening wedge osteotomy in the treatment of unicompartmental knee osteoarthrosis. In: The journal of knee surgery, vol. 20, No. 1, Jan. 1, 2007, p. 6-14. |
Hofmeister, M., C. Hierholzer, and V. Bühren. “Callus Distraction with the Albizzia Nail.” In Practice of Intramedullary Locked Nails, pp. 211-215. Springer Berlin Heidelberg, 2006. |
Horbach, T., D. Herzog, and I. Knerr. “First experiences with the routine use of the Rapid Port (TM) system with the Lap-Band (R).” In Obesity Surgery, vol. 16, No. 4, pp. 418-418. 3100 Bayview Ave, Unit 4, Toronto, Ontario M2N 5L3, Canada: F D-Communications Inc, 2006. |
Hyodo, Akira, Helmuth Kotschi, Helen Kambic, and George Muschler. “Bone transport using intramedullary fixation and a single flexible traction cable.” Clinical orthopaedics and related research 325 (1996): 256-268. |
Ahlbom, A., U. Bergqvist, J. H. Bernhardt, J. P. Cesarini, M. Grandolfo, M. Hietanen, A. F. Mckinlay et al. “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection.” Health Phys 74, No. 4 (1998): 494-522. |
International Commission on Non-Ionizing Radiation Protection. “Guidelines on limits of exposure to static magnetic fields.” Health Physics 96, No. 4 (2009): 504-514. |
INVIS®/Lamello Catalog, 2006, Article No. 68906A001 GB. |
Kasliwal, Manish K., Justin S. Smith, Adam Kanter, Ching-Jen Chen, Praveen V. Mummaneni, Robert A. Hart, and Christopher I. Shaffrey. “Management of high-grade spondylolisthesis.” Neurosurgery Clinics of North America 24, No. 2 (2013): 275-291. |
Kenawey, Mohamed, Christian Krettek, Emmanouil Liodakis, Ulrich Wiebking, and Stefan Hankemeier. “Leg lengthening using intramedullay skeletal kinetic distractor: results of 57 consecutive applications.” Injury 42, No. 2 (2011): 150-155. |
Kent, Matthew E., Arvind Arora, P. Julian Owen, and Vikas Khanduja. “Assessment and correction of femoral malrotation following intramedullary nailing of the femur.” Acta Orthop Belg 76, No. 5 (2010): 580-4. |
Klemme, William R., Francis Denis, Robert B. Winter, John W. Lonstein, and Steven E. Koop. “Spinal instrumentation without fusion for progressive scoliosis in young children.” Journal of Pediatric Orthopaedics 17, No. 6 (1997): 734-742. |
Korenkov, M., S. Sauerland, N. Yücel, L. Köhler, P. Goh, J. Schierholz, and H. Troidl. “Port function after laparoscopic adjustable gastric banding for morbid obesity.” Surgical Endoscopy and Other Interventional Techniques 17, No. 7 (2003): 1068-1071. |
Krieg, Andreas H., Bernhard M. Speth, and Bruce K. Foster. “Leg lengthening with a motorized nail in adolescents.” Clinical orthopaedics and related research 466, No. 1 (2008): 189-197. |
Kucukkaya, Metin, Raffi Armagan, and Unal Kuzgun. “The new intramedullary cable bone transport technique.” Journal of orthopaedic trauma 23, No. 7 (2009): 531-536. |
Lechner, W. L., W. Kirchmayr, and G. Schwab. “In vivo band manometry: a new method in band adjustment.” In Obesity Surgery, vol. 15, No. 7, pp. 935-935. 3100 Bayview Ave, Unit 4, Toronto, Ontario M2N 5L3, Canada: F DCommunicationsInc, 2005. |
Lechner, W., M. Gadenstatter, R. Ciovica, W. Kirchmayer, and G. Schwab. “Intra-band manometry for band adjustments: The basics.” In Obesity Surgery, vol. 16, No. 4, pp. 417-418. 3100 Bayview Ave, Unit 4, Toronto, Ontario M2N 5L3, Canada: F D-Communications Inc, 2006. |
Li, G., S. Berven, N. A. Athanasou, and A. H. R. W. Simpson. “Bone transport over an intramedullary nail: A case report with histologic examination of the regenerated segment.” Injury 30, No. 8 (1999): 525-534. |
Lonner, Baron S. “Emerging minimally invasive technologies for the management of scoliosis.” Orthopedic Clinics of North America 38, No. 3 (2007): 431-440. |
Teli, Marco MD. “Measurement of Forces Generated During Distraction of Growing Rods, J.” Marco Teli. Journal of Child Orthop 1 (2007): 257-258. |
Matthews, Michael Wayne, Harry Conrad Eggleston, Steven D. Pekarek, and Greg Eugene Hilmas. “Magnetically adjustable intraocular lens.” Journal of Cataract & Refractive Surgery 29, No. 11 (2003): 2211-2216. |
Micromotion “Micro Drive Engineering⋅General catalogue” pp. 14⋅24; Jun. 2009. |
Mineiro, Jorge, and Stuart L. Weinstein. “Subcutaneous rodding for progressive spinal curvatures: early results.” Journal of Pediatric Orthopaedics 22, No. 3 (2002): 290-295. |
Moe, John H., Khalil Kharrat, Robert B. Winter, and John L. Cummine. “Harrington instrumentation without fusion plus external orthotic support for the treatment of difficult curvature problems in young children.” Clinical orthopaedics and related research 185 (1984): 35-45. |
Montague, R. G., C. M. Bingham, and K. Atallah. “Magnetic gear dynamics for servo control.” In Melecon 2010-2010 15th IEEE Mediterranean Electrotechnical Conference, pp. 1192-1197. IEEE, 2010. |
Montague, Ryan, Chris Bingham, and Kais Atallah. “Servo control of magnetic gears.” Mechatronics, IEEE/ASME Transactions on 17, No. 2 (2012): 269-278. |
Nachemson, Alf, and Gösta Elfström. “Intravital wireless telemetry of axial forces in Harrington distraction rods in patients with idiopathic scoliosis.” The Journal of Bone & Joint Surgery 53, No. 3 (1971): 445-465. |
Nachlas, I. William, and Jesse N. Borden. “The cure of experimental scoliosis by directed growth control.” The Journal of Bone & Joint Surgery 33, No. 1 (1951): 24-34. |
Newton, P. “Fusionless Scoliosis Correction by Anterolateral Tethering . . . Can it Work?.” In 39th Annual Scoliosis Research Society Meeting. 2004. |
Observations by a third party under Article 115 EPC issued by the European Patent Office dated Feb. 15, 2010 in European Patent Application No. 08805612.2, Applicant: Soubeiran, Arnaud (7 pages). |
Oh, Chang-Wug, Hae-Ryong Song, Jae-Young Roh, Jong-Keon Oh, Woo-Kie Min, Hee-Soo Kyung, Joon-Woo Kim, Poong-Taek Kim, and Joo-Chul Ihn. “Bone transport over an intramedullary nail for reconstruction of long bone defects in tibia.” Archives of orthopaedic and trauma surgery 128, No. 8 (2008): 801-808. |
Ozcivici, Engin, Yen Kim Luu, Ben Adler, Yi-Xian Qin, Janet Rubin, Stefan Judex, and Clinton T. Rubin. “Mechanical signals as anabolic agents in bone.” Nature Reviews Rheumatology 6, No. 1 (2010): 50-59. |
Patient Guide, VEPTR Vertical Expandable Prosthetic Titanium Rib, Synthes Spine (2005) (23pages). |
Piorkowski, James R., Scott J. Ellner, Arun A. Mavanur, and Carlos A. Barba. “Preventing port site inversion in laparoscopic adjustable gastric banding.” Surgery for Obesity and Related Diseases 3, No. 2 (2007): 159-161. |
Prontes, Isabel, http://wwwehow.com/about_4795793_longest-bone-body.html, published Jun. 12, 2012. |
Rathjen, Karl, Megan Wood, Anna McClung, and Zachary Vest. “Clinical and radiographic results after implant removal in idiopathic scoliosis.” Spine 32, No. 20 (2007): 2184-2188. |
Ren, Christine J., and George A. Fielding. “Laparoscopic adjustable gastric banding: surgical technique.” Journal of Laparoendoscopic & Advanced Surgical Techniques 13, No. 4 (2003): 257-263. |
Reyes-Sánchez, Alejandro, Luis Miguel Rosales, and Victor Miramontes. “External fixation for dynamic correction of severe scoliosis.” The Spine Journal 5, No. 4 (2005): 418-426. |
Rinsky, Lawrence A., James G. Gamble, and Eugene E. Bleck. “Segmental Instrumentation Without Fusion in Children With Progressive Scoliosis.” Journal of Pediatric Orthopedics 5, No. 6 (1985): 687-690. |
Rode, V., F. Gay, A. J. Baraza, and J. Dargent. “A simple way to adjust bands under radiologic control.” In Obesity Surgery, vol. 16, No. 4, pp. 418-418. 3100 Bayview Ave, Unit 4, Toronto, Ontario M2N 5L3, Canada: F DCommunications Inc, 2006. |
Schmerling, M. A., M. A. Wilkov, A. E. Sanders, and J. E. Woosley. “Using the shape recovery of nitinol in the Harrington rod treatment of scoliosis.” Journal of biomedical materials research 10, No. 6 (1976): 879-892. |
Scott, D. J., S. J. Tang, R. Fernandez, R. Bergs, and J. A. Cadeddu. “Transgastric, transcolonic, and transvaginal cholecystectomy using magnetically anchored instruments.” In SAGES Meeting, p. P511. 2007. |
Sharke, Paul. “The machinery of life.” Mechanical Engineering 126, No. 2 (2004): 30. |
Shiha, Anis, Mohamed Alam El-Deen, Abdel Rahman Khalifa, and Mohamed Kenawey. “Ilizarov gradual correction of genu varum deformity in adults.” Acta Orthop Belg 75 (2009): 784-91. |
Simpson, A. H. W. R., H. Shalaby, and G. Keenan. “Femoral lengthening with the intramedullary skeletal kinetic distractor.” Journal of Bone & Joint Surgery, British vol. 91, No. 7 (2009): 955-961. |
Smith, John T. “The use of growth-sparing instrumentation in pediatric spinal deformity.” Orthopedic Clinics of North America 38, No. 4 (2007): 547-552. |
Soubeiran, A., M. Gebhart, L. Miladi, J. Griffet, M. Neel, and J. Dubousset. “The Phenix M System. A Mechanical Fully Implanted Lengthening Device Externally Controllable Through the Skin with a Palm Size Permanent Magnet; Applications to Pediatric Orthopaedics.” In 6th European Research Conference in Pediatric Orthopaedics. 2006. |
Sun, Zongyang, Katherine L. Rafferty, Mark A. Egbert, and Susan W. Herring. “Masticatory mechanics of a mandibular distraction osteogenesis site: interfragmentary micromovement.” Bone 41, No. 2 (2007): 188-196. |
Takaso, Masashi, Hideshige Moriya, Hiroshi Kitahara, Shohei Minami, Kazuhisa Takahashi, Keijiro Isobe, Masatsune Yamagata, Yoshinori Otsuka, Yoshinori Nakata, and Masatoshi Inoue. “New remote-controlled growing-rod spinal instrumentation possibly applicable for scoliosis in young children.” Journal of orthopaedic science 3, No. 6 (1998): 336-340. |
Tello, Carlos A. “Harrington instrumentation without arthrodesis and consecutive distraction program for young children with severe spinal deformities. Experience and technical details.” The Orthopedic clinics of North America 25, No. 2 (1994): 333-351. |
Thaller, Peter Helmut, Julian Hirmetz, Florian Wolf, Thorsten Eilers, and Wolf Mutschler. “Limb lengthening with fully implantable magnetically actuated mechanical nails (PHENIX®)—Preliminary results.” Injury 45 (2014): S60-S65. |
Thompson, George H., Lawrence G. Lenke, Behrooz A. Akbarnia, Richard E. McCarthy, and Robert M. Campbell. “Early onset scoliosis: future directions.” The Journal of Bone & Joint Surgery 89, No. suppl 1 (2007): 163-166. |
Thonse, Raghuram, John E. Herzenberg, Shawn C. Standard, and Dror Paley. “Limb lengthening with a fully implantable, telescopic, intramedullary nail.” Operative Techniques in Orthopedics 15, No. 4 (2005): 355-362. |
Trias, A., P. Bourassa, and M. Massoud. “Dynamic loads experienced in correction of idiopathic scoliosis using two types of Harrington rods.” Spine 4, No. 3 (1978): 228-235. |
VEPTR II. Vertical Expandable Prosthetic Titanium Rib II, Technique Guide, Systhes Spine (2008) (40 pages). |
Verkerke, G. J., Koops H. Schraffordt, R. P. Veth, H. J. Grootenboer, L. J. De Boer, J. Oldhoff, and A. Postma. “Development and test of an extendable endoprosthesis for bone reconstruction in the leg.” The International journal of artificial organs 17, No. 3 (1994): 155-162. |
Verkerke, G. J., H. Schraffordt Koops, R. P. H. Veth, J. Oldhoff, H. K. L. Nielsen, H. H. Van den Kroonenberg, H. J. Grootenboer, and F. M. Van Krieken. “Design of a lengthening element for a modular femur endoprosthetic system.” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 203, No. 2 (1989): 97-102. |
Verkerke, G. J., H. Schraffordt Koops, R. P. H. Veth, H. H. van den Kroonenberg, H. J. Grootenboer, H. K. L. Nielsen, J. Oldhoff, and A. Postma. “An extendable modular endoprosthetic system for bone tumour management in the leg.” Journal of biomedical engineering 12, No. 2 (1990): 91-96. |
Weiner, Rudolph A., Michael Korenkov, Esther Matzig, Sylvia Weiner, and Woiteck K. Karcz. “Initial clinical experience with telemetrically adjustable gastric banding.” Surgical technology international 15 (2005): 63-69. |
Wenger, H. L. “Spine Jack Operation in the Correction of Scoliotic Deformity: A Direct Intrathoracic Attack to Straighten the Laterally Bent Spine: Preliminary Report.” Archives of Surgery 83, No. 6 (1961): 901-910. |
White III, Augustus A., and Manohar M. Panjabi. “The clinical biomechanics of scoliosis.” Clinical orthopaedics and related research 118 (1976): 100-112. |
Yonnet, Jean-Paul. “Passive magnetic bearings with permanent magnets.” Magnetics, IEEE Transactions on 14, No. 5 (1978): 803-805. |
Yonnet, Jean-Paul. “A new type of permanent magnet coupling.” Magnetics, IEEE Transactions on 17, No. 6 (1981): 2991-2993. |
Zheng, Pan, Yousef Haik, Mohammad Kilani, and Ching-Jen Chen. “Force and torque characteristics for magnetically driven blood pump.” Journal of Magnetism and Magnetic Materials 241, No. 2 (2002): 292-302. |
International Search Report, Written Opinion and International Preliminary Report on Patentability for International Application No. PCT/U2013/067142, 11 pages. |
VEPTR Vertical Expandable Prosthetic Titanium Rib, Patient Guide, Synthes Spine (2005) (23pages). |
L. Angrisani et al., Abstract, “27 Lap-Band(R) Rapid Port(TM) System: Preliminary Results in 21 Patients,” Obesity Surgery, 15:936, 2005 (1 page). |
Stokes et al., Abstract, “23. Reducing Radiation Exposure in Early-Onset Scoliosis Patients: Novel use of Ultrasonography to Measure Lengthening in Magnetically-Controlled Growing Rods Prospective Validation Study and Assessment of Clinical Algorithm,” Final Program, 20th International Meeting on Advanced Spine Techniques, pp. 80-81, Jul. 10-13, 2013 (4 pages). |
Number | Date | Country | |
---|---|---|---|
20190046252 A1 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
61868535 | Aug 2013 | US | |
61719887 | Oct 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14379742 | US | |
Child | 16159061 | US |