Adjustable devices for treating arthritis of the knee

Information

  • Patent Grant
  • 10617453
  • Patent Number
    10,617,453
  • Date Filed
    Sunday, April 15, 2018
    7 years ago
  • Date Issued
    Tuesday, April 14, 2020
    5 years ago
Abstract
A system, and method of using the system, for changing the angle of a bone of a subject is provided by the present disclosure. In one embodiment the system includes a non-invasively adjustable implant configured to be placed inside a longitudinal cavity within the bone and comprising an outer housing and an inner shaft telescopically disposed in the outer housing, at least one of the outer housing and inner shaft associated with a first anchor hole and a second anchor hole, the first anchor hole configured to pass a first anchor for coupling the adjustable implant to a first portion of bone and the second anchor hole configured for to pass a second anchor for coupling the adjustable implant to the first portion of bone, the inner shaft configured to couple to a second portion of bone that is separated or separable from the first portion of bone, such that non-invasive elongation of the adjustable implant causes the inner shaft to extend from the outer housing and to move the first portion of bone and the second portion of bone apart angularly; a driving element configured to be remotely operable to telescopically displace the inner shaft in relation to the outer housing; and wherein the first anchor hole is configured to allow the first anchor to pivot in at least a first angular direction and the second anchor hole is configured to allow the second anchor to translate in at least a first translation direction.
Description
BACKGROUND
Field of the Invention

The field of the invention generally relates to medical devices for treating knee osteoarthritis.


Description of the Related Art

Knee osteoarthritis is a degenerative disease of the knee joint that affects a large number of patients, particularly over the age of 40. The prevalence of this disease has increased significantly over the last several decades, attributed partially, but not completely, to the rising age of the population as well as the increase in obesity. The increase may also be due to the increase in highly active people within the population. Knee osteoarthritis is caused mainly by long term stresses on the joint that degrade the cartilage covering the articulating surfaces of the bones in the joint, including both the femur and tibia. Oftentimes, the problem becomes worse after a trauma event, but can also be a hereditary process. Symptoms may include pain, stiffness, reduced range of motion, swelling, deformity, and muscle weakness, among others. Osteoarthritis may implicate one or more of the three compartments of the knee: the medial compartment of the tibiofemoral joint, the lateral compartment of the tibiofemoral joint, and/or the patellofemoral joint. In severe cases, partial or total replacement of the knee may be performed to replace diseased portions with new weight bearing surfaces, typically made from implant grade plastics or metals. These operations can involve significant post-operative pain and generally require substantial physical therapy. The recovery period may last weeks or months. Several potential complications of this surgery exist, including deep venous thrombosis, loss of motion, infection, and bone fracture. After recovery, surgical patients who have received partial or total knee replacement must significantly reduce their activity, removing high energy and impact activities, including running and many other sports, completely from their lifestyle.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a desirable alignment of a knee joint.



FIG. 2 illustrates a misaligned knee joint.



FIG. 3 illustrates an open wedge technique in a tibia.



FIG. 4 illustrates an open wedge technique with bone graft inserted and a plate attached.



FIG. 5 illustrates a non-invasively adjustable wedge osteotomy device.



FIG. 6 illustrates a cross-sectional view of the non-invasively adjustable wedge osteotomy device of FIG. 5 taken along line 6-6.



FIG. 7 illustrates an exploded view of the non-invasively adjustable wedge osteotomy device of FIG. 5.



FIG. 8 illustrates an external adjustment device.



FIG. 9 illustrates an exploded view of the magnetic handpiece of the external adjustment device of FIG. 8.



FIGS. 10-12 illustrate various views of another embodiment of a non-invasively adjustable wedge osteotomy device.



FIG. 13 illustrates an end of the non-invasively adjustable wedge osteotomy device of FIGS. 10-12.



FIG. 14 illustrates a cross-sectional view of the non-invasively adjustable wedge osteotomy device of FIG. 13 taken along line 14-14.



FIG. 15 illustrates a front view of a non-invasively adjustable wedge osteotomy device in place within a tibia.



FIG. 16 illustrates a side view of a non-invasively adjustable wedge osteotomy device in place within a tibia.



FIG. 17 illustrates a top view of a non-invasively adjustable wedge osteotomy device in place within a tibia.



FIG. 18 illustrates a non-invasively adjustable wedge osteotomy device within a tibia in a substantially non-adjusted state.



FIG. 19 illustrates a non-invasively adjustable wedge osteotomy device within a tibia in a first adjusted state.



FIG. 20 illustrates a non-invasively adjustable wedge osteotomy device within a tibia in a second adjusted state.



FIG. 21 illustrates a consolidated tibia after removal of a non-invasively adjustable wedge osteotomy device.



FIG. 22 illustrates a bone screw within a slotted transverse hole of a non-invasively adjustable wedge osteotomy device.



FIGS. 23-25 illustrate various views of another embodiment of a non-invasively adjustable wedge osteotomy device.



FIG. 26 illustrates the non-invasively adjustable wedge osteotomy device of FIG. 23 within a tibia in a substantially non-adjusted state.



FIGS. 27-29 illustrate the non-invasively adjustable wedge osteotomy device of FIG. 23 within a tibia in various states of adjustment.



FIG. 30 illustrates a standard correction for the alignment of a knee joint.



FIG. 31 illustrates a planned overcorrection for the alignment of a knee joint.



FIG. 32 illustrates a non-invasively adjustable wedge osteotomy device within a tibia in relation to a standard correction axis and a planned overcorrection axis.



FIGS. 33-34 illustrate a tapered or hourglass shaped anchor hole of a non-invasively adjustable wedge osteotomy device with an anchor in various positions.



FIGS. 35-37 illustrate a non-invasively adjustable wedge osteotomy device having an eccentric bearing in various positions.



FIGS. 38-39 illustrate a knee joint with a non-invasively adjustable wedge osteotomy device implanted in a tibia in various states of distraction.



FIG. 40 illustrates an internally threaded anchor hole of an embodiment of the non-invasively adjustable wedge osteotomy device of FIG. 38.



FIG. 41 illustrates a front view of a tibia implanted with an embodiment of a non-invasively adjustable wedge osteotomy device.



FIG. 42 illustrates a top view of the tibia of FIG. 41.



FIGS. 43-44 illustrate a front view of a tibia implanted with another embodiment of a non-invasively adjustable wedge osteotomy device in various states of distraction.



FIGS. 45-46 illustrate a front view of a tibia implanted with another embodiment of a non-invasively adjustable wedge osteotomy device in various states of distraction.



FIGS. 47-50 schematically illustrate various embodiments of a driving element of a non-invasively adjustable wedge osteotomy device.



FIG. 51 illustrates a side view of one embodiment of the non-invasively adjustable wedge osteotomy device.



FIG. 52 illustrates a cross sectional view of the non-invasively adjustable wedge osteotomy device of FIG. 51.



FIG. 53 illustrates yet another view of the non-invasively adjustable wedge osteotomy device of FIGS. 51 and 52.





SUMMARY OF THE INVENTION

In a first embodiment, the disclosure provides a system for changing the angle of a bone of a subject, comprising a non-invasively adjustable implant configured to be placed inside a longitudinal cavity within the bone and comprising an outer housing and an inner shaft telescopically disposed in the outer housing, at least one of the outer housing and inner shaft associated with a first anchor hole and a second anchor hole, the first anchor hole configured to pass a first anchor for coupling the adjustable implant to a first portion of bone and the second anchor hole configured for to pass a second anchor for coupling the adjustable implant to the first portion of bone, the inner shaft configured to couple to a second portion of bone that is separated or separable from the first portion of bone, such that non-invasive elongation of the adjustable implant causes the inner shaft to extend from the outer housing and to move the first portion of bone and the second portion of bone apart angularly; a driving element configured to be remotely operable to telescopically displace the inner shaft in relation to the outer housing; and wherein the first anchor hole is configured to allow the first anchor to pivot in at least a first angular direction and the second anchor hole is configured to allow the second anchor to translate in at least a first translation direction.


In a second embodiment the disclosure provides a system for changing the angle of a bone of a subject, comprising a non-invasively adjustable implant configured to be placed inside a longitudinal cavity within the bone and comprising an outer housing and an inner shaft telescopically disposed in the outer housing, at least one of the outer housing and inner shaft associated with a first anchor hole, the first anchor hole configured to pass a first anchor for coupling the adjustable implant to a first portion of bone, the inner shaft configured to couple to a second portion of bone that is separated or separable from the first portion of bone, such that non-invasive elongation of the adjustable implant causes the inner shaft to extend from the outer housing and to move the first portion of bone and the second portion of bone apart angularly; and a driving element configured to be remotely operable to telescopically displace the inner shaft in relation to the outer housing; wherein the first anchor comprises a first end portion configured to slide within the slot and into cortical bone at a first side of the first portion of bone, a second end portion configured to slide within the slot and into cortical bone at a second side of the first portion of bone, and an intervening portion configured to reside within the first anchor hole.


In a third embodiment the disclosure provides a system for changing the angle of a bone of a subject, comprising a non-invasively adjustable implant configured to be placed inside a longitudinal cavity within the bone and comprising an outer housing and an inner shaft telescopically disposed in the outer housing, at least one of the outer housing and inner shaft associated with a first anchor hole, the first anchor hole configured to pass a first anchor for coupling the adjustable implant to a first portion of bone, wherein the first anchor hole is configured to allow the first anchor to pivot in at least a first angular direction, the inner shaft configured to couple to a second portion of bone that is separated or separable from the first portion of bone, such that non-invasive elongation of the adjustable implant causes the inner shaft to extend from the outer housing and to move the first portion of bone and the second portion of bone apart angularly; a driving element configured to be remotely operable to telescopically displace the inner shaft in relation to the outer housing; and wherein the at least one of the outer housing and inner shaft additionally includes two engagement portions configured to rotatably engage a curved anchor.


In a fourth embodiment the disclosure provides a system for changing the angle of a bone of a subject, comprising a non-invasively adjustable implant configured to be placed inside a longitudinal cavity within the bone and comprising an outer housing and an inner shaft telescopically disposed in the outer housing, at least one of the outer housing and inner shaft associated with a first anchor hole, the first anchor hole configured to pass a first anchor for coupling the adjustable implant to a first portion of bone wherein the first anchor hole is configured to allow the first anchor to pivot in at least a first angular direction, the inner shaft configured to couple to a second portion of bone that is separated or separable from the first portion of bone; and a driving element configured to rotate a screw threadingly coupled to a nut, the nut comprising an extreme portion configured to contact a location on the first anchor when the first anchor is within the first anchor hole, such that remote actuation of the drive element causes the screw to rotate and to longitudinally displace the nut, thus causing the first anchor to pivot in the first rotational direction.


In a fifth embodiment the disclosure provides a system for changing the angle of a bone of a subject, comprising a non-invasively adjustable implant configured to be placed inside a longitudinal cavity within the bone and comprising an outer housing and an inner shaft telescopically disposed in the outer housing, at least one end of the non-invasively adjustable implant associated with a first anchor hole, the first anchor hole configured to pass a first anchor for coupling the adjustable implant to a first portion of bone, the inner shaft configured to couple to a second portion of bone that is separated or separable from the first portion of bone, such that non-invasive elongation of the adjustable implant causes the inner shaft to extend from the outer housing and to move the first portion of bone and the second portion of bone apart angularly; a driving element configured to be remotely operable to telescopically displace the inner shaft in relation to the outer housing; wherein the at least one end of the non-invasively adjustable implant is rotatably coupled to at least one of the outer housing or the inner shaft.


DETAILED DESCRIPTION

In view of the ramifications of partial and/or total knee replacement surgery, it may be advantageous to intervene early in the progression of a patient's arthritis. In such cases, knee replacement surgery may be delayed or even precluded. Osteotomy surgeries may be performed on the femur or tibia to change the angle between the femur and tibia thereby adjusting the stresses on the different portions of the knee joint. In closed wedge or closing wedge osteotomy, an angled wedge of bone may be removed and the remaining surfaces fused together to create a new, improved bone angle. In open wedge osteotomy, a cut may be made in the bone and the edges of the cut opened to create a new angle. Bone graft material may advantageously be used to fill in the new opened wedge-shaped space, and a plate may be attached to the bone with bone screws to provide additional structural support. However, obtaining a desired or correct angle during either a closed wedge or open wedge osteotomy, as described above, is almost always suboptimal. Furthermore, even if the resulting angle is approximately to that desired, there may be a subsequent loss of correction angle. Other potential complications that may be experienced when using these techniques include nonunion and material failure.



FIG. 1 illustrates a correct/healthy alignment of a femur 100, tibia 102, and knee joint 104. In such correct alignments, the a hip joint (at a femur head 108), knee joint 104, and ankle joint (at the midline of distal tibia 110) are generally disposed along a single line 112, known as the mechanical axis. A fibula 106 is shown alongside the tibia 102. By contrast to the knee joint 104 of FIG. 1, the knee joint 104 of FIG. 2 is shown in an arthritic state, in which the knee's medial compartment 114 (medial meaning situated in or disposed toward the middle or center) has been compromised, causing the line 112 to pass medially off the center of the knee joint 104.



FIG. 3 illustrates an open wedge osteotomy 118 formed by making a cut along a cut line 120, and opening a wedge angle α. FIG. 4 illustrates the final setting of this open wedge by the placement of bone graft material 122 within the open wedge osteotomy 118, and then placement of a plate 124, which is then secured to the tibia 102 with tibial screws 126. The increase in the wedge angle α can also be described as moving away from varus and/or moving towards valgus.



FIGS. 5-7 illustrate a non-invasively adjustable wedge osteotomy device 300 comprising a magnetically adjustable actuator 342, and having a first end 326 and a second end 328. An inner shaft 332 having a cavity 374 is telescopically coupled to or within an outer housing 330 that comprises a distraction housing 312 and a gear housing 306. At least one proximal transverse hole 305 passes through an end cap 302 located at the first end 326 of the magnetically adjustable actuator 342. The at least one proximal transverse hole 305 allows passage of a bone screw, or other fixation device, therethrough to fix the adjustable wedge osteotomy device 300 to the bone in which it is implanted, e.g., the tibia 102. The end cap 302 may be sealably secured to the gear housing 306 by a circumferential weld joint 390. In some embodiments, the end cap 302 may be secured to the gear housing 306 by any appropriate method of fixation, such as friction, glues, epoxies, or any type of welding. In yet other embodiments, the end cap 302 and the gear housing 306 may be formed monolithically, or in one piece. A second weld joint 392 sealably secures the distraction housing 312 to the gear housing 306. In some embodiments, the distraction housing 312 may be secured to the gear housing 306 by any appropriate method of fixation, such as friction, glues, epoxies, or any type of welding. In yet other embodiments, the distraction housing 312 and the gear housing 306 may be formed monolithically, or in one piece. One or more distal transverse holes 364 pass through the inner shaft 332. The one or more distal transverse holes 364 allows passage of a bone screw, or other fixation device, therethrough to fix the adjustable wedge osteotomy device 300 to the bone in which it is implanted, e.g., the tibia 102. For example, the one or more distal transverse holes 364 and the at least one proximal transverse hole 305 allow passage of at least one locking screw. Some embodiments use only one distal transverse hole 364 and one proximal transverse hole 305 in order to better allow rotational play between the magnetically adjustable actuator 342 and the locking screws as the magnetically adjustable actuator 342 is adjusted.


In some embodiments, one or more longitudinal grooves 372 in the outer surface of the inner shaft 332 engage with protrusions 375 of an anti-rotation ring 373 (Shown in FIG. 7) to advantageously minimize or inhibit rotational movement between the inner shaft 332 and the distraction housing 312. The anti-rotation ring also engages undercuts 333 within end of the distraction housing 312 at a flat edge 384 of the anti-rotation ring 373. One or more guide fins 383 in the anti-rotation ring 373 can keep the anti-rotation ring 373 rotationally static within cuts 391 in the distraction housing 312.


The contents of the magnetically adjustable actuator 342 may advantageously be protected from bodily fluids. In some embodiments, the contents of the magnetically adjustable actuator 342 are sealed off from the body by one or more o-rings 334 that may reside between the inner shaft 332 and the distraction housing 312. For example, one or more circumferential grooves 382 in the outer surface of the inner shaft 332, for dynamically sealing along the inner surface of the distraction housing 312. The inner shaft 332 may be extended/retracted axially with respect to the outer housing 330, for example, by a lead screw 348 turned by a cylindrical radially poled magnet 368. The cylindrical radially poled magnet 368 is bonded within a first portion of a magnet housing 308 and a second portion of a magnet housing 310 and is rotatably held on one end by pin 336 and a radial bearing 378, which directly engages the counterbore 304 (shown in FIG. 7) of the end cap 302. The second magnet housing 310 is connected to or coupled to a first stage 367 of a planetary gear system 370.


In some embodiments, the planetary gear system 370 may have one stage, two stages, three stages, four stages or even five stages. In other embodiments, more than five stages may be included, if required. The embodiment of the planetary gear system 370 shown in FIG. 6 has three stages. Regardless of how many stages are included in the device, they may work generally according to the description provided below. The planet gears 387 of the three planetary gear system 370 turn within inner teeth 321 within the gear housing 306 (shown in FIG. 7). The first stage 367 outputs to a second stage 369, and the second stage 369 outputs to a third stage 371. The last or third stage 371 is coupled to the lead screw 348. In some embodiments, the last or third stage 371 is coupled to the lead screw 348 by a coupling that allows some degree of axial play between the third stage 371 and the lead screw 348, such as, for example, by a locking pin 385 that passes through holes 352 in both the output of the third stage 371 and in the lead screw 348. Alternatively, the third stage 371 may output directly to the lead screw 348. The lead screw 348 threadingly engages with a nut 376 that is bonded within the cavity 374 of the inner shaft 332. Each stage of the planetary gear system 370 incorporates a gear ratio. In some embodiments, the gear ratio may be 2:1, 3:1, 4:1, 5:1, or 6:1. In other embodiments, the gear ratio may be even higher than 6:1, if necessary. The overall gear ratio produced by the planetary gear system is equal to the each side of the gear ratio raised to the number of stages. For example, a three (3)-stage system having a gear ratio of 4:1, such as that shown in FIG. 6, has a final ratio of 4*4*4:1*1*1, or 64:1. A 64:1 gear ratio means that 64 turns of the cylindrical radially poled magnet 368 cause a single turn of the lead screw 348. In the same way, a two (2)-stage system having a gear ratio of 3:1 has a final ratio of 3*3:1*1, or 9:1. In some embodiments, the planetary gear system 370 includes stages with different gear ratios. For example, a three-stage planetary gear system 370 could include a first stage having a gear ratio of 4:1, a second stage having a gear ratio of 3:1, and a third stage having a ratio of 2:1: that system has a final ratio of 4*3*2:1*1*1, or 24:1. It may be desirable to include structural features in the housing to absorb axial loads on the cylindrical radially-poled magnet and/or the planetary gear system 370.


In some embodiments, one or more thrust bearings may be used to absorb axial loads. For example, thrust bearing 380 may be held loosely in the axial direction between ledges in the gear housing 306. The thrust bearing 380 is held between a ledge 393 in the gear housing 306 and an insert 395 at the end of the gear housing 306. The thrust bearing 380 advantageously protects the cylindrical radially poled magnet 368, the planetary gear system 370, the magnet housings 308 and 310, and the radial bearing 378 from unacceptably high compressive forces.


In some embodiments, a lead screw coupler 339 may be held to the lead screw 348 by the pin 385 passing through hole 359. The lead screw coupler 339 may include a ledge 355, which is similar to an opposing ledge (not shown) at the base of the lead screw 348. In these embodiments, when the inner shaft 332 is retracted to the minimum length, the ledge at the base of the lead screw 348 abuts the ledge 355 of the lead screw coupler, advantageously preventing the lead screw 348 from being jammed against the nut with too high of a torque.


A maintenance member 346, or magnetic brake, comprising a magnetic material, may be included (e.g., bonded) within the gear housing 306 adjacent to the cylindrical radially poled magnet 368. In such embodiments, the maintenance member 346 can attract a pole of the cylindrical radially poled magnet 368 to minimize unintentional rotation of the cylindrical radially poled magnet 368 (e.g., turning when not being adjusted by the external adjustment device 1180, such as during normal patient movement or activities). The maintenance member 346 may advantageously exert a lesser magnetic force on the cylindrical radially poled magnet 368 than the external adjustment device 1180. As such, the maintenance member holds the cylindrical radially poled magnet 368 substantially rotationally fixed most of the time (e.g., when not being adjusted during distraction/retraction). But, when the external adjustment device 1180 is used, the stronger forces of the external adjustment device 1180 overcome the force generated by the maintenance member 346 and turn the cylindrical radially poled magnet 368. In some embodiments, the maintenance member 346 is ‘400 series’ stainless steel. In other embodiments, the maintenance member 346 can be any other appropriate magnetically permeable material.


The non-invasively adjustable wedge osteotomy device 300 has the capability to increase or decrease its length by extending the inner shaft 332 out from the distraction housing 312 and retracting the inner shaft 332 into the distraction housing 312, respectively. The non-invasively adjustable wedge osteotomy device 300 has a length of travel defined as the difference between its length when fully extended and its length when fully retracted. In some embodiments, the adjustable wedge osteotomy device 300 has a length of travel of less than about 30 mm, less than about 24 mm, less than about 18 mm, less than about 12 mm, and less than about 6 mm. In other embodiments, the non-invasively adjustable wedge osteotomy device 300 has a length of travel greater than 30 mm, or any other length of travel that is clinically meaningful. Interaction between the non-invasively adjustable wedge osteotomy device 300 and the magnetic handpiece 1178 of the external adjustment device 1180 that causes rotation of the cylindrical radially poled magnet 368 causes the inner shaft 332 to retract (depending on the direction of magnet rotation) into the distraction housing 312 thereby producing a compressive force, or causes the inner shaft 332 to extend (depending on the direction of magnet rotation) our from the distraction housing. The force that can be produced by the non-invasively adjustable wedge osteotomy device 300 is determined by a number of factors, including: size of cylindrical radially poled magnet 368, size of the maintenance member 346, magnetic force produced by the external adjustment device 1180 (determined by the size of the magnet(s) of the magnetic handpiece 1178), the distance between the magnetic handpiece 1178 and the cylindrical radially poled magnet 368, the number of gear stages, the gear ratio of each gear stage, internal frictional losses within the non-invasively adjustable wedge osteotomy device 300, etc. In some embodiments, the non-invasively adjustable wedge osteotomy device 300 in a clinical setting (i.e., implanted into an average patient) is capable of generating up to about 300 lbs., up to about 240 lbs., up to about 180 lbs., and up to about 120 lbs., or any other force that is clinically meaningful or necessary. In some embodiments, the magnetic handpiece 1178 of the external adjustment device 1180, placed so that its magnets 1186 are about one-half inch from the cylindrical radially poled magnet 368, can achieve a distraction force of about 240 pounds.


Many components of the non-invasively adjustable wedge osteotomy device may be made from Titanium, Titanium alloys (e.g., Titanium-6Al-4V), Cobalt Chromium, Stainless Steel, or other alloys. The diameter of the non-invasively adjustable wedge osteotomy device 300 is dictated by the size of the medullary canal 130 in the patient's tibia 102. While the medullary canal 130 may be enlarged through reaming or any other appropriate technique, it is generally desirable to select a non-invasively adjustable wedge osteotomy device 300 having a diameter approximately the same as or slightly smaller than the diameter of medullary canal 130. In some embodiments the non-invasively adjustable wedge osteotomy device 300 has a diameter of less than about 16 mm, less than about 14 mm, less than about 12 mm, less than about 10 mm, less than about 8 mm, or less than about 6 mm. In some embodiments, any other diameter that is clinically meaningful to a given patient may be used.


The non-invasively adjustable wedge osteotomy device 300 may be inserted by hand or may be attached to an insertion tool (for example a drill guide). In some embodiments, an interface 366 comprising an internal thread 397 is located in the end cap 302 for reversible engagement with male threads of an insertion tool. Alternatively, such engagement features may be located on the end 360 of the inner shaft 332. In other embodiments, a tether (e.g., a detachable tether) may be attached to either end of the non-invasively adjustable wedge osteotomy device 300, so that it may be easily removed if placed incorrectly.



FIG. 8 illustrates an embodiment of an external adjustment device 1180 that is used to non-invasively adjust the devices and systems described herein. As shown in FIG. 8, the external adjustment device 1180 may include a magnetic handpiece 1178, a control box 1176, and a power supply 1174. The control box 1176 may include a control panel 1182 having one or more controls (buttons, switches, or tactile feedback mechanisms (i.e., any feedback mechanism that can be sensed using the sense of touch, including, for example, heat, vibration, change in texture, etc.), motion, audio or light sensors) and a display 1184. The display 1184 may be visual, auditory, tactile, the like or some combination of the aforementioned features. The external adjustment device 1180 may contain software that allows input by/from the physician.



FIG. 9 shows a detail of an embodiment of the magnetic handpiece 1178 of the external adjustment device 1180. The magnetic handpiece 1178 may include a plurality of magnets 1186, including 6 magnets, 5 magnets, 4 magnets, 3 magnets, or 2 magnets. In some embodiments, the magnetic handpiece 1178 may have only a single magnet. The magnets 1186 may have any of a number of shapes, including, for example, ovoid, cylindrical, etc. FIG. 9 illustrates a magnetic handpiece 1178 that includes two (2) cylindrical magnets 1186. The magnets 1186 can be rare earth magnets (such as Neodymium-Iron-Boron), and can in some embodiments be radially poled. In some embodiments, the magnets 1186 have 2 poles, 4 poles, or 6 poles. In other embodiments, the magnets 1186 have more than 6 poles. The magnets 1186 may be bonded or otherwise secured within magnetic cups 1187. The magnetic cups 1187 each includes a shaft 1198 that is attached to a first magnet gear 1212 and a second magnet gear 1214. The orientation of the poles of each the two magnets 1186 may be generally fixed with respect to each other. For example, the poles may be rotationally locked to one another using a gearing system, which may include a center gear 1210 that meshes with both first magnet gear 1212 and second magnet gear 1214. In some embodiments, the north pole of one of the magnets 1186 turns synchronously with the south pole of the other magnet 1186, at matching clock positions throughout a complete rotation. That configuration provides an improved torque delivery, for example, to radially poled cylindrical magnet 368. Examples of various external adjustment devices that may be used to adjust the various non-invasively adjustable wedge osteotomy devices disclosed herein are described in U.S. Pat. No. 8,382,756, and U.S. patent application Ser. No. 13/172,598, the entirety of which is incorporated by reference herein.


The components of the magnetic handpiece 1178 may be held together between a magnet plate 1190 and a front plate 1192. Components of the magnetic handpiece 1178 may be protected by a cover 1216. The magnets 1186 rotate within a static magnet cover 1188, so that the magnetic handpiece 1178 may be rested directly on the patient without imparting any motion to the external surfaces of the patient (e.g., rubbing against or pulling at the skin of the patient). Prior to use, such as activating a noninvasively adjustable medical device, an operator places the magnetic handpiece 1178 on the patient near the implantation location of the radially poled cylindrical magnet 368. In some embodiments, a magnet standoff 1194 that is interposed between the two magnets 1186 contains a viewing window 1196, to aid in placement of the magnetic handpiece 1178 on the patient. For instance, a mark made on the patient's skin at the appropriate location may be seen through the viewing window 1196 and used to align the magnetic handpiece 1178. To perform a distraction, an operator may hold the magnetic handpiece 1178 by its handles 1200 and depress a distract switch 1228, thereby causing motor 1202 to drive in a first rotational direction. The motor 1202 may have a gear box 1206 which causes the rotational speed of an output gear 1204 to be different from the rotational speed of the motor 1202 (for example, a slower speed or a faster speed). In some embodiments, the gear box 1206 causes the rotational speed of an output gear 1204 to be the same as the rotational speed of the motor. The output gear 1204 then turns a reduction gear 1208 which meshes with center gear 1210, causing it to turn at a different rotational speed than the reduction gear 1208. The center gear 1210 meshes with both the first magnet gear 1212 and the second magnet gear 1214 turning them at the same rate. Depending on the portion of the body where the magnets 1186 of the magnetic handpiece 1178 are located, it may be desirable that the rotation rate of the magnets 1186 be controlled to minimize the induced current density imparted by magnets 1186 and radially poled cylindrical magnet 368 through the tissues and fluids of the body. For example, a magnet rotational speed of 60 revolutions per minute (“RPM”) or less is contemplated, although other speeds may be used, such as 35 RPM, or less. At any time, the distraction may be lessened by depressing the retract switch 1230, which can be desirable if the patient feels significant pain, or numbness in the area in which the noninvasively adjustable device has been implanted.



FIGS. 10-12 illustrate a non-invasively adjustable wedge osteotomy device 400 configured for maximizing the amount of potential increase of a wedge angle α. As explained with respect to other embodiments (e.g., the non-invasively adjustable wedge osteotomy device 300), an inner shaft 432 is configured to telescopically displace from an outer housing 430, such that the length of the non-invasively adjustable wedge osteotomy device 400 may be increased or decreased. The internal components of the non-invasively adjustable wedge osteotomy device 400 may be configured as is described with respect to other embodiments of the non-invasively adjustable wedge osteotomy device that are disclosed herein. The inner shaft 432 can include one or more transverse holes through which bone anchors or screws can be passed to anchor the device. Such transverse holes may be at any angle with respect to the vertical, and may be at any angle with respect to the horizontal. Desirably, when there is more than one transverse hole, the holes should, ideally, not intersect. In some embodiments, the inner shaft 432 includes three transverse holes 464A, 464B, and 464C for placement of bone screws. In some embodiments, the transverse hole 464B is generally at a 90° angle in relation to each of transverse holes 464A and 464C, which are approximately parallel to each other. Like the inner shaft 432, the outer housing 430 can include one or more transverse holes through which bone anchors or screws can be passed to anchor the device. In some embodiments, the outer housing 430 includes a first transverse hole 405 and a second, slotted transverse hole 407. The first transverse hole 405 may generally be at a 90° angle in relation to the second, slotted transverse hole 407. In some embodiments, the first transverse hole 405 is configured to extend in a generally lateral to medial direction when the non-invasively adjustable wedge osteotomy device 400 is placed within the tibia 102 (lateral meaning situated in or disposed toward the side or sides). In some embodiments, the second, slotted transverse hole 407 is configured to extend in a generally anterior to posterior direction when the non-invasively adjustable wedge osteotomy device 400 is placed within the tibia 102.


The slotted transverse hole 407 generally extends through two walls 441, 443 of the non-invasively adjustable wedge osteotomy device 400 and through a center cavity 445 (shown in FIGS. 13-14). The slotted transverse hole 407 may have a generally oblong shape, with a length “L” and a width “W”. The width W may be configured to be just slightly larger than a bone screw that is used to secure the non-invasively adjustable wedge osteotomy device 400 to a bone, such that the bone screw is able to pass through the slotted transverse hole 407. The length L may be chosen such that the bone screw is able to pivot or angularly displace within the slotted transverse hole 407 up to a desired maximum angulation within a plane (e.g., a plane substantially oriented as the coronal plane). In some embodiments, the ratio of length L to width W (L/W) is always greater than one (1), but is less than about 3, about 2.5, about 2, about 1.5, or about 1.2. By way of example, when the slotted transverse hole 407 is configured to accept a 5 mm bone screw, the width W may be about 5.05 mm-5.25 mm, about 5.1 mm-5.2 mm, or about 5.15 mm, and the length L may be about 6 mm-15 mm, about 7.5 mm-12.5 mm, or about 8 mm-10 mm. FIG. 14 also illustrates an interface 466 having an internal thread 497, which may be used for releasable detachment of an insertion tool.


In another embodiment illustrated by FIGS. 51-53 one or more of the transverse holes 2000 of the non-invasively adjustable wedge osteotomy device 2002 may have a raised portion 2004 substantially centrally located within the transverse holes 2000 upon which a bone anchors or screws 2006 can be passed to anchor the device. In one embodiment, the raised portion 2004 extends generally perpendicular to a longitudinal axis of the transverse holes 2000 such that the lower surface of the transverse hole has a decreasing slope from the raised portion to the exterior in each direction. The raised portion 2002 allows the bone anchors or screws 2006 to pivot providing (as shown by arrows in FIG. 53) greater bone anchor or screw 2006 angulation. The raised portion 2004 may be rounded or it may come to a discrete point within the one or more of the transverse holes 2000. In in embodiment, the bone anchors or screws 2006 may have up to about 40 degrees of movement from a first position to a second position and more specifically may have about 20 degrees of movement from the first position to the second position. The raised portion 2002 may provide an added advantage in that it allows the bone anchor or screw 2006 to achieve its full range of angulation while pivoting about a single point rather than two or more points.



FIGS. 15-17 show the non-invasively adjustable wedge osteotomy device 400 implanted within a tibia 102 having a medullary canal 130. A hole 132 is drilled along a portion of the length of the medullary canal 130, for example by a series of drills or reamers. An osteotomy 118, which may be either a single cut or a series of cuts (e.g., a wedge), is made in the tibia 102 to separate the tibia 102 into a first portion 119 and a second portion 121. In some cases, a drill hole 452 may be made, and then a blade used to make the cut of the osteotomy 118, up to the point of the drill hole 452. A hinge 450 is thus created at the uncut portion of the tibia 102. Alternatively, the osteotomy 118 may be made entirely through the tibia 102 (such an osteotomy is not shown) and a hinge-like device may be secured to the lateral side of the tibia 102, adjacent the osteotomy. The hinge-like device may comprise or be similar to the Hinge Pediatric Plating System™ sold by Pega Medical of Laval, Quebec, Canada. In this alternative method, the incision and osteotomy could be made from the lateral side instead of the medial side, leaving the medial side without an incision.


Returning to the configurations of FIGS. 15-17, a non-invasively adjustable wedge osteotomy device, such as that shown in FIGS. 10-14, is inserted into the hole 132 and secured to the tibia 102 with bone screws (e.g., two or more bone screws 134, 136, 138, 140, 142). In some embodiments, such as those shown in FIGS. 15-17, the outer housing 430 is secured to the first portion 119 of the tibia 102 with a first bone screw 134 delivered through the first transverse hole 405, and a second bone screw 136 delivered through the slotted transverse hole 407. The inner shaft 432 is secured to the second portion 121 of the tibia 102 with three bone screws 138, 140, 142 delivered through the three transverse holes 464A, 464B, 464C, respectively. As described, the slotted transverse hole 407 may be configured to allow the second bone screw 136 to pivot or rock over an angular range, as will be described further with respect to FIGS. 18-22. As shown in FIGS. 15-17, the first bone screw 134 may be substantially aligned along an Anterior-Posterior axis (i.e., front to back), and the second bone screw 136 may be substantially aligned along the Medial-Lateral axis (i.e., side to side), though in both cases, other degrees of angulation are also contemplated. The non-invasively adjustable wedge osteotomy device 400 is configured to non-invasively distract the first portion 119 of the tibia 102 away from the second portion 121 of the tibia 102, to angularly open the osteotomy 118. With the orientation of the first bone screw 134 and second bone screw 136 shown in FIG. 17, the first bone screw 134 may be free to rotate within the hole 405 (FIG. 16), and the second bone screw 136 may pivot within the slotted transverse hole 407 (FIGS. 15-16).



FIG. 22 demonstrates the pivotability of a bone screw in place within a slotted transverse hole (e.g., the second bone screw 136 within the slotted transverse hole 407). The bone screw may pivot through a pivot angle β in either direction (+β, −β). FIGS. 18-20 demonstrate the non-invasively adjustable wedge osteotomy device 400 which is implanted in the tibia 102 being adjusted to increase an angle A of the wedge osteotomy 118. In FIG. 18, the inner shaft 432 extends from the outer housing 430 an initial length D1. The osteotomy 118 is in an initial closed or mostly closed state, and the first bone screw 136 has been secured to the first portion 119 of the tibia 102 so that it is angled at, near, or towards a first extreme of pivot in a first angular direction in relation to the slotted transverse hole 407. More specifically, the head 144 of the first bone screw 136 on the medial side of the first portion 119 is at a lower height in comparison to the distal end 148 on the lateral side of the fist portion 119, leaving the first bone screw at an angle −β (see FIG. 22). Though the bone screws in FIGS. 18-20 are shown with short proximal male threads 146, other bone screws may be used, including, for example, lag screws, or fully threaded screws. In FIG. 19, a distraction of the non-invasively adjustable wedge osteotomy device 400 has been performed, causing the inner shaft 432 to extend from the outer housing 430 so that it extends a new length D2, which is greater than the initial length D1. In some embodiments non-invasive distraction may be accomplished by placing the magnetic handpiece 1178 of the external adjustment device 1180 on the skin or clothing in the area of the upper tibia 102 and operating the external adjustment device 1180 to rotate the one or more magnets 1186 which in turn cause the radially-poled permanent magnet 368 (FIGS. 6-7) within the non-invasively adjustable wedge osteotomy device 400 to be magnetically rotated. Extension of the inner shaft 432 out of the outer housing 430 causes the first portion 119 to be lifted away from the second portion 121 thereby opening osteotomy 118 to a wedge angle A2. As osteotomy 118 is opened, the first bone screw 136, which is secured to the first portion 119 of the tibia 102, may be rotated with the first portion 119 (the rotation being allowed/facilitated by the slotted transverse hole 407). In FIG. 19, the first bone screw 136 is shown with a substantially horizontal orientation (i.e., β≈0°). In FIG. 20, additional distraction has been performed (e.g., non-invasive distraction) and the inner shaft 432 has been extended further from the outer housing 430 so that it extends a new, increased length D3. A new, increased wedge angle A3 of the osteotomy results from the additional extension of the inner shaft 432, and the first bone screw 136 has pivoted along with the continued rotation of the first portion 119 of the tibia 102 until the first bone screw 136 is angled at, near, or towards a second extreme of pivot in a second angular direction in relation to the slotted transverse hole 407. More specifically, the head 144 of the first bone screw 136 on the medial side of the first portion 119 is at a higher height in comparison to the distal end 148 on the lateral side of the first portion 119, leaving the first bone screw at an angle +β (see FIG. 22).


Non-invasive distraction while a patient is awake, mobile, and or weight-bearing may allow an optimum wedge angle A to be achieved. In some embodiments, an optimum wedge angle is the wedge angle A at which the patient feels no pain. In other embodiments, an optimum wedge angle is the wedge angle A at which the patient feels no contact of tissue at the knee joint, for example at a medial compartment of the knee joint. In some cases, the wedge angle A may be increased until an anatomical benchmark is reached, for example a Fujisawa overcorrection, which is described further below. Distractions may be done at specific time intervals. For example, the total length of a non-invasively adjustable wedge osteotomy device, as disclosed herein, may be increased about 0.5 mm-1.5 mm per day, or about 0.75 mm-1.25, or any other clinically advantageous rate, until the desired wedge angle is reached. Alternatively, the amount by which a non-invasively adjustable wedge osteotomy device, as disclosed herein, is to be lengthened may be calculated prior to each adjustment procedure (e.g., lengthening, distraction, or adjustment), so that a consistent wedge angle increase (i.e., using trigonometric relationships so that the angle can be increased by a consistent Δβ) is achieved by each adjustment procedure. In some circumstances, any given day's adjustment may be all at once, within a single procedure. Alternatively, any given day's adjustment may be broken up into two or more smaller adjustments or procedures per day (equivalent to the daily desired total). Breaking up adjustments into smaller procedures may advantageously help to minimize pain or discomfort caused by stretching of soft tissue in the knee joint 104. For some patients or in some circumstances it may be desirable to determine the desired rate of device distraction based on a rate of medial cortex increase (the open portion of the osteotomy 118 at the medial edge of the tibia 102). For example, it may desirable to distract the device at a rate sufficient to cause the medial cortex to increase by about 1 mm per day: depending on the width of the tibia 102, among other factors, such a 1 mm daily medial cortex increase may require only between about 0.5 mm and 0.65 mm daily device distraction (i.e., daily increase at the midline). In some cases, once the ultimate desired wedge angle is reached, distraction is stopped, and the wedge osteotomy 118 is allowed to consolidate over a period of time (e.g., days, weeks, or months). The amount of time required for consolidation may depend on the angle of wedge osteotomy 118 increase, the rate of wedge osteotomy increase, whether the patient smokes, whether the patient has diabetes, and the patient's activity level, among other biological factors. During the distraction process (e.g., from implantation to substantial healing), it may be desirable for the patient to place a diminished (i.e., less than normal) amount of force (compression) on the leg being treated, for example, through the use of crutches, braces, wheel chairs, walkers, or the like. Additionally, the patient may be instructed to increase the load placed on the leg during the consolidation phase: compression during consolidation has been positively linked to improved osteogenesis and faster and better healing of the bone.


In some cases, after the consolidation phase has substantially completed, the devices discloses herein, including the non-invasively adjustable wedge osteotomy device 400 and the bone screws 134, 136, 138, 140, 142 may be removed. A revised tibia 102, after removal of a the non-invasively adjustable wedge osteotomy device, as disclosed herein, is shown in FIG. 21. During the distraction phase and/or the consolidation phase, bone graft may be added to portions of the wedge osteotomy 118 in order to help increase solidification of the tibia 102, for example, between the first portion 119 and the second portion 121.



FIG. 30 shows the mechanical axis 112 of a tibia 102 that has been adjusted by creating a wedge osteotomy, for example, by using standard methods or the apparatuses and/or methods described herein. The mechanical axis extends from the femur head 108, through the center of the knee joint 104, and to a center point of the ankle joint at the distal tibia 110. Although restoring the mechanical axis 112 through the center of the knee joint 104 has been standard practice in some centers, an alternative method was proposed by Fujisawa (see Fujisawa et al., “The Effect of High Tibial Osteotomy on Osteoarthritis of the Knee: An Arthroscopic Study of 54 Knee Joints”, July 1979, Orthopedic Clinics of North America, Volume 10, Number 3, Pages 585-608, the entirety of which is incorporated by reference herein). Fujisawa states that “the ideal correction method is to align the mechanical axis to pass through a point 30 to 40 percent lateral to the midpoint.” (Fujisawa et al. at Pages 606-607) An overcorrection axis 150, as taught by Fujisawa, is shown in FIGS. 30-31 and passes through the knee joint 104 at a point that is about 30%-40% lateral of the midpoint in the knee joint 104. As the standard mechanical axis passes through the midpoint in the knee joint 104, the overcorrection axis 150 is about the same percentage lateral to the standard mechanical axis 112. FIG. 31 shows an overcorrection performed by wedge osteotomy of the tibia 102 that reaches approximately the conditions described by Fujisawa. An overcorrected mechanical axis 152 approximates the overcorrection axis 150 through the knee joint 104, extending from the center of the femur head 108 through the knee joint at approximately the overcorrection axis 150, and to the center point of the ankle joint at the distal tibia 110. To achieve overcorrection, the angle of the wedge osteotomy 118 has been increased an additional amount.



FIG. 32 illustrates an embodiment of a non-invasively adjustable wedge osteotomy device, for example the non-invasively adjustable wedge osteotomy device 400, in place within the tibia 102, with the standard mechanical axis 112 and the overcorrection axis 150 indicated. Overcorrection axis 150 is shown a distance x lateral to the standard mechanical axis. In some embodiments, distance x is between about 24%-44%, about 28%-40%, about 30%-38%, and about 32-36% of the total distance from the midline to the lateral extreme. In FIG. 32, the angle of midline correction (“AMC”) was performed in order to achieve the mechanical axis 112 as shown. The AMC is defined as the amount of angle of correction required to place the mechanical axis through the center of the knee joint 104, may be up to about 12° or less in many patients, and may be achieved by using non-invasively adjustable wedge osteotomy devices as disclosed herein. In some cases, an angle of greater than 12° is required to achieve a proper overcorrection as described above (e.g., it may be desirable in some patients to achieve an angle of up to about 16°, or even more). Thus, an additional angle of overcorrection (“AOC”), may be needed in order to create the overcorrected mechanical axis 152 as in FIG. 31. In some cases the AOC may be between about 1°-8°, about 2°-7°, about 3°-6°, and about 4°-5°, or the AOC may be any other angle that is physiologically beneficial for the patient. The total resulting correction angle is therefore equal to the sum of angles AMC and AOC.


Another embodiment of a non-invasively adjustable wedge osteotomy device 500, illustrated in FIGS. 23-25, may be configured to allow for an increased amount of angular correction in the tibia 102. The non-invasively adjustable wedge osteotomy device 500 includes an inner shaft 532, which is telescopically distractable from an outer housing 530. In some embodiments, the internal components of the non-invasively adjustable wedge osteotomy device 500 may be similar or identical to those of the other non-invasively adjustable wedge osteotomy devices disclosed herein (for example the non-invasively adjustable wedge osteotomy device 300 of FIGS. 5-6, among others). In some embodiments, a slotted transverse hole 507 extends through the outer housing 530 of the non-invasively adjustable wedge osteotomy device 500. The slotted transverse hole 507 has a generally oblong shape, similar to that described with respect to the embodiments of the non-invasively adjustable wedge osteotomy device shown in FIGS. 10-14. Additionally, the outer housing 530 may have a second slotted hole 586. While the slotted transverse hole 507 may be generally vertically oblong, the second slotted hole 586 may be generally horizontally oblong. The second slotted hole 586 may have a length L and a width W, as shown in FIG. 24. The length L may be configured to be slightly larger than the diameter of a bone screw that is used to secure the non-invasively adjustable wedge osteotomy device 500 to a bone, such that the bone screw is able to pass through the second slotted hole 586. The width W may be chosen such that the bone screw is able to horizontally pivot or angularly displace within the second slotted hole 586. In some embodiments the second slotted hole 586 is configured to be used with a 5 mm bone screw, the length L may be about 5 mm to about 5.2 mm, or about 5.1 mm, and the width W may be about 6 mm to about 9 mm or about 7 mm. In some embodiments, the ratio of width W to length L (i.e., W/L) may be between about 1.08 and about 1.65, or about 1.25 to about 1.54, or about 1.37. The slotted transverse hole 507 and the second slotted hole 586 are located near a first end 568 of the outer housing 530. As shown in FIG. 25, a second end 570 of the outer housing 530 is angled from the first end 568 at a transition point 572. In some embodiments, the angle 578 is between about 2°-18°, about 4°-16°, about 6°-14°, about 8°-12°, and about 10°, or any other angle that is clinically meaningful for any given patient. The second slotted hole 586 may include an anterior opening 588 and a posterior opening 590, which may be oriented in relation to the first end 568 at an angle 576. In some embodiments, the angle 576 is between about 70°-100°, about 75°-95°, about 80°-90°, or about 85°, or any other angle that is clinically meaningful for any given patient. FIG. 23 also illustrates an interface 566 having an internal thread 597, which may be used for releasable detachment of an insertion tool. Similar to what has been described above, the non-invasively adjustable wedge osteotomy device 500 may be inserted by hand or may be attached to an insertion tool (for example a drill guide). In some embodiments, an interface 566 comprising an internal thread 597 is located at or near the first end 568 for reversible engagement with male threads of an insertion tool. Alternatively, such engagement features may be located at or near the inner shaft 532. In other embodiments a tether (e.g., a detachable tether) may be attached to either end of the non-invasively adjustable wedge osteotomy device 500, so that it may be easily removed if placed incorrectly.



FIGS. 26-29 illustrate how the second slotted hole 586 of the non-invasively adjustable wedge osteotomy device 500 works in conjunction with the slotted transverse hole 507 to advantageously facilitate the possibility of an increased amount of angular correction between a first portion 119 and second portion 121 of the tibia 102. First bone screw 134 is illustrated without a head merely so the shaft of the first bone screw 134 is visible within the second slotted hole 586. In FIG. 26, the osteotomy 118 is substantially closed and the inner shaft 532 has not been significantly distracted from the outer housing 530. The first bone screw 134 may (at least initially) preferably be centrally oriented with respect to the width W of the second slotted hole 586. In FIG. 27, the inner shaft 532 has been distracted further out of the outer housing 530. As the outer housing 530 moves, it pushes up on the first bone screw 134 and the second bone screw 136, which in turn push upward on the first portion of the tibia 102, causing the first portion of the tibia 119 to pivot about the hinge. As the first portion of the tibia pivots, the second bone screw 136 pivots within the slotted transverse hole 507, as described with respect to other embodiments disclosed herein, such as the non-invasively adjustable wedge osteotomy device 400. While the second bone screw 136 pivots, the first bone screw 134 may slide medially (i.e., towards the left side of FIG. 27). In FIG. 28, the inner shaft 532 has been distracted still further out of the outer housing 530. As the second bone screw 136 pivots even further within the slotted transverse hole 507, the first bone screw 134 may be forced back towards a central location with respect to the width W of the second slotted hole 586. In FIG. 29, the inner shaft 532 is distracted still further out of the outer housing 530, and, as the second bone screw 136 pivots still further within the slotted transverse hole 507, the first bone screw 134 may slide laterally (i.e., towards the right side of FIG. 27). The elongated orientation of the second slotted hole 586 along the width W, may advantageously add additional freedom to the movement of the non-invasively adjustable wedge osteotomy device 500 as it distracts the first portion 119 from the second portion 121 of the tibia 102, and allow for an increased amount of angulation, for example, a total of between about 10°-22°, about 12°-20°, about 14°-18°, or about 16°, or any other degree of angulation that is clinically meaningful for any given patient. Devices (e.g., other non-invasively or invasively adjustable wedge osteotomy devices, including those disclosed herein) that do not have both the slotted transverse hole 507 and second slotted hole 586, may be able to achieve about 16° of angulation. However, for such devices to do so may cause axial lengthening between the first portion 119 and the second portion 121 of the tibia 102, as opposed to merely changing the angle between the first portion 119 and the second portion 121. Axial lengthening between the first portion 119 and the second portion 121 of the tibia may cause unneeded and deleterious stresses on and/or even fracture of the hinge 450 formed by the connection between the first portion 119 and the second portion 121 of the tibia 102 (shown in FIG. 15). Were the first portion 119 to fracture from the second portion 121 and away from the rest of the tibia 102, the first portion 119 could be axially or non-angularly distracted away from the second portion 121, and would not correct the angle of the knee joint 104. Therefore, incorporation of both the slotted transverse hole 507 and second slotted hole 586 into the non-invasively adjustable wedge osteotomy device 500 may allow a full 16° of angulation (or more) with little to no axial elongation, which can be advantageously achieved without significant damage to the hinge 450. In some cases, angulation of up to 25° may be possible while still maintaining the same anterior to posterior slope on the top surface of the tibia 102.


In some embodiments, an alternative to the slotted transverse hole 407, 507 may be used. FIGS. 33-34 illustrate an hourglass shaped hole for enabling pivoting of a bone screw. Wall 602 (for example, of non-invasively adjustable wedge osteotomy device 600) may have a tapered or hourglass-shaped hole 606 passing through the wall 602. The tapered or hourglass-shaped hole 606 may have a circular cross-section that varies in diameter along its length. As the wedge osteotomy device distracts/retracts, as disclosed herein, the second bone screw 136 is allowed to pivot, for example, from the position in FIG. 33 to the position in FIG. 34. The degree of pivot is directly dependent on the variance in diameter: the larger the outer diameter, the more pivot is allowed. It is contemplated that embodiments of the tapered or hourglass-shaped hole 606 may peiinit pivot angles (i.e., the degree of maximum pivot to maximum pivot, such as the angular difference between the second bone screw 136 shown in FIG. 33 to the second bone screw 136 shown in FIG. 34) of between about 5°-40°, about 10°-35°, about 15°-30°, and about 20°-25°, or any other angle that is clinically meaningful for any given patient.


In some embodiments, other alternatives to the second slotted hole 586, as illustrated in FIGS. 35-37, may be used. FIGS. 35-37 illustrate an eccentric bearing type hole for enabling pivoting of a bone screw. For example, hole 626 may be incorporated into the wall of a non-invasively adjustable wedge osteotomy device as is disclosed herein, such as non-invasively adjustable wedge osteotomy device 620. In some embodiments, the hole 626 is configured to extend in a generally anterior to posterior/posterior to anterior orientation when the non-invasively adjustable wedge osteotomy device 620 is implanted in the tibia 102. In other embodiments, the hole 626 is configured to extend in a generally medial to lateral/lateral to medial orientation when the non-invasively adjustable wedge osteotomy device 620 is implanted in the tibia 102. In yet other embodiments, the hole 626 extends through the non-invasively adjustable wedge osteotomy device 620 at an angle between medial to lateral, and anterior to posterior. In some embodiments, the hole 626 may extend through the non-invasively adjustable wedge osteotomy device 620 at an angle substantially perpendicular to the longitudinal axis of the non-invasively adjustable wedge osteotomy device 620. In other embodiments, the hole 626 may extend through the non-invasively adjustable wedge osteotomy device 620 at an angle not perpendicular to the longitudinal axis of the non-invasively adjustable wedge osteotomy device 620, for example about 1°-30° off perpendicular, about 2°-25° off perpendicular, about 3°-20° off perpendicular, about 4°-15° off perpendicular, or about 5°-10° off perpendicular, or any other angle off perpendicular that is clinically meaningful to any given patient. An eccentric bearing 622 may be rotationally held within the hole 626. The eccentric bearing 622 may be made from a lubricious material (e.g., PEEK, UHMWPE, etc.) so as to advantageously decrease friction in the system. The eccentric bearing 622 has an off-center hole 628 through which an object may be placed (e.g., the first bone screw 134). When distracting a non-invasively adjustable wedge osteotomy device 620 incorporating an eccentric bearing 622 as shown in FIGS. 35-37, the off-center hole 628 (and thus any object extending through the off-center hole 628, such as the first bone screw 134) rotates in relation to the hole 626, for example, in a first rotational direction 624. FIG. 35 shows a location of approximately seven o'clock; FIG. 36 shows a location of approximately ten o'clock; and FIG. 37 shows a location of approximately two o'clock. The eccentric bearing 622 may be fixedly held within the hole 626 of the non-invasively adjustable wedge osteotomy device 620, for example with snaps, detents, welds, glues, epoxies, or any other means of fixation appropriate for the application. Alternatively, the eccentric bearing 622 may be inserted into the hole 626 by a user. The motion of the first bone screw 134 within the eccentric bearing 622 may have characteristics similar to motion of the first bone screw 134 within the second slotted hole 586 (discussed with respect to FIGS. 26-29), though the eccentric bearing 622 may allow some additional movement of an object extending through the off-center hole with respect to the non-invasively adjustable wedge osteotomy device 620, for example vertical (i.e., up and down) movement of an object extending through the off-center hole 628 in addition to the lateral (i.e., left and right) movement of an object extending through the off-center hole 628.


In FIG. 38, an elongated hole 702 has been cut or drilled into the upper portion 119 of the tibia 102 in a substantially horizontal fashion. The elongated hole 702 has a first end 704 (shown here laterally) and a second end 706 (shown here medially). A non-invasively adjustable wedge osteotomy device 700, as shown in FIG. 40, may be placed within a drilled or reamed medullary canal within the tibia 102, and a first bone screw 734 inserted through an anchor hole 716 in the non-invasively adjustable wedge osteotomy device 700. In some embodiments, the anchor hole 716 has an internal threaded portion 722 configured to engage a male thread 710 of the first bone screw. The first bone screw 734 has a head 718 and a distal end 720. The elongated hole 702 (shown in FIGS. 38-40) is drilled through the first cortex 712 and the second cortex 714. The distal end 720 of the first bone screw may then be inserted through the elongated hole 702. In some embodiments, including the embodiment shown in FIG. 40, the male thread 710 engages with the first cortex 712 thereby cutting partial threads in the bone of the first cortex 712 and allowing the male thread 710 to pass through the first cortex 712. Once the male thread 710 has passed through the first cortex 712, it is may be threaded into the internal threaded portion 722 of the anchor hole 712, thereby fixing/locking/securing the bone screw 734 to the to the non-invasively adjustable wedge osteotomy device 700. Because the bone screw 734 is only threaded in the middle (i.e., has a smooth neck, and smooth distal end), it may slide or displace along the elongated hole 702 in the upper portion 119 of the tibia 102 from the first end 704 to the second end 706, all while the middle threaded portion remains secured to the non-invasively adjustable wedge osteotomy device 700.


As the non-invasively adjustable wedge osteotomy device 700 is distracted, the first bone screw 134, 734 is able to follow a path 708 (shown in FIG. 38) while the angle of the osteotomy 118 increases and as the first bone screw 134, 734 moves away from the first end 704 of the elongated hole 702 and towards the second end 706 of the elongated hole 702, as shown in FIGS. 38 and 39. In some embodiments, the first bone screw 134 may be replaced by a pin that inserts through an anchor hole in the non-invasively adjustable wedge osteotomy device 700. Such a pin may be anchored using a close fit, friction fit, snap fit, spring fit, or the like.



FIGS. 41-42 illustrate an embodiment of a non-invasively adjustable wedge osteotomy device 740 which has been implanted and secured to an upper portion 119 of the tibia 102. Among many other elements, that may be interchangeable with this disclosed elsewhere in this application, the non-invasively adjustable wedge osteotomy device 740 includes a curved anterior-posterior pin 744 and a bone screw 742. The non-invasively adjustable wedge osteotomy device 740 may be configured, as described herein with respect to other embodiments, to allow the bone screw 742 to pivot, displace, slide, or otherwise move during distraction or retraction of the non-invasively adjustable wedge osteotomy device 740. In some embodiments, the curved anterior-posterior pin 744 has a curved central portion 750 that can be inserted through a hole (such as an anchor hole) of the non-invasively adjustable wedge osteotomy device 740, a first straight end 746 and a second straight end 748.


To insert the curved anterior-posterior pin 744, a hole may be drilled in each of the cortices (anterior to posterior/posterior to anterior) of the upper portion 119 of the tibia 102. The curved anterior-posterior pin 744 may be inserted into the hole in the first side of the first portion 119, through the non-invasively adjustable wedge osteotomy device 740, and out of the hole in the second side of the first portion 119. Thereby, the curved anterior-posterior pin 744 may rotationally engage the first portion 119 and the non-invasively adjustable wedge osteotomy device 740 by using the first straight end 746 and the second straight end 748. When the non-invasively adjustable wedge osteotomy device 740 is distracted, the curved anterior-posterior pin 744 may advantageously rotate within the holes (about the first straight end 746 and the second straight end 748), thereby allowing the anchor hole of the non-invasively adjustable wedge osteotomy device 740 to move in a lateral or medial direction and facilitate displacement in multiple axes simultaneously, as described with respect to other embodiments herein.



FIGS. 43-44 illustrate an embodiment of a non-invasively adjustable wedge osteotomy device 900 implanted within a tibia 102. The non-invasively adjustable wedge osteotomy device 900 comprises an outer housing 902 and an inner shaft 904, telescopically located within the outer housing 902. FIGS. 43-44 illustrate two distal bone screws 138, 142. But, it should be understood that any number of bone screws may be used. In the same way, FIGS. 43-44 illustrate only a single proximal bone screw 136. Again, it should be understood that this is for illustration purposes only and that more than one bone screw (e.g., 2 bone screws) may be used to anchor the non-invasively adjustable wedge osteotomy device 900 to the first portion 119 of the tibia 102. A second proximal bone screw (similar to the bone screw 134 of FIGS. 15-20) may be incorporated and may provide the advantageous benefit of rotationally stabilizing the upper portion 119 and lower portion 121 of the tibia 102 in relation to the longitudinal axis of the tibia 102.


In some embodiments, the rotational orientation between the outer housing 902 and inner shaft 904 is maintained by a longitudinal groove 910 on the outer surface of the inner shaft 904 and a radial projection 912 extending from the inner surface of the outer housing 902 and configured to slide within the longitudinal groove 910. During actuation, rotation of screw 136 may pull on the outer housing 902 at larger angles; consequently, the outer housing 902 and inner shaft 904 may advantageously be able to longitudinally translate in relation to each other. The inner contents of the non-invasively adjustable wedge osteotomy device may advantageously be protected from the harsh environment within the body. For example, an o-ring seal 906 may be contained within a circumferential groove 908 in the inner portion of the outer housing 902 to provide a dynamic seal between the outer housing 902 and the inner shaft 904.


In some embodiments, a magnet 914 is rotationally carried by the end of the inner shaft 904 via a radial bearing 918. The magnet 914 may be carried within a rotatable magnet housing (not shown). Gear stages 920, 922, 924 couple the magnet 914 to a lead screw 926. The lead screw 926 is coupled non-rigidly to the output of the final gear stage (i.e., gear stage 924) (e.g., by a coupler 928), and may be held in place by a pin 930. The magnet 914 may be rotated by an external moving magnetic field, thereby causing rotation of the lead screw 926. Step-down gear ratios may be used so that several rotations of the magnet 914 are necessary to cause one rotation of the lead screw 926. Additional description and examples of gears stages, such as planetary gear stages, that may be used are included above. In some embodiments, gear stages are not included, leaving a 1:1 ratio (i.e., one rotation of the magnet 914 causes one rotation of the lead screw 926. The rotation of the lead screw 926 causes longitudinal movement of a nut 932, which may have a distal fulcrum 934. An inner thread 936 of the nut 932 threadingly engages an outer thread 938 of the lead screw 926. Rotation of the lead screw 926 in a first rotational direction 940 causes movement of the nut 932 in a first longitudinal direction 942, forcing the distal fulcrum 934 against the bone screw 136 at contact location 944, causing the bone screw 136 and the upper portion 119 of the tibia 102 to generally follow a curved path 946, generally around the contact location 944. In some embodiments, some sliding between the bone screw 136 and the distal fulcrum 934 may occur (that is to say that the distal fulcrum 934 is not a pure fulcrum, which is fixed at a single point with no sliding). The wedge osteotomy 118 is thus caused to open, as shown in FIG. 44. In some embodiments, adjustment of the non-invasively adjustable wedge osteotomy device 900 does not directly cause longitudinal movement of the outer housing 902 with respect to the inner shaft 904 (as has been disclosed with certain other embodiment). Instead, the outer housing 902 and inner shaft 904 may passively move longitudinally with respect to each other, to accommodate length change that may occur as a result of the pivoting of the bone screw 136 and the upper portion 119 of the tibia 102 during the adjustment (for example from the condition in FIG. 43 to the condition in FIG. 44).



FIGS. 45-46 illustrate an embodiment of a non-invasively adjustable wedge osteotomy device 950 implanted within a tibia 102. The non-invasively adjustable wedge osteotomy device 950 includes an outer housing 952 and an inner shaft 954, which is telescopically located within the outer housing 952. FIGS. 45-46 illustrate two distal bone screws 138, 142. But it should be understood that any number of bone screws may be used. A first bone screw 134 is used to secure a pivoting member 956 to the upper portion 119 of the tibia 102. The first bone screw 134 passes through an anchor hole 958. In some embodiments, the anchor hole 958 is configured to allow rotation between the first bone screw 134 and the anchor hole 958 of the pivoting member 956. An angled anchor hole 960 through the pivoting member 956 allows the passage of a second bone screw 136. The angled anchor hole 960 may have a diameter only just larger than the diameter of the bone screw 136. Therefore, when the bone screw 136 is inserted through the angled anchor hole 960, it is held substantially fixed with respect to the pivoting member 956 (i.e., the angled anchor hole 960 does not allow the second bone screw 136 to pivot or rock substantially in relation to the pivoting member 956). The pivoting member 956 may be coupled to the outer housing 952 by a pivot joint 962. The internal components of the non-invasively adjustable wedge osteotomy device 950 may be similar to those described herein with respect to other embodiments, including those shown in FIGS. 5-7.



FIG. 45 shows the non-invasively adjustable wedge osteotomy device 950 in a substantially undistracted condition whereas FIG. 46 shows the non-invasively adjustable wedge osteotomy device 950 in a distracted condition. As the inner shaft 954 is distracted from the outer housing 952, the pivoting member 956, the upper portion 119 of the tibia 102 and the second bone screw 136 pivot—the second bone screw and the pivoting member 956 pivot about the pivot joint 962 in relation to the outer housing 952 and the lower portion 121 of the tibia 102, thus causing the wedge osteotomy 118 to angularly open and the upper portion 119 of the tibia 102 to pivot about the joint/hinge. In some embodiments, the pivoting member 956 may be pivotably coupled to the inner shaft 954, instead of the outer housing 952. In some embodiments, the pivotable joint 962 may be replaced by a ball joint, which allows additional degrees of freedom between the pivoting member 956 and the outer housing 952.


Throughout the embodiments presented, a radially-poled permanent magnet (e.g. 368 of FIG. 6) is used as a noninvasively-actuatable driving element to generate movement in a non-invasively adjustable wedge osteotomy device. FIGS. 47-50 schematically show four alternate embodiments, in which other types of energy transfer are used in place of permanent magnets.



FIG. 47 illustrates an embodiment of a non-invasively adjustable wedge osteotomy system 1300 including an implant 1306 having a first implant portion 1302 and a second implant portion 1304, the second implant portion 1304 non-invasively displaceable with relation to the first implant portion 1302. The first implant portion 1302 is secured to a first portion of the body 197 and the second implant portion 1304 is secured to a second portion of the body 199 within a patient 191. A motor 1308 is operable to cause the first implant portion 1302 and the second implant portion 1304 to displace relative to one another. In some embodiments, an external adjustment device 1310 has a control panel 1312 for input by an operator, a display 1314, and a transmitter 1316. The transmitter 1316 sends a control signal 1318 through the skin 195 of the patient 191 to an implanted receiver 1320. Implanted receiver 1320 may communicate with the motor 1308 via a conductor 1322. The motor 1308 may be powered by an implantable power source (e.g., a battery), or may be powered or charged by inductive coupling.



FIG. 48 illustrates an embodiment of a non-invasively adjustable wedge osteotomy system 1400 including an implant 1406 having a first implant portion 1402 and a second implant portion 1404, the second implant portion 1404 non-invasively displaceable with relation to the first implant portion 1402. The first implant portion 1402 is secured to a first portion of the body 197 and the second implant portion 1404 is secured to a second portion of the body 199 within a patient 191. An ultrasonic motor 1408 is operable to cause the first implant portion 1402 and the second implant portion 1404 to displace relative to one another. In some embodiments, an external adjustment device 1410 has a control panel 1412 for input by an operator, a display 1414, and an ultrasonic transducer 1416 that is coupled to the skin 195 of the patient 191. The ultrasonic transducer 1416 produces ultrasonic waves 1418 which pass through the skin 195 of the patient 191 and operate the ultrasonic motor 1408.



FIG. 49 illustrates an embodiment of a non-invasively adjustable wedge osteotomy system 1700 comprising an implant 1706 having a first implant portion 1702 and a second implant portion 1704, the second implant portion 1704 non-invasively displaceable with relation to the first implant portion 1702. The first implant portion 1702 is secured to a first portion of the body 197 and the second implant portion 1704 is secured to a second portion of the body 199 within a patient 191. A shape memory actuator 1708 is operable to cause the first implant portion 1702 and the second implant portion 1704 to displace relative to one another. In some embodiments, an external adjustment device 1710 has a control panel 1712 for input by an operator, a display, 1714 and a transmitter 1716. The transmitter 1716 sends a control signal 1718 through the skin 195 of the patient 191 to an implanted receiver 1720. Implanted receiver 1720 may communicate with the shape memory actuator 1708 via a conductor 1722. The shape memory actuator 1708 may be powered by an implantable power source (e.g., a battery), or may be powered or charged by inductive coupling.



FIG. 50 illustrates an embodiment of a non-invasively adjustable wedge osteotomy system 1800 including an implant 1806 having a first implant portion 1802 and a second implant portion 1804, the second implant portion 1804 non-invasively displaceable with relation to the first implant portion 1802. The first implant portion 1802 is secured to a first portion of the body 197 and the second implant portion 1804 is secured to a second portion of the body 199 within a patient 191. A hydraulic pump 1808 is operable to cause the first implant portion 1802 and the second implant portion 1804 to displace relative to one another. In some embodiments, an external adjustment device 1810 has a control panel 1812 for input by an operator, a display, 1814 and a transmitter 1816. The transmitter 1816 sends a control signal 1818 through the skin 195 of the patient 191 to an implanted receiver 1820. Implanted receiver 1820 communicates with the hydraulic pump 1808 via a conductor 1822. The hydraulic pump 1808 may be powered by an implantable power source (e.g., a battery), or may be powered or charged by inductive coupling. The hydraulic pump 1808 may alternatively be replaced by a pneumatic pump.


In some embodiments of the wedge osteotomy devices disclosed herein, the slotted holes may be located on the inner shaft instead of or in addition to the outer housing. The orientation of the implant within the tibia may be opposite of that illustrated in any of the figures. Additionally, any of the embodiments of the non-invasively adjustable wedge osteotomy device may be used for gradual distraction (Ilizarov osteogenesis) or for acute correction of an incorrect angle. And, in some embodiments, alternative, remote adjustment described above may be replaced by manual control of any implanted part, for example manual pressure by the patient or caregiver on a button placed under the skin.


Of course, the foregoing description is of certain features, aspects and advantages of the present invention, to which various changes and modifications can be made without departing from the spirit and scope of the present invention. Thus, for example, those of skill in the art will recognize that the invention can be embodied or carried out in a manner that achieves or optimizes one advantage or a group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein. In addition, while a number of variations of the invention have been shown and described in detail, other modifications and methods of use, which are within the scope of this invention, will be readily apparent to those of skill in the art based upon this disclosure. It is contemplated that various combinations or sub-combinations of the specific features and aspects between and among the different embodiments may be made and still fall within the scope of the invention. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the discussed devices, systems and methods (e.g., by excluding features or steps from certain embodiments, or adding features or steps from one embodiment of a system or method to another embodiment of a system or method).

Claims
  • 1. A system for changing the angle of a bone of a subject, comprising: a non-invasively adjustable implant configured to be placed inside a longitudinal cavity within the bone and comprising: an outer housing and an inner shaft telescopically disposed in the outer housing, the outer housing associated with a first anchor hole and a second anchor hole, the first anchor hole configured to pass a first anchor for coupling the adjustable implant to a first portion of bone and the second anchor hole configured to pass a second anchor for coupling the adjustable implant to the first portion of bone, the inner shaft configured to couple to a second portion of bone that is separated or separable from the first portion of bone, such that non-invasive elongation of the adjustable implant causes the inner shaft to extend from the outer housing and to move the first portion of bone and the second portion of bone apart angularly;a driving element configured to be remotely operable to telescopically displace the inner shaft in relation to the outer housing; andwherein the first anchor hole is slotted with a raised portion located therein and configured to allow the first anchor to pivot in at least a first angular direction and the second anchor hole is configured to allow the second anchor to translate in at least a first translation direction upon the telescopic displacement of the inner shaft in relation to the outer housing and a movement of the first portion of bone relative to the second portion.
  • 2. The system of claim 1, wherein the first anchor hole is configured to allow the first anchor to pivot in a second angular direction, opposite the first angular direction.
  • 3. The system of claim 1, wherein the second anchor hole is configured to allow the second anchor to translate in a second translation direction, opposite the first translation direction.
  • 4. The system of claim 1, wherein the inner shaft is associated with a third anchor hole configured to pass a third anchor for coupling the adjustable implant to the second portion of bone.
  • 5. The system of claim 1, wherein the first anchor hole is configured to allow the first anchor to pivot in a second angular direction, opposite the first angular direction, and wherein the second anchor hole is configured to allow the second anchor to translate in a second translation direction, opposite the first translation direction.
  • 6. The system of claim 1, wherein the driving element comprises a permanent magnet.
  • 7. The system of claim 6, wherein the permanent magnet comprises a radially poled rare earth magnet.
  • 8. The system of claim 1, wherein the driving element comprises a motor.
  • 9. The system of claim 1, wherein the driving element comprises an inductively coupled motor.
  • 10. The system of claim 1, wherein the driving element comprises an ultrasonically actuated motor.
  • 11. The system of claim 1, wherein the driving element comprises a subcutaneous hydraulic pump.
  • 12. The system of claim 1, wherein the driving element comprises a shape-memory driven actuator.
  • 13. The system of claim 1, wherein the driving element comprises a piezoelectric element.
  • 14. The system of claim 1, wherein the first anchor hole extends substantially along a first plane approximating a radial section of the adjustable implant and the second anchor hole extends substantially along a second plane approximating a radial section of the adjustable implant, and wherein the first plane is generally orthogonal to the second plane.
  • 15. The system of claim 14, wherein the first anchor hole and the second anchor hole do not extend perpendicularly to each other.
  • 16. The system of claim 1, wherein the non-invasively adjustable implant is configured to change an angle of a tibia of a subject having osteoarthritis of the knee.
  • 17. The system of claim 16, wherein the non-invasively adjustable implant is configured to change the angle of a tibia greater than 12 degrees.
  • 18. The system of claim 16, wherein the non-invasively adjustable implant is configured to change the angle of a tibia greater than 16 degrees.
  • 19. The system of claim 16, wherein the non-invasively adjustable implant is configured to adjust a mechanical axis in a lateral direction in relation to a knee joint associated with the tibia.
  • 20. The system of claim 19, wherein the non-invasively adjustable implant is configured to adjust a mechanical axis to a position that is at least 30% lateral to a central point of the knee joint associated with the tibia.
  • 21. The system of claim 1, wherein the second anchor hole is an elongated slot.
  • 22. The system of claim 1, wherein the second anchor hole has a first diameter and further comprising an eccentric bearing having an outer diameter configured to engage the second anchor hole, the eccentric bearing having an inner hole configured to pass the second anchor.
  • 23. The system of claim 1, wherein the first anchor is a bone screw.
  • 24. The system of claim 1, wherein the second anchor is a bone screw.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to, and the benefit of, U.S. Provisional Patent Application No. 62/242,931 filed on Oct. 16, 2015.

US Referenced Citations (1228)
Number Name Date Kind
1599538 Ludger Sep 1926 A
3111945 Von Nov 1963 A
3372476 Richard et al. Mar 1968 A
3377576 Edwin et al. Apr 1968 A
3397928 Galle Aug 1968 A
3512901 Law May 1970 A
3527220 Summers Sep 1970 A
3597781 Eibes et al. Aug 1971 A
3726279 Barefoot et al. Apr 1973 A
3749098 De Bennetot Jul 1973 A
3750194 Summers Aug 1973 A
3810259 Summers May 1974 A
3840018 Heifetz Oct 1974 A
3866510 Eibes et al. Feb 1975 A
3900025 Barnes, Jr. Aug 1975 A
3915151 Kraus Oct 1975 A
RE28907 Eibes et al. Jul 1976 E
3976060 Hildebrandt et al. Aug 1976 A
4010758 Rockland et al. Mar 1977 A
4056743 Clifford et al. Nov 1977 A
4068821 Morrison Jan 1978 A
4078559 Nissinen Mar 1978 A
4118805 Reimels Oct 1978 A
4204541 Kapitanov May 1980 A
4222374 Sampson et al. Sep 1980 A
4235246 Weiss Nov 1980 A
4256094 Kapp et al. Mar 1981 A
4286584 Sampson et al. Sep 1981 A
4300223 Maire Nov 1981 A
4357946 Dutcher et al. Nov 1982 A
4386603 Mayfield Jun 1983 A
4395259 Prestele et al. Jul 1983 A
4448191 Rodnyansky et al. May 1984 A
4486176 Tardieu et al. Dec 1984 A
4501266 McDaniel Feb 1985 A
4522501 Shannon Jun 1985 A
4537520 Ochiai et al. Aug 1985 A
4550279 Klein Oct 1985 A
4561798 Elcrin et al. Dec 1985 A
4573454 Hoffman Mar 1986 A
4592339 Kuzmak et al. Jun 1986 A
4592355 Antebi Jun 1986 A
4595007 Mericle Jun 1986 A
4642257 Chase Feb 1987 A
4658809 Ulrich et al. Apr 1987 A
4696288 Kuzmak et al. Sep 1987 A
4700091 Wuthrich Oct 1987 A
4747832 Buffet May 1988 A
4760837 Petit Aug 1988 A
4854304 Zielke Aug 1989 A
4872515 Lundell Oct 1989 A
4904861 Epstein et al. Feb 1990 A
4931055 Bumpus et al. Jun 1990 A
4940467 Tronzo Jul 1990 A
4957495 Kluger Sep 1990 A
4973331 Pursley et al. Nov 1990 A
4978323 Freedman Dec 1990 A
4998013 Epstein et al. Mar 1991 A
5010879 Moriya et al. Apr 1991 A
5030235 Campbell, Jr. Jul 1991 A
5041112 Mingozzi et al. Aug 1991 A
5053047 Yoon Oct 1991 A
5064004 Lundell Nov 1991 A
5074868 Kuzmak Dec 1991 A
5074882 Grammont et al. Dec 1991 A
5092889 Campbell, Jr. Mar 1992 A
5133716 Plaza Jul 1992 A
5142407 Varaprasad et al. Aug 1992 A
5152770 Bengmark et al. Oct 1992 A
5156605 Pursley et al. Oct 1992 A
5176618 Freedman Jan 1993 A
5180380 Pursley et al. Jan 1993 A
5222976 Yoon Jun 1993 A
5226429 Kuzmak Jul 1993 A
5261908 Campbell, Jr. Nov 1993 A
5263955 Baumgart et al. Nov 1993 A
5290289 Sanders et al. Mar 1994 A
5306275 Bryan Apr 1994 A
5330503 Yoon Jul 1994 A
5334202 Carter Aug 1994 A
5336223 Rogers Aug 1994 A
5356411 Spievack Oct 1994 A
5356424 Buzerak et al. Oct 1994 A
5360407 Leonard et al. Nov 1994 A
5364396 Robinson et al. Nov 1994 A
5381943 Allen et al. Jan 1995 A
5399168 Wadsworth, Jr. et al. Mar 1995 A
5403322 Herzenberg et al. Apr 1995 A
5429638 Muschler et al. Jul 1995 A
5433721 Hooven et al. Jul 1995 A
5437266 McPherson et al. Aug 1995 A
5449368 Kuzmak Sep 1995 A
5466261 Richelsoph Nov 1995 A
5468030 Walling Nov 1995 A
5480437 Draenert Jan 1996 A
5498262 Bryan Mar 1996 A
5509888 Miller Apr 1996 A
5516335 Kummer et al. May 1996 A
5527309 Shelton Jun 1996 A
5536269 Spievack Jul 1996 A
5536296 Ten Eyck et al. Jul 1996 A
5549610 Russell et al. Aug 1996 A
5573496 McPherson et al. Nov 1996 A
5575790 Chen et al. Nov 1996 A
5582616 Bolduc et al. Dec 1996 A
5601224 Bishop et al. Feb 1997 A
5620445 Brosnahan et al. Apr 1997 A
5620449 Faccioli et al. Apr 1997 A
5626579 Muschler et al. May 1997 A
5626613 Schmieding May 1997 A
5628888 Bakhir et al. May 1997 A
5632744 Campbell, Jr. May 1997 A
5659217 Petersen Aug 1997 A
5662683 Kay Sep 1997 A
5672175 Martin Sep 1997 A
5672177 Seldin Sep 1997 A
5676162 Larson, Jr. et al. Oct 1997 A
5693091 Larson, Jr. et al. Dec 1997 A
5700263 Schendel Dec 1997 A
5702430 Larson, Jr. et al. Dec 1997 A
5704893 Timm Jan 1998 A
5704938 Staehlin et al. Jan 1998 A
5704939 Justin Jan 1998 A
5720746 Soubeiran Feb 1998 A
5722429 Larson, Jr. et al. Mar 1998 A
5722930 Larson, Jr. et al. Mar 1998 A
5743910 Bays et al. Apr 1998 A
5758666 Larson, Jr. et al. Jun 1998 A
5762599 Sohn Jun 1998 A
5766208 McEwan Jun 1998 A
5771903 Jakobsson Jun 1998 A
5800434 Campbell, Jr. Sep 1998 A
5810815 Morales Sep 1998 A
5824008 Bolduc et al. Oct 1998 A
5827286 Incavo et al. Oct 1998 A
5829662 Allen et al. Nov 1998 A
5830221 Stein et al. Nov 1998 A
5843129 Larson, Jr. et al. Dec 1998 A
5874796 Petersen Feb 1999 A
5879375 Larson, Jr. et al. Mar 1999 A
5902304 Walker et al. May 1999 A
5935127 Border Aug 1999 A
5938669 Klaiber et al. Aug 1999 A
5945762 Chen et al. Aug 1999 A
5954915 Voorhees et al. Sep 1999 A
5961553 Coty et al. Oct 1999 A
5964763 Incavo et al. Oct 1999 A
5976138 Baumgart et al. Nov 1999 A
5979456 Magovern Nov 1999 A
5985110 Bakhir et al. Nov 1999 A
5997490 McLeod et al. Dec 1999 A
6009837 McClasky Jan 2000 A
6022349 McLeod et al. Feb 2000 A
6033412 Losken et al. Mar 2000 A
6034296 Elvin et al. Mar 2000 A
6067991 Forsell May 2000 A
6074341 Anderson et al. Jun 2000 A
6074882 Eckardt Jun 2000 A
6092531 Chen et al. Jul 2000 A
6102922 Jakobsson et al. Aug 2000 A
6106525 Sachse Aug 2000 A
6126660 Dietz Oct 2000 A
6126661 Faccioli et al. Oct 2000 A
6138681 Chen et al. Oct 2000 A
6139316 Sachdeva et al. Oct 2000 A
6162223 Orsak et al. Dec 2000 A
6183476 Gerhardt et al. Feb 2001 B1
6200317 Aalsma et al. Mar 2001 B1
6210347 Forsell Apr 2001 B1
6217847 Contag et al. Apr 2001 B1
6221074 Cole et al. Apr 2001 B1
6234299 Voorhees et al. May 2001 B1
6234956 He et al. May 2001 B1
6241730 Alby Jun 2001 B1
6245075 Betz et al. Jun 2001 B1
6283156 Motley Sep 2001 B1
6296643 Hopf et al. Oct 2001 B1
6296656 Bolduc et al. Oct 2001 B1
6299613 Ogilvie et al. Oct 2001 B1
6315784 Djurovic Nov 2001 B1
6319255 Grundei et al. Nov 2001 B1
6321106 Lemelson Nov 2001 B1
6325805 Ogilvie et al. Dec 2001 B1
6327492 Lemelson Dec 2001 B1
6331744 Chen et al. Dec 2001 B1
6336929 Justin Jan 2002 B1
6343568 McClasky Feb 2002 B1
6358283 Hogfors et al. Mar 2002 B1
6375682 Fleischmann et al. Apr 2002 B1
6386083 Hwang May 2002 B1
6389187 Greenaway et al. May 2002 B1
6400980 Lemelson Jun 2002 B1
6402753 Cole et al. Jun 2002 B1
6409175 Evans et al. Jun 2002 B1
6416516 Stauch et al. Jul 2002 B1
6417750 Sohn Jul 2002 B1
6423061 Bryant Jul 2002 B1
6432040 Meah Aug 2002 B1
6450173 Forsell Sep 2002 B1
6450946 Forsell Sep 2002 B1
6453907 Forsell Sep 2002 B1
6454698 Forsell Sep 2002 B1
6454699 Forsell Sep 2002 B1
6454700 Forsell Sep 2002 B1
6454701 Forsell Sep 2002 B1
6460543 Forsell Oct 2002 B1
6461292 Forsell Oct 2002 B1
6461293 Forsell Oct 2002 B1
6463935 Forsell Oct 2002 B1
6464628 Forsell Oct 2002 B1
6470892 Forsell Oct 2002 B1
6471635 Forsell Oct 2002 B1
6475136 Forsell Nov 2002 B1
6482145 Forsell Nov 2002 B1
6494879 Lennox et al. Dec 2002 B2
6499907 Baur Dec 2002 B1
6500110 Davey et al. Dec 2002 B1
6503189 Forsell Jan 2003 B1
6508820 Bales Jan 2003 B2
6510345 Van Bentem Jan 2003 B1
6511490 Robert Jan 2003 B2
6527701 Sayet et al. Mar 2003 B1
6527702 Whalen et al. Mar 2003 B2
6536499 Voorhees et al. Mar 2003 B2
6537196 Creighton, IV et al. Mar 2003 B1
6547801 Dargent et al. Apr 2003 B1
6554831 Rivard et al. Apr 2003 B1
6558400 Deem et al. May 2003 B2
6562051 Bolduc et al. May 2003 B1
6565573 Ferrante et al. May 2003 B1
6565576 Stauch et al. May 2003 B1
6573706 Mendes et al. Jun 2003 B2
6582313 Perrow Jun 2003 B2
6583630 Mendes et al. Jun 2003 B2
6587719 Barrett et al. Jul 2003 B1
6595912 Lau et al. Jul 2003 B2
6602184 Lau et al. Aug 2003 B2
6604529 Kim Aug 2003 B2
6607363 Domroese Aug 2003 B1
6609025 Barrett et al. Aug 2003 B2
6612978 Lau et al. Sep 2003 B2
6612979 Lau et al. Sep 2003 B2
6616669 Ogilvie et al. Sep 2003 B2
6621956 Greenaway et al. Sep 2003 B2
6626899 Houser et al. Sep 2003 B2
6626917 Craig Sep 2003 B1
6627206 Lloyd Sep 2003 B2
6649143 Contag et al. Nov 2003 B1
6656135 Zogbi et al. Dec 2003 B2
6656194 Gannoe et al. Dec 2003 B1
6657351 Chen et al. Dec 2003 B2
6667725 Simons et al. Dec 2003 B1
6669687 Saadat Dec 2003 B1
6673079 Kane Jan 2004 B1
6676674 Dudai Jan 2004 B1
6682474 Lau et al. Jan 2004 B2
6689046 Sayet et al. Feb 2004 B2
6702732 Lau et al. Mar 2004 B1
6702816 Buhler Mar 2004 B2
6706042 Taylor Mar 2004 B2
6709293 Mori et al. Mar 2004 B2
6709385 Forsell Mar 2004 B2
6730087 Butsch May 2004 B1
6749556 Banik Jun 2004 B2
6752754 Feng et al. Jun 2004 B1
6761503 Breese Jul 2004 B2
6765330 Baur Jul 2004 B2
6769499 Cargill et al. Aug 2004 B2
6773437 Ogilvie et al. Aug 2004 B2
6774624 Anderson et al. Aug 2004 B2
6789442 Forch Sep 2004 B2
6796984 Soubeiran Sep 2004 B2
6802844 Ferree Oct 2004 B2
6802847 Carson et al. Oct 2004 B1
6809434 Duncan et al. Oct 2004 B1
6835183 Lennox et al. Dec 2004 B2
6835207 Zacouto et al. Dec 2004 B2
6849076 Blunn et al. Feb 2005 B2
6852113 Nathanson et al. Feb 2005 B2
6864647 Duncan et al. Mar 2005 B2
6884248 Bolduc et al. Apr 2005 B2
6890515 Contag et al. May 2005 B2
6908605 Contag et al. Jun 2005 B2
6915165 Forsell Jul 2005 B2
6916462 Contag et al. Jul 2005 B2
6918838 Schwarzler et al. Jul 2005 B2
6918910 Smith et al. Jul 2005 B2
6921360 Banik Jul 2005 B2
6921400 Sohngen Jul 2005 B2
6923951 Contag et al. Aug 2005 B2
6926719 Sohngen et al. Aug 2005 B2
6939533 Contag et al. Sep 2005 B2
6953429 Forsell Oct 2005 B2
6961553 Zhao et al. Nov 2005 B2
6971143 Domroese Dec 2005 B2
6980921 Anderson et al. Dec 2005 B2
6997952 Furukawa et al. Feb 2006 B2
7001327 Whalen et al. Feb 2006 B2
7001346 White Feb 2006 B2
7008425 Phillips Mar 2006 B2
7011621 Sayet et al. Mar 2006 B2
7011658 Young Mar 2006 B2
7011682 Lashinski et al. Mar 2006 B2
7018380 Cole Mar 2006 B2
7029475 Panjabi Apr 2006 B2
7041105 Michelson May 2006 B2
7060075 Govari et al. Jun 2006 B2
7060080 Bachmann Jun 2006 B2
7063706 Wittenstein Jun 2006 B2
7077802 Lau et al. Jul 2006 B2
7081086 Lau et al. Jul 2006 B2
7083629 Weller et al. Aug 2006 B2
7096148 Anderson et al. Aug 2006 B2
7097611 Lau et al. Aug 2006 B2
7105029 Doubler et al. Sep 2006 B2
7105968 Nissen Sep 2006 B2
7114501 Johnson et al. Oct 2006 B2
7115129 Heggeness Oct 2006 B2
7115130 Michelson Oct 2006 B2
7124493 Lau et al. Oct 2006 B2
7128707 Banik Oct 2006 B2
7135022 Kosashvili et al. Nov 2006 B2
7160312 Saadat Jan 2007 B2
7163538 Altarac et al. Jan 2007 B2
7172607 Hofle et al. Feb 2007 B2
7175589 Deem et al. Feb 2007 B2
7175660 Cartledge et al. Feb 2007 B2
7186262 Saadat Mar 2007 B2
7188627 Nelson et al. Mar 2007 B2
7189005 Ward Mar 2007 B2
7189202 Lau et al. Mar 2007 B2
7189251 Kay Mar 2007 B2
7191007 Desai et al. Mar 2007 B2
7194297 Talpade et al. Mar 2007 B2
7195608 Burnett Mar 2007 B2
7198774 Contag et al. Apr 2007 B2
7211094 Gannoe et al. May 2007 B2
7216648 Nelson et al. May 2007 B2
7217284 Houser et al. May 2007 B2
7218232 DiSilvestro et al. May 2007 B2
7232449 Sharkawy et al. Jun 2007 B2
7234468 Johnson et al. Jun 2007 B2
7234544 Kent Jun 2007 B2
7238152 Lau et al. Jul 2007 B2
7238191 Bachmann Jul 2007 B2
7241300 Sharkawy et al. Jul 2007 B2
7243719 Baron et al. Jul 2007 B2
7255682 Bartol, Jr. et al. Aug 2007 B1
7255714 Malek Aug 2007 B2
7255851 Contag et al. Aug 2007 B2
7276022 Lau et al. Oct 2007 B2
7282023 Frering Oct 2007 B2
7285087 Moaddeb et al. Oct 2007 B2
7288064 Boustani et al. Oct 2007 B2
7288099 Deem et al. Oct 2007 B2
7288101 Deem et al. Oct 2007 B2
7296577 Lashinski et al. Nov 2007 B2
7297150 Cartledge et al. Nov 2007 B2
7299091 Barrett et al. Nov 2007 B2
7302858 Walsh et al. Dec 2007 B2
7306614 Weller et al. Dec 2007 B2
7311690 Burnett Dec 2007 B2
7314372 Belfor et al. Jan 2008 B2
7314443 Jordan et al. Jan 2008 B2
7320706 Al-Najjar Jan 2008 B2
7331995 Eisermann et al. Feb 2008 B2
7333013 Berger Feb 2008 B2
7338433 Coe Mar 2008 B2
7340306 Barrett et al. Mar 2008 B2
7351198 Byrum et al. Apr 2008 B2
7351240 Hassler, Jr. et al. Apr 2008 B2
7353747 Swayze et al. Apr 2008 B2
7357037 Hnat et al. Apr 2008 B2
7357635 Belfor et al. Apr 2008 B2
7360542 Nelson et al. Apr 2008 B2
7361192 Doty Apr 2008 B2
7364542 Jambor et al. Apr 2008 B2
7364589 Eisermann Apr 2008 B2
7367340 Nelson et al. May 2008 B2
7367937 Jambor et al. May 2008 B2
7367938 Forsell May 2008 B2
7371244 Chatlynne et al. May 2008 B2
7374557 Conlon et al. May 2008 B2
7390007 Helms et al. Jun 2008 B2
7390294 Hassler, Jr. Jun 2008 B2
7400926 Forsell Jul 2008 B2
7402134 Moaddeb et al. Jul 2008 B2
7402176 Malek Jul 2008 B2
7410461 Lau et al. Aug 2008 B2
7416528 Crawford et al. Aug 2008 B2
7422566 Miethke Sep 2008 B2
7429259 Cadeddu et al. Sep 2008 B2
7431692 Zollinger et al. Oct 2008 B2
7441559 Nelson et al. Oct 2008 B2
7442196 Fisher et al. Oct 2008 B2
7445010 Kugler et al. Nov 2008 B2
7455690 Cartledge et al. Nov 2008 B2
7458981 Fielding et al. Dec 2008 B2
7468060 Utley et al. Dec 2008 B2
7476195 Sayet et al. Jan 2009 B2
7476238 Panjabi Jan 2009 B2
7481224 Nelson et al. Jan 2009 B2
7481763 Hassler, Jr. et al. Jan 2009 B2
7481841 Hazebrouck et al. Jan 2009 B2
7485149 White Feb 2009 B1
7489495 Stevenson Feb 2009 B2
7494459 Anstadt et al. Feb 2009 B2
7500484 Nelson et al. Mar 2009 B2
7503922 Deem et al. Mar 2009 B2
7503934 Eisermann et al. Mar 2009 B2
7507252 Lashinski et al. Mar 2009 B2
7510559 Deem et al. Mar 2009 B2
7530981 Kutsenko May 2009 B2
7531002 Sutton et al. May 2009 B2
7547291 Lennox et al. Jun 2009 B2
7553298 Hunt et al. Jun 2009 B2
7559951 DiSilvestro et al. Jul 2009 B2
7561916 Hunt et al. Jul 2009 B2
7562660 Saadat Jul 2009 B2
7566297 Banik Jul 2009 B2
7569057 Liu et al. Aug 2009 B2
7578821 Fisher et al. Aug 2009 B2
7584788 Baron et al. Sep 2009 B2
7594887 Moaddeb et al. Sep 2009 B2
7601156 Robinson Oct 2009 B2
7601162 Hassler, Jr. et al. Oct 2009 B2
7601171 Ainsworth et al. Oct 2009 B2
7611526 Carl et al. Nov 2009 B2
7615001 Jambor et al. Nov 2009 B2
7615068 Timm et al. Nov 2009 B2
7618435 Opolski Nov 2009 B2
7621886 Burnett Nov 2009 B2
7635379 Callahan et al. Dec 2009 B2
7651483 Byrum et al. Jan 2010 B2
7658753 Carl et al. Feb 2010 B2
7666132 Forsell Feb 2010 B2
7666184 Stauch Feb 2010 B2
7666210 Franck et al. Feb 2010 B2
7678136 Doubler et al. Mar 2010 B2
7678139 Garamszegi et al. Mar 2010 B2
7691144 Chang et al. Apr 2010 B2
7695512 Lashinski et al. Apr 2010 B2
7704279 Moskowitz et al. Apr 2010 B2
7704282 Disilvestro et al. Apr 2010 B2
7708737 Kraft et al. May 2010 B2
7708762 McCarthy et al. May 2010 B2
7708765 Carl et al. May 2010 B2
7708779 Edie et al. May 2010 B2
7713287 Timm et al. May 2010 B2
7717959 William et al. May 2010 B2
7727141 Hassler, Jr. et al. Jun 2010 B2
7727143 Birk et al. Jun 2010 B2
7749224 Cresina et al. Jul 2010 B2
7753913 Szakelyhidi, Jr. et al. Jul 2010 B2
7753915 Eksler et al. Jul 2010 B1
7757552 Bogath et al. Jul 2010 B2
7762998 Birk et al. Jul 2010 B2
7763053 Gordon Jul 2010 B2
7763080 Southworth Jul 2010 B2
7766815 Ortiz Aug 2010 B2
7775099 Bogath et al. Aug 2010 B2
7775215 Hassler, Jr. et al. Aug 2010 B2
7776061 Garner et al. Aug 2010 B2
7776068 Ainsworth et al. Aug 2010 B2
7776075 Bruneau et al. Aug 2010 B2
7776091 Mastrorio et al. Aug 2010 B2
7780590 Birk et al. Aug 2010 B2
7787958 Stevenson Aug 2010 B2
7789912 Manzi et al. Sep 2010 B2
7793583 Radinger et al. Sep 2010 B2
7794447 Dann et al. Sep 2010 B2
7794476 Wisnewski Sep 2010 B2
7798954 Birk et al. Sep 2010 B2
7799080 Doty Sep 2010 B2
7803106 Whalen et al. Sep 2010 B2
7803157 Michelson Sep 2010 B2
7811275 Birk et al. Oct 2010 B2
7811298 Birk Oct 2010 B2
7811328 Molz, IV et al. Oct 2010 B2
7815643 Johnson et al. Oct 2010 B2
7828714 Feng et al. Nov 2010 B2
7828813 Mouton Nov 2010 B2
7833228 Hershberger Nov 2010 B1
7835779 Anderson et al. Nov 2010 B2
7837669 Dann et al. Nov 2010 B2
7837691 Cordes et al. Nov 2010 B2
7842036 Phillips Nov 2010 B2
7845356 Paraschac et al. Dec 2010 B2
7846188 Moskowitz et al. Dec 2010 B2
7850660 Uth et al. Dec 2010 B2
7850735 Eisermann et al. Dec 2010 B2
7854769 Hershberger Dec 2010 B2
7862546 Conlon et al. Jan 2011 B2
7862574 Deem et al. Jan 2011 B2
7862586 Malek Jan 2011 B2
7867235 Fell et al. Jan 2011 B2
7871368 Zollinger et al. Jan 2011 B2
7875033 Richter et al. Jan 2011 B2
7887566 Hynes Feb 2011 B2
7901381 Birk et al. Mar 2011 B2
7901419 Bachmann et al. Mar 2011 B2
7909790 Burnett Mar 2011 B2
7909838 Deem et al. Mar 2011 B2
7909839 Fields Mar 2011 B2
7909852 Boomer et al. Mar 2011 B2
7918844 Byrum et al. Apr 2011 B2
7921850 Nelson et al. Apr 2011 B2
7922765 Reiley Apr 2011 B2
7927354 Edidin et al. Apr 2011 B2
7927357 Sacher et al. Apr 2011 B2
7931679 Heggeness Apr 2011 B2
7932825 Berger Apr 2011 B2
7938836 Ainsworth et al. May 2011 B2
7938841 Sharkawy et al. May 2011 B2
7942903 Moskowitz et al. May 2011 B2
7942908 Sacher et al. May 2011 B2
7947011 Birk et al. May 2011 B2
7951067 Byrum et al. May 2011 B2
7951180 Moskowitz et al. May 2011 B2
7958895 Nelson et al. Jun 2011 B2
7958896 Nelson et al. Jun 2011 B2
7959552 Jordan et al. Jun 2011 B2
7972315 Birk et al. Jul 2011 B2
7972346 Bachmann et al. Jul 2011 B2
7972363 Moskowitz et al. Jul 2011 B2
7976545 Hershberger et al. Jul 2011 B2
7983763 Stevenson et al. Jul 2011 B2
7985256 Grotz et al. Jul 2011 B2
7987241 St Jacques, Jr. et al. Jul 2011 B2
7988707 Panjabi Aug 2011 B2
7988709 Clark et al. Aug 2011 B2
7993342 Malandain et al. Aug 2011 B2
7993397 Lashinski et al. Aug 2011 B2
7998174 Malandain et al. Aug 2011 B2
7998208 Kohm et al. Aug 2011 B2
8002801 Carl et al. Aug 2011 B2
8002809 Baynham Aug 2011 B2
8007458 Lennox et al. Aug 2011 B2
8007474 Uth et al. Aug 2011 B2
8007479 Birk et al. Aug 2011 B2
8011308 Picchio Sep 2011 B2
8012162 Bachmann Sep 2011 B2
8016745 Hassler, Jr. et al. Sep 2011 B2
8016837 Giger et al. Sep 2011 B2
8016860 Carl et al. Sep 2011 B2
8026729 Kroh et al. Sep 2011 B2
8029477 Byrum et al. Oct 2011 B2
8029567 Edidin et al. Oct 2011 B2
8034080 Malandain et al. Oct 2011 B2
8037871 McClendon Oct 2011 B2
8038680 Ainsworth et al. Oct 2011 B2
8038698 Edidin et al. Oct 2011 B2
8043206 Birk Oct 2011 B2
8043290 Harrison et al. Oct 2011 B2
8043299 Conway Oct 2011 B2
8043338 Dant Oct 2011 B2
8043345 Carl et al. Oct 2011 B2
8048169 Burnett et al. Nov 2011 B2
8057473 Orsak et al. Nov 2011 B2
8057513 Kohm et al. Nov 2011 B2
8066650 Lee et al. Nov 2011 B2
8070670 Deem et al. Dec 2011 B2
8070671 Deem et al. Dec 2011 B2
8070695 Gupta et al. Dec 2011 B2
8070813 Grotz et al. Dec 2011 B2
8074654 Paraschac et al. Dec 2011 B2
8075577 Deem et al. Dec 2011 B2
8079974 Stergiopulos Dec 2011 B2
8079989 Birk et al. Dec 2011 B2
8080022 Deem et al. Dec 2011 B2
8080025 Deem et al. Dec 2011 B2
8088166 Makower et al. Jan 2012 B2
8092459 Malandain Jan 2012 B2
8092499 Roth Jan 2012 B1
8095317 Ekseth et al. Jan 2012 B2
8096302 Nelson et al. Jan 2012 B2
8096938 Forsell Jan 2012 B2
8096995 Kohm et al. Jan 2012 B2
8097018 Malandain et al. Jan 2012 B2
8097038 Malek Jan 2012 B2
8100819 Banik Jan 2012 B2
8100943 Malandain et al. Jan 2012 B2
8100967 Makower et al. Jan 2012 B2
8105360 Connor Jan 2012 B1
8105363 Fielding et al. Jan 2012 B2
8105364 McCarthy et al. Jan 2012 B2
8109974 Boomer et al. Feb 2012 B2
8114158 Carl et al. Feb 2012 B2
8123765 Deem et al. Feb 2012 B2
8123805 Makower et al. Feb 2012 B2
8128628 Freid et al. Mar 2012 B2
8133280 Voellmicke et al. Mar 2012 B2
8137349 Soubeiran Mar 2012 B2
8137366 Deem et al. Mar 2012 B2
8137367 Deem et al. Mar 2012 B2
8142454 Harrison et al. Mar 2012 B2
8142494 Randert et al. Mar 2012 B2
8147517 Trieu et al. Apr 2012 B2
8147549 Metcalf, Jr. et al. Apr 2012 B2
8157841 Malandain et al. Apr 2012 B2
8162897 Byrum Apr 2012 B2
8162979 Sachs et al. Apr 2012 B2
8163013 Machold et al. Apr 2012 B2
8177789 Magill et al. May 2012 B2
8182411 Dlugos May 2012 B2
8187324 Webler et al. May 2012 B2
8197544 Manzi et al. Jun 2012 B1
8202305 Reiley Jun 2012 B2
8211127 Uth et al. Jul 2012 B2
8211149 Justis Jul 2012 B2
8211151 Schwab et al. Jul 2012 B2
8211179 Molz, IV et al. Jul 2012 B2
8216275 Fielding et al. Jul 2012 B2
8221420 Keller Jul 2012 B2
8226690 Altarac et al. Jul 2012 B2
8236002 Fortin et al. Aug 2012 B2
8241292 Collazo Aug 2012 B2
8241293 Stone et al. Aug 2012 B2
8241331 Arnin Aug 2012 B2
8246630 Manzi et al. Aug 2012 B2
8251888 Roslin et al. Aug 2012 B2
8252063 Stauch Aug 2012 B2
8257370 Moskowitz et al. Sep 2012 B2
8257442 Edie et al. Sep 2012 B2
8263024 Wan et al. Sep 2012 B2
8267969 Altarac et al. Sep 2012 B2
8273112 Garamszegi et al. Sep 2012 B2
8278941 Kroh et al. Oct 2012 B2
8282671 Connor Oct 2012 B2
8287540 LeCronier et al. Oct 2012 B2
8298133 Wiley et al. Oct 2012 B2
8298240 Giger et al. Oct 2012 B2
8308779 Reiley Nov 2012 B2
8313423 Forsell Nov 2012 B2
8316856 Nelson et al. Nov 2012 B2
8317761 Birk et al. Nov 2012 B2
8317802 Manzi et al. Nov 2012 B1
8323290 Metzger et al. Dec 2012 B2
8326435 Stevenson Dec 2012 B2
8328807 Brigido Dec 2012 B2
8328854 Baynham et al. Dec 2012 B2
8333204 Saadat Dec 2012 B2
8333790 Timm et al. Dec 2012 B2
8353913 Moskowitz et al. Jan 2013 B2
8357169 Henniges et al. Jan 2013 B2
8357182 Seme Jan 2013 B2
8357183 Seme et al. Jan 2013 B2
8360955 Sayet et al. Jan 2013 B2
8366628 Denker et al. Feb 2013 B2
8372078 Collazo Feb 2013 B2
8382652 Sayet et al. Feb 2013 B2
8386018 Stauch et al. Feb 2013 B2
8388667 Reiley et al. Mar 2013 B2
8394124 Biyani Mar 2013 B2
8394143 Grotz et al. Mar 2013 B2
8403958 Schwab Mar 2013 B2
8409203 Birk et al. Apr 2013 B2
8409281 Makower et al. Apr 2013 B2
8414584 Brigido Apr 2013 B2
8414648 Reiley Apr 2013 B2
8419755 Deem et al. Apr 2013 B2
8419801 DiSilvestro et al. Apr 2013 B2
8425570 Reiley Apr 2013 B2
8425608 Dewey et al. Apr 2013 B2
8433519 Ekseth et al. Apr 2013 B2
8435268 Thompson et al. May 2013 B2
8439915 Harrison et al. May 2013 B2
8439926 Bojarski et al. May 2013 B2
8444693 Reiley May 2013 B2
8449553 Kam et al. May 2013 B2
8449580 Voellmicke et al. May 2013 B2
8454695 Grotz et al. Jun 2013 B2
8469908 Asfora Jun 2013 B2
8469978 Fobi et al. Jun 2013 B2
8470003 Voellmicke et al. Jun 2013 B2
8470004 Reiley Jun 2013 B2
8475354 Phillips et al. Jul 2013 B2
8475356 Feng et al. Jul 2013 B2
8475499 Cournoyer et al. Jul 2013 B2
8480554 Phillips et al. Jul 2013 B2
8480668 Fernandez et al. Jul 2013 B2
8480741 Grotz et al. Jul 2013 B2
8486070 Morgan et al. Jul 2013 B2
8486076 Chavarria et al. Jul 2013 B2
8486110 Fielding et al. Jul 2013 B2
8486113 Malek Jul 2013 B2
8486147 de Villiers et al. Jul 2013 B2
8491589 Fisher et al. Jul 2013 B2
8494805 Roche et al. Jul 2013 B2
8496662 Novak et al. Jul 2013 B2
8500810 Mastrorio et al. Aug 2013 B2
8506517 Stergiopulos Aug 2013 B2
8506569 Keefer et al. Aug 2013 B2
8517973 Burnett Aug 2013 B2
8518062 Cole et al. Aug 2013 B2
8518086 Seme et al. Aug 2013 B2
8522790 Nelson et al. Sep 2013 B2
8523865 Reglos et al. Sep 2013 B2
8523866 Sidebotham et al. Sep 2013 B2
8523883 Saadat Sep 2013 B2
8529474 Gupta et al. Sep 2013 B2
8529606 Alamin et al. Sep 2013 B2
8529607 Alamin et al. Sep 2013 B2
8529630 Bojarski et al. Sep 2013 B2
8545384 Forsell Oct 2013 B2
8545508 Collazo Oct 2013 B2
8545814 Contag et al. Oct 2013 B2
8551092 Morgan et al. Oct 2013 B2
8551142 Altarac et al. Oct 2013 B2
8551422 Wan et al. Oct 2013 B2
8556901 Anthony et al. Oct 2013 B2
8556911 Mehta et al. Oct 2013 B2
8556975 Ciupik et al. Oct 2013 B2
8562653 Alamin et al. Oct 2013 B2
8568416 Schmitz et al. Oct 2013 B2
8568457 Hunziker Oct 2013 B2
8574267 Linares Nov 2013 B2
8579919 Bolduc et al. Nov 2013 B2
8579979 Edie et al. Nov 2013 B2
8585595 Heilman Nov 2013 B2
8585702 Orsak et al. Nov 2013 B2
8585738 Linares Nov 2013 B2
8585740 Ross et al. Nov 2013 B1
8591549 Lange Nov 2013 B2
8597362 Shenoy et al. Dec 2013 B2
8613749 Deem et al. Dec 2013 B2
8613758 Linares Dec 2013 B2
8617212 Linares Dec 2013 B2
8617220 Skaggs Dec 2013 B2
8617243 Eisermann et al. Dec 2013 B2
8622936 Schenberger et al. Jan 2014 B2
8623036 Harrison et al. Jan 2014 B2
8623042 Roslin et al. Jan 2014 B2
8623056 Linares Jan 2014 B2
8632544 Haaja et al. Jan 2014 B2
8632547 Maxson et al. Jan 2014 B2
8632548 Soubeiran Jan 2014 B2
8632563 Nagase et al. Jan 2014 B2
8632594 Williams et al. Jan 2014 B2
8636770 Hestad et al. Jan 2014 B2
8636771 Butler et al. Jan 2014 B2
8636802 Serhan et al. Jan 2014 B2
8641719 Gephart et al. Feb 2014 B2
8641723 Connor Feb 2014 B2
8652175 Timm et al. Feb 2014 B2
8657765 Asfora Feb 2014 B2
8657856 Gephart et al. Feb 2014 B2
8657885 Burnett et al. Feb 2014 B2
8663139 Asfora Mar 2014 B2
8663140 Asfora Mar 2014 B2
8663285 Da11 et al. Mar 2014 B2
8663287 Butler et al. Mar 2014 B2
8663338 Burnett et al. Mar 2014 B2
8668719 Alamin et al. Mar 2014 B2
8673001 Cartledge et al. Mar 2014 B2
8679161 Malandain et al. Mar 2014 B2
8690858 Machold et al. Apr 2014 B2
8707959 Paraschac et al. Apr 2014 B2
8709090 Makower et al. Apr 2014 B2
8715243 Uth et al. May 2014 B2
8715290 Fisher et al. May 2014 B2
8721570 Gupta et al. May 2014 B2
8721643 Morgan et al. May 2014 B2
8728125 Bruneau et al. May 2014 B2
8734318 Forsell May 2014 B2
8734516 Moskowitz et al. May 2014 B2
8734519 de Villiers et al. May 2014 B2
8747444 Moskowitz et al. Jun 2014 B2
8752552 Nelson et al. Jun 2014 B2
8758303 Uth et al. Jun 2014 B2
8758347 Weiner et al. Jun 2014 B2
8758355 Fisher et al. Jun 2014 B2
8758372 Cartledge et al. Jun 2014 B2
8762308 Najarian et al. Jun 2014 B2
8764713 Uth et al. Jul 2014 B2
8771272 LeCronier et al. Jul 2014 B2
8777947 Zahrly et al. Jul 2014 B2
8777995 McClintock et al. Jul 2014 B2
8781744 Ekseth et al. Jul 2014 B2
8784482 Randert et al. Jul 2014 B2
8790343 McClellan et al. Jul 2014 B2
8790380 Buttermann Jul 2014 B2
8790409 Van den Heuvel et al. Jul 2014 B2
8794243 Deem et al. Aug 2014 B2
8795339 Boomer et al. Aug 2014 B2
8801795 Makower et al. Aug 2014 B2
8808206 Asfora Aug 2014 B2
8813727 McClendon Aug 2014 B2
8814869 Freid et al. Aug 2014 B2
8828058 Elsebaie et al. Sep 2014 B2
8828087 Stone et al. Sep 2014 B2
8840623 Reiley Sep 2014 B2
8840651 Reiley Sep 2014 B2
8845692 Wisnewski Sep 2014 B2
8845724 Shenoy et al. Sep 2014 B2
8864717 Conlon et al. Oct 2014 B2
8864823 Cartledge et al. Oct 2014 B2
8870881 Rezach et al. Oct 2014 B2
8870918 Boomer et al. Oct 2014 B2
8870959 Arnin Oct 2014 B2
8882699 Burnett Nov 2014 B2
8882830 Cartledge et al. Nov 2014 B2
8888672 Phillips et al. Nov 2014 B2
8888673 Phillips et al. Nov 2014 B2
8894663 Giger et al. Nov 2014 B2
8915915 Harrison et al. Dec 2014 B2
8915917 Doherty et al. Dec 2014 B2
8920422 Homeier et al. Dec 2014 B2
8932247 Stergiopulos Jan 2015 B2
8945188 Rezach et al. Feb 2015 B2
8945210 Cartledge et al. Feb 2015 B2
8956407 Macoviak et al. Feb 2015 B2
8961386 Phillips et al. Feb 2015 B2
8961521 Keefer et al. Feb 2015 B2
8961567 Hunziker Feb 2015 B2
8968402 Myers et al. Mar 2015 B2
8968406 Arnin Mar 2015 B2
8986348 Reiley Mar 2015 B2
8992527 Guichet Mar 2015 B2
9005251 Heggeness Apr 2015 B2
9005293 Moskowitz et al. Apr 2015 B2
9005298 Makower et al. Apr 2015 B2
9011491 Carl et al. Apr 2015 B2
9015057 Phillips et al. Apr 2015 B2
9022917 Kasic et al. May 2015 B2
9028550 Shulock et al. May 2015 B2
9033957 Cadeddu et al. May 2015 B2
9033988 Gephart et al. May 2015 B2
9034016 Panjabi May 2015 B2
9044218 Young Jun 2015 B2
9060810 Kercher et al. Jun 2015 B2
9060844 Kagan et al. Jun 2015 B2
9072530 Mehta et al. Jul 2015 B2
9072606 Lucas et al. Jul 2015 B2
9078703 Arnin Jul 2015 B2
9084632 Orsak et al. Jul 2015 B2
9089348 Chavarria et al. Jul 2015 B2
9095436 Boyden et al. Aug 2015 B2
9095437 Boyden et al. Aug 2015 B2
9101422 Freid et al. Aug 2015 B2
9101427 Globerman et al. Aug 2015 B2
9107706 Alamin et al. Aug 2015 B2
9113967 Soubeiran Aug 2015 B2
9114016 Shenoy et al. Aug 2015 B2
9125746 Clifford et al. Sep 2015 B2
9138266 Stauch Sep 2015 B2
9144482 Sayet Sep 2015 B2
9155565 Boomer et al. Oct 2015 B2
9161856 Nelson et al. Oct 2015 B2
9168071 Seme et al. Oct 2015 B2
9168076 Patty et al. Oct 2015 B2
9173681 Seme Nov 2015 B2
9173715 Baumgartner Nov 2015 B2
9186158 Anthony et al. Nov 2015 B2
9186185 Hestad et al. Nov 2015 B2
9198771 Ciupik Dec 2015 B2
9204899 Buttermann Dec 2015 B2
9204908 Buttermann Dec 2015 B2
9220536 Skaggs Dec 2015 B2
9226783 Brigido Jan 2016 B2
9242070 Tieu Jan 2016 B2
9259243 Giger et al. Feb 2016 B2
9272159 Phillips et al. Mar 2016 B2
9278004 Shenoy et al. Mar 2016 B2
9278046 Asfora Mar 2016 B2
9282997 Hunziker Mar 2016 B2
9301792 Henniges et al. Apr 2016 B2
9301854 Moskowitz et al. Apr 2016 B2
9308089 Vicatos et al. Apr 2016 B2
9308387 Phillips et al. Apr 2016 B2
9320618 Schmitz et al. Apr 2016 B2
9326728 Demir et al. May 2016 B2
9333009 Kroll et al. May 2016 B2
9339197 Griswold et al. May 2016 B2
9339300 Kantelhardt May 2016 B2
9339307 McClintock et al. May 2016 B2
9339312 Doherty et al. May 2016 B2
9358044 Seme et al. Jun 2016 B2
9364267 Northcutt et al. Jun 2016 B2
9370388 Globerman et al. Jun 2016 B2
9393123 Lucas et al. Jul 2016 B2
9408644 Zahrly et al. Aug 2016 B2
9421347 Burnett Aug 2016 B2
9427267 Homeier et al. Aug 2016 B2
9439744 Forsell Sep 2016 B2
9439797 Baym et al. Sep 2016 B2
9445848 Anderson et al. Sep 2016 B2
9451997 Carl et al. Sep 2016 B2
9456953 Asfora Oct 2016 B2
9474612 Haaja et al. Oct 2016 B2
9492199 Orsak et al. Nov 2016 B2
9492276 Lee et al. Nov 2016 B2
9498258 Boomer et al. Nov 2016 B2
9498366 Burnett et al. Nov 2016 B2
9510834 Burnett et al. Dec 2016 B2
9532804 Clifford et al. Jan 2017 B2
9561062 Hayes et al. Feb 2017 B2
9561063 Reiley Feb 2017 B2
9572588 Fisher et al. Feb 2017 B2
9572746 Asfora Feb 2017 B2
9572910 Messersmith et al. Feb 2017 B2
9579110 Bojarski et al. Feb 2017 B2
9579203 Soubeiran Feb 2017 B2
9603605 Collazo Mar 2017 B2
9603713 Moskowitz et al. Mar 2017 B2
9610161 Macoviak et al. Apr 2017 B2
9622875 Moskowitz et al. Apr 2017 B2
9642735 Burnett May 2017 B2
9655651 Panjabi May 2017 B2
9668868 Shenoy et al. Jun 2017 B2
9687243 Burnett et al. Jun 2017 B2
9687414 Asfora Jun 2017 B2
9693867 Lucas et al. Jul 2017 B2
9700419 Clifford et al. Jul 2017 B2
9700450 Burnett Jul 2017 B2
9717537 Gordon Aug 2017 B2
9724135 Koch et al. Aug 2017 B2
9724265 Asfora Aug 2017 B2
9730738 Gephart et al. Aug 2017 B2
9743969 Reiley Aug 2017 B2
9782206 Mueckter et al. Oct 2017 B2
9795410 Shenoy et al. Oct 2017 B2
9814600 Shulock et al. Nov 2017 B2
9820789 Reiley Nov 2017 B2
9826987 Keefer et al. Nov 2017 B2
9833291 Baumgartner Dec 2017 B2
9848894 Burley et al. Dec 2017 B2
9848914 Pool Dec 2017 B2
9848993 Moskowitz et al. Dec 2017 B2
9861376 Chavarria et al. Jan 2018 B2
9861390 Hunziker Jan 2018 B2
9861404 Reiley Jan 2018 B2
9867719 Moskowitz et al. Jan 2018 B2
20010011543 Forsell Aug 2001 A1
20020019580 Lau et al. Feb 2002 A1
20020050112 Koch et al. May 2002 A1
20020072758 Reo et al. Jun 2002 A1
20020164905 Bryant Nov 2002 A1
20030019498 Forsell Jan 2003 A1
20030040671 Somogyi et al. Feb 2003 A1
20030066536 Forsell Apr 2003 A1
20030114731 Cadeddu et al. Jun 2003 A1
20030187447 Ferrante et al. Oct 2003 A1
20030208212 Cigaina Nov 2003 A1
20030220643 Ferree Nov 2003 A1
20030220644 Thelen et al. Nov 2003 A1
20040006342 Altarac et al. Jan 2004 A1
20040011137 Hnat et al. Jan 2004 A1
20040011365 Govari et al. Jan 2004 A1
20040019353 Freid et al. Jan 2004 A1
20040023623 Stauch et al. Feb 2004 A1
20040055610 Forsell Mar 2004 A1
20040064030 Forsell Apr 2004 A1
20040068205 Zogbi et al. Apr 2004 A1
20040092939 Freid et al. May 2004 A1
20040098121 Opolski May 2004 A1
20040116773 Furness et al. Jun 2004 A1
20040133219 Forsell Jul 2004 A1
20040138725 Forsell Jul 2004 A1
20040153106 Dudai Aug 2004 A1
20040158254 Eisermann Aug 2004 A1
20040172040 Heggeness Sep 2004 A1
20040173222 Kim Sep 2004 A1
20040193266 Meyer Sep 2004 A1
20040220567 Eisermann et al. Nov 2004 A1
20040220668 Eisermann et al. Nov 2004 A1
20040230307 Eisermann Nov 2004 A1
20040250820 Forsell Dec 2004 A1
20040260287 Ferree Dec 2004 A1
20040260319 Egle Dec 2004 A1
20050002984 Byrum et al. Jan 2005 A1
20050043802 Eisermann et al. Feb 2005 A1
20050055025 Zacouto et al. Mar 2005 A1
20050070937 Jambor et al. Mar 2005 A1
20050080427 Govari et al. Apr 2005 A1
20050080439 Carson et al. Apr 2005 A1
20050090823 Bartimus Apr 2005 A1
20050096750 Kagan et al. May 2005 A1
20050131352 Conlon et al. Jun 2005 A1
20050159754 Odrich Jul 2005 A1
20050159755 Odrich Jul 2005 A1
20050165440 Cancel et al. Jul 2005 A1
20050171543 Timm et al. Aug 2005 A1
20050177164 Walters et al. Aug 2005 A1
20050182400 White Aug 2005 A1
20050182401 Timm et al. Aug 2005 A1
20050182412 Johnson et al. Aug 2005 A1
20050192629 Saadat et al. Sep 2005 A1
20050222489 Rahdert et al. Oct 2005 A1
20050234289 Anstadt et al. Oct 2005 A1
20050234448 McCarthy Oct 2005 A1
20050234462 Hershberger Oct 2005 A1
20050246034 Soubeiran Nov 2005 A1
20050251109 Soubeiran Nov 2005 A1
20050261779 Meyer Nov 2005 A1
20050272976 Tanaka et al. Dec 2005 A1
20050288672 Ferree Dec 2005 A1
20060020278 Burnett et al. Jan 2006 A1
20060036251 Reiley Feb 2006 A1
20060036259 Carl et al. Feb 2006 A1
20060036323 Carl et al. Feb 2006 A1
20060036324 Sachs et al. Feb 2006 A1
20060079897 Harrison et al. Apr 2006 A1
20060116757 Lashinski et al. Jun 2006 A1
20060124140 Forsell Jun 2006 A1
20060136062 DiNello et al. Jun 2006 A1
20060142634 Anstadt et al. Jun 2006 A1
20060142767 Green et al. Jun 2006 A1
20060155279 Ogilvie Jul 2006 A1
20060155347 Forsell Jul 2006 A1
20060184240 Jimenez et al. Aug 2006 A1
20060184248 Edidin et al. Aug 2006 A1
20060195102 Malandain Aug 2006 A1
20060204156 Takehara et al. Sep 2006 A1
20060211909 Anstadt et al. Sep 2006 A1
20060235299 Martinelli Oct 2006 A1
20060235424 Vitale et al. Oct 2006 A1
20060241746 Shaoulian et al. Oct 2006 A1
20060249914 Dulin Nov 2006 A1
20060252983 Lembo et al. Nov 2006 A1
20060271107 Harrison et al. Nov 2006 A1
20060276812 Hill et al. Dec 2006 A1
20060282073 Simanovsky Dec 2006 A1
20060289014 Purdy et al. Dec 2006 A1
20060293671 Heggeness Dec 2006 A1
20060293683 Stauch Dec 2006 A1
20070010814 Stauch Jan 2007 A1
20070015955 Tsonton Jan 2007 A1
20070021644 Woolson et al. Jan 2007 A1
20070031131 Griffitts Feb 2007 A1
20070043376 Leatherbury et al. Feb 2007 A1
20070050030 Kim Mar 2007 A1
20070055237 Edidin et al. Mar 2007 A1
20070055368 Rhee et al. Mar 2007 A1
20070118215 Moaddeb May 2007 A1
20070135913 Moaddeb et al. Jun 2007 A1
20070162032 Johnson et al. Jul 2007 A1
20070173837 Chan et al. Jul 2007 A1
20070173869 Gannoe et al. Jul 2007 A1
20070179493 Kim Aug 2007 A1
20070213751 Scirica et al. Sep 2007 A1
20070233100 Metzinger Oct 2007 A1
20070239159 Altarac et al. Oct 2007 A1
20070250084 Sharkawy et al. Oct 2007 A1
20070255088 Jacobson et al. Nov 2007 A1
20070256693 Paraschac et al. Nov 2007 A1
20070260270 Assell et al. Nov 2007 A1
20070264605 Belfor et al. Nov 2007 A1
20070270631 Nelson et al. Nov 2007 A1
20070276369 Allard et al. Nov 2007 A1
20070276372 Malandain et al. Nov 2007 A1
20070276373 Malandain Nov 2007 A1
20070276493 Malandain et al. Nov 2007 A1
20070288024 Gollogly Dec 2007 A1
20070288183 Bulkes et al. Dec 2007 A1
20080015577 Loeb Jan 2008 A1
20080021454 Chao et al. Jan 2008 A1
20080021455 Chao et al. Jan 2008 A1
20080021456 Gupta et al. Jan 2008 A1
20080033431 Jung et al. Feb 2008 A1
20080051784 Gollogly Feb 2008 A1
20080051895 Malandain et al. Feb 2008 A1
20080058936 Malandain et al. Mar 2008 A1
20080058937 Malandain et al. Mar 2008 A1
20080065077 Ferree Mar 2008 A1
20080065215 Reiley Mar 2008 A1
20080066764 Paraschac et al. Mar 2008 A1
20080071275 Ferree Mar 2008 A1
20080071276 Ferree Mar 2008 A1
20080082118 Edidin et al. Apr 2008 A1
20080082167 Edidin et al. Apr 2008 A1
20080083413 Forsell Apr 2008 A1
20080086128 Lewis Apr 2008 A1
20080091059 Machold et al. Apr 2008 A1
20080097523 Bolduc et al. Apr 2008 A1
20080108995 Conway et al. May 2008 A1
20080140188 Randert et al. Jun 2008 A1
20080147139 Barrett et al. Jun 2008 A1
20080147192 Edidin et al. Jun 2008 A1
20080161933 Grotz et al. Jul 2008 A1
20080167685 Allard et al. Jul 2008 A1
20080172063 Taylor Jul 2008 A1
20080177319 Schwab Jul 2008 A1
20080177326 Thompson Jul 2008 A1
20080195156 Ainsworth et al. Aug 2008 A1
20080226563 Contag et al. Sep 2008 A1
20080228186 Gall et al. Sep 2008 A1
20080255615 Vittur et al. Oct 2008 A1
20080272928 Shuster Nov 2008 A1
20080275552 Makower et al. Nov 2008 A1
20080275555 Makower et al. Nov 2008 A1
20080275557 Makower et al. Nov 2008 A1
20080275567 Makower et al. Nov 2008 A1
20080293995 Moaddeb et al. Nov 2008 A1
20090076597 Dahlgren et al. Mar 2009 A1
20090082815 Zylber et al. Mar 2009 A1
20090088803 Justis et al. Apr 2009 A1
20090093820 Trieu et al. Apr 2009 A1
20090093890 Gelbart Apr 2009 A1
20090118699 Utley et al. May 2009 A1
20090171356 Klett Jul 2009 A1
20090177203 Reiley Jul 2009 A1
20090182356 Coe Jul 2009 A1
20090192514 Feinberg et al. Jul 2009 A1
20090198144 Phillips et al. Aug 2009 A1
20090204055 Lennox et al. Aug 2009 A1
20090216113 Meier et al. Aug 2009 A1
20090216262 Burnett et al. Aug 2009 A1
20090240173 Hsia et al. Sep 2009 A1
20090259236 Burnett et al. Oct 2009 A2
20090270871 Liu et al. Oct 2009 A1
20090275984 Kim et al. Nov 2009 A1
20090318919 Robinson Dec 2009 A1
20100004654 Schmitz et al. Jan 2010 A1
20100030281 Gollogly Feb 2010 A1
20100057127 McGuire et al. Mar 2010 A1
20100081868 Moaddeb et al. Apr 2010 A1
20100100185 Trieu et al. Apr 2010 A1
20100106192 Barry Apr 2010 A1
20100106193 Barry Apr 2010 A1
20100114103 Harrison et al. May 2010 A1
20100121457 Clifford et al. May 2010 A1
20100130941 Conlon et al. May 2010 A1
20100137872 Kam et al. Jun 2010 A1
20100145449 Makower et al. Jun 2010 A1
20100145462 Ainsworth et al. Jun 2010 A1
20100168751 Anderson et al. Jul 2010 A1
20100179601 Jung et al. Jul 2010 A1
20100198261 Trieu et al. Aug 2010 A1
20100228167 Ilovich et al. Sep 2010 A1
20100241168 Franck et al. Sep 2010 A1
20100249782 Durham Sep 2010 A1
20100249839 Alamin et al. Sep 2010 A1
20100249847 Jung et al. Sep 2010 A1
20100256626 Muller et al. Oct 2010 A1
20100274290 Jung et al. Oct 2010 A1
20100286730 Gordon Nov 2010 A1
20100286791 Goldsmith Nov 2010 A1
20100318129 Seme et al. Dec 2010 A1
20100324684 Eisermann et al. Dec 2010 A1
20100331883 Schmitz et al. Dec 2010 A1
20110004076 Janna et al. Jan 2011 A1
20110057756 Marinescu et al. Mar 2011 A1
20110060422 Makower et al. Mar 2011 A1
20110098748 Jangra Apr 2011 A1
20110130702 Stergiopulos Jun 2011 A1
20110184505 Sharkawy et al. Jul 2011 A1
20110196371 Forsell Aug 2011 A1
20110196435 Forsell Aug 2011 A1
20110202138 Shenoy et al. Aug 2011 A1
20110257655 Copf, Jr. Oct 2011 A1
20110275879 Nelson et al. Nov 2011 A1
20110284014 Cadeddu et al. Nov 2011 A1
20120019341 Gabay et al. Jan 2012 A1
20120019342 Gabay et al. Jan 2012 A1
20120053633 Stauch Mar 2012 A1
20120088953 King Apr 2012 A1
20120089186 Carl et al. Apr 2012 A1
20120089191 Altarac et al. Apr 2012 A1
20120109207 Trieu May 2012 A1
20120116522 Makower et al. May 2012 A1
20120116535 Ratron et al. May 2012 A1
20120130426 Thompson May 2012 A1
20120136449 Makower et al. May 2012 A1
20120172883 Sayago Jul 2012 A1
20120179273 Clifford et al. Jul 2012 A1
20120185040 Rahdert et al. Jul 2012 A1
20120221101 Moaddeb et al. Aug 2012 A1
20120271353 Barry Oct 2012 A1
20120277747 Keller Nov 2012 A1
20120296234 Wilhelm et al. Nov 2012 A1
20120312307 Paraschac et al. Dec 2012 A1
20130013066 Landry et al. Jan 2013 A1
20130018468 Moskowitz et al. Jan 2013 A1
20130018469 Moskowitz et al. Jan 2013 A1
20130023991 Moskowitz et al. Jan 2013 A1
20130079830 Garamszegi et al. Mar 2013 A1
20130138017 Jundt et al. May 2013 A1
20130138154 Reiley May 2013 A1
20130150889 Fening et al. Jun 2013 A1
20130178903 Abdou Jul 2013 A1
20130197639 Clifford et al. Aug 2013 A1
20130204266 Heilman Aug 2013 A1
20130204376 DiSilvestro et al. Aug 2013 A1
20130238094 Voellmicke et al. Sep 2013 A1
20130253587 Carls et al. Sep 2013 A1
20130261623 Voellmicke et al. Oct 2013 A1
20130261672 Horvath Oct 2013 A1
20130296863 Globerman et al. Nov 2013 A1
20130325006 Michelinie et al. Dec 2013 A1
20130325071 Niemiec et al. Dec 2013 A1
20130331889 Alamin et al. Dec 2013 A1
20130345802 Cartledge et al. Dec 2013 A1
20140018913 Cartledge et al. Jan 2014 A1
20140031826 Bojarski et al. Jan 2014 A1
20140031929 Cartledge et al. Jan 2014 A1
20140039558 Alamin et al. Feb 2014 A1
20140051914 Fobi et al. Feb 2014 A1
20140052134 Orisek Feb 2014 A1
20140058392 Mueckter et al. Feb 2014 A1
20140058450 Arlet Feb 2014 A1
20140067075 Makower et al. Mar 2014 A1
20140080203 Wan et al. Mar 2014 A1
20140107704 Serhan et al. Apr 2014 A1
20140135838 Alamin et al. May 2014 A1
20140142698 Landry et al. May 2014 A1
20140163664 Goldsmith Jun 2014 A1
20140172097 Clifford et al. Jun 2014 A1
20140194932 Bruneau et al. Jul 2014 A1
20140222138 Machold et al. Aug 2014 A1
20140296918 Fening et al. Oct 2014 A1
20140303539 Baym et al. Oct 2014 A1
20140303540 Baym et al. Oct 2014 A1
20140336756 Lee et al. Nov 2014 A1
20140358150 Kaufman et al. Dec 2014 A1
20150013687 Paraschac et al. Jan 2015 A1
20150057490 Forsell Feb 2015 A1
20150073565 Nelson et al. Mar 2015 A1
20150105782 D'Lima et al. Apr 2015 A1
20150105824 Moskowitz et al. Apr 2015 A1
20150132174 Marinescu et al. May 2015 A1
20150134007 Alamin et al. May 2015 A1
20150142110 Myers et al. May 2015 A1
20150150561 Burnett et al. Jun 2015 A1
20150223854 Skinlo Aug 2015 A1
20150272600 Mehta et al. Oct 2015 A1
20150313649 Alamin et al. Nov 2015 A1
20150313745 Cheng Nov 2015 A1
Foreign Referenced Citations (3)
Number Date Country
WO8604498 Aug 1986 WO
WO0158390 Nov 1998 WO
WO9850309 Nov 1998 WO
Non-Patent Literature Citations (66)
Entry
US 9,161,784 B2, 10/2015, Buttermann (withdrawn)
Abe, Jun, Kensei Nagata, Mamoru Ariyoshi, and Akio Inoue. “Experimental external fixation combined with percutaneous discectomy in the management of scoliosis.” Spine 24, No. 7 (1999): 646-653.
Amer, A. R. A. L., and Ashraf A. Khanfour. “Evaluation of treatment of late-onset tibia vara using gradual angulationtranslation high tibial osteotomy.” Acta orthopaedica Belgica 76, No. 3 (2010): 360.
Baumgart, Rainer, Stefan Hinterwimmer, Michael Krammer, Oliver Muensterer, and Wolf Mutschler. “The bioexpandable prosthesis: a new perspective after resection of malignant bone tumors in children.” Journal of pediatric hematology/oncology 27, No. 8 (2005): 452-455.
Baumgart, R., P. Thaller, S. Hinterwimmer, M. Krammer, T. Hierl, and W. Mutschler. “A fully implantable, programmable distraction nail (Fitbone)—new perspectives for corrective and reconstructive limb surgery.” In Practice of Intramedullary Locked Nails, pp. 189-198. Springer Berlin Heidelberg, 2006.
Bodó, László, László Hangody, Balázs Borsitzky, György Béres, Gabriella Arató, Péter Nagy, and Gábor K. Ráthonyi. “Development of a tension-adjustable implant for anterior cruciate ligament reconstruction.” Eklem Hast Cerrahisi 19, No. 1 (2008): 27-32.
Brochure-VEPTR II Technique Guide Apr. 2008.
Buchowski, Jacob M., Rishi Bhatnagar, David L. Skaggs, and Paul D. Sponseller. “Temporary internal distraction as an aid to correction of severe scoliosis.” The Journal of Bone & Joint Surgery 88, No. 9 (2006): 2035-2041.
Burghardt, R. D., J. E. Herzenberg, S. C. Specht, and D. Paley. “Mechanical failure of the Intramedullary Skeletal Kinetic Distractor in limb lengthening.” Journal of Bone & Joint Surgery, British vol. 93, No. 5 (2011): 639-643.
Burke, John Gerard. “Design of a minimally invasive non fusion device for the surgical management of scoliosis in the skeletally immature.” Studies in health technology and informatics 123 (2005): 378-384.
Carter, D. R., and W. E. Caler. “A cumulative damage model for bone fracture.” Journal of Orthopaedic Research 3, No. 1 (1985): 84-90.
Cole, J., D. Paley, and M. Dahl. “Operative Technique. ISKD. Intramedullary Skeletal Kinetic Distractor. Tibial Surgical Technique.” IS-0508 (A)-OPT-US© Orthofix Inc 28 (2005).
Daniels, A. U., Patrick Gemperline, Allen R. Grahn, and Harold K. Dunn. “A new method for continuous intraoperative measurement of Harrington rod loading patterns.” Annals of biomedical engineering 12, No. 3 (1984): 233-246.
Dorsey, W. O., Bruce S. Miller, Jared P. Tadje, and Cari R. Bryant. “The stability of three commercially available implants used in medial opening wedge high tibial osteotomy.” The journal of knee surgery 19, No. 2 (2006): 95-98.
Edeland, H. G., G. Eriksson, and E. Dahlberg. “Instrumentation for distraction by limited surgery in scoliosis treatment.” Journal of biomedical engineering 3, No. 2 (1981): 143-146.
Ember, T., and H. Noordeen. “Distraction forces required during growth rod lengthening.” Journal of Bone & Joint Surgery, British vol. 88, no. SUPP II (2006): 229-229.
Gao, Xiaochong, Derek Gordon, Dongping Zhang, Richard Browne, Cynthia Helms, Joseph Gillum, Samuel Weber et al. “CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis.” The American Journal of Human Genetics 80, No. 5 (2007): 957-965.
Gebhart, M., M. Neel, A. Soubeiran, and J. Dubousset. “Early clinical experience with a custom made growing endoprosthesis in children with malignant bone tumors of the lower extremity actioned by an external permanent magnet: the Phenix M system.” In International Society of Limb Salvage 14th International Symposium on Limb Salvage.2007.
Gillespie, R., and J. Obrien. “Harrington instrumentation without fusion.” In Journal of Bone and Joint Surgerybritish Volume, vol. 63, No. 3, pp. 461-461. 22 Buckingham Street, London, England WC2N 6ET: British Editorial Soc Bone Joint Surgery, 1981.
Grass, P. Jose, A. Valentin Soto, and H. Paula Araya. “Intermittent distracting rod for correction of high neurologic risk congenital scoliosis.” Spine 22, No. 16 (1997): 1922-1927.
Gray's Anatomy, http://education.yahoo.com/reference/gray/subjects/subject/128, published Jul. 1, 2007.
Grimer, R., S. Carter, R. Tillman, A. Abudu, and L. Jeys. “Non-Invasive Extendable Endoprostheses for Children—Expensive But Worth It!.” Journal of Bone & Joint Surgery, British vol. 93, no. Supp I (2011): 5-5.
Guichet, Jean-Marc, Barbara Deromedis, Leo T. Donnan, Giovanni Peretti, Pierre Lascombes, and Flavio Bado. “Gradual femoral lengthening with the Albizzia intramedullary nail.” The Journal of Bone & Joint Surgery 85, No. 5 (2003): 838-848.
Gupta, A., J. Meswania, R. Pollock, S. R. Cannon, T. W. R. Briggs, S. Taylor, and G. Blunn. “Non-invasive distal femoral expandable endoprosthesis for limb-salvage surgery in paediatric tumours.” Journal of Bone & Joint Surgery, British vol. 88, No. 5 (2006): 649-654.
Hankemeier S, Gösling T, Pape HC, et al. Limb lengthening with the Intramedullary Skeletal Kinetic Distractor (ISKD) Oper Orthop Traumatol. 2005;17:79-101.
Harrington PR (1962) Treatment of scoliosis. Correction and internal fixation by spine instrumentation. J Bone Joint Surg Am 44-A:591-610.
Hazem Elsebaie, M. D. “Single Growing Rods.” Changing the Foundations: Does it affect the Results., J Child Orthop. (2007) 1:258.
Hennig, Alex C.; Incavo, Stephen J.; Beynnon, Bruce D.; Abate, Joseph A.; Urse, John S.; Kelly, Stephen / The safety and efficacy of a new adjustable plate used for proximal tibial opening wedge osteotomy in the treatment of unicompartmental knee osteoarthrosis. In: The journal of knee surgery, vol. 20, No. 1, Jan. 1, 2007, p. 6-14.
Hofmeister, M., C. Hierholzer, and V. Bühren. “Callus Distraction with the Albizzia Nail.” In Practice of Intramedullary Locked Nails, pp. 211-215. Springer Berlin Heidelberg, 2006.
Hyodo, Akira, Helmuth Kotschi, Helen Kambic, and George Muschler. “Bone transport using intramedullary fixation and a single flexible traction cable.” Clinical orthopaedics and related research 325 (1996): 256-268.
Ahlbom, A., U. Bergqvist, J. H. Bernhardt, J. P. Cesarini, M. Grandolfo, M. Hietanen, A. F. Mckinlay et al. “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection.” Health Phys 74, No. 4 (1998): 494-522.
International Commission on Non-Ionizing Radiation Protection. “Guidelines on limits of exposure to static magnetic fields.” Health Physics 96, No. 4 (2009): 504-514.
Kenawey, Mohamed, Christian Krettek, Emmanouil Liodakis, Ulrich Wiebking, and Stefan Hankemeier. “Leg lengthening using intramedullay skeletal kinetic distractor: results of 57 consecutive applications.” Injury 42, No. 2 (2011): 150-155.
Klemme, William R., Francis Denis, Robert B. Winter, John W. Lonstein, and Steven E. Koop. “Spinal instrumentation without fusion for progressive scoliosis in young children.” Journal of Pediatric Orthopaedics 17, No. 6 (1997): 734-742.
Krieg, Andreas H., Bernhard M. Speth, and Bruce K. Foster. “Leg lengthening with a motorized nail in adolescents.” Clinical orthopaedics and related research 466, No. 1 (2008): 189-197.
Lonner, Baron S. “Emerging minimally invasive technologies for the management of scoliosis.” Orthopedic Clinics of North America 38, No. 3 (2007): 431-440.
Teli, Marco MD. “Measurement of Forces Generated During Distraction of Growing Rods, J.” Marco Teli. Journal of Child Orthop 1 (2007): 257-258.
Mineiro, Jorge, and Stuart L. Weinstein. “Subcutaneous rodding for progressive spinal curvatures: early results.” Journal of Pediatric Orthopaedics 22, No. 3 (2002): 290-295.
Moe, John H., Khalil Kharrat, Robert B. Winter, and John L. Cummine. “Harrington instrumentation without fusion plus external orthotic support for the treatment of difficult curvature problems in young children.” Clinical orthopaedics and related research 185 (1984): 35-45.
Montague, R. G., C. M. Bingham, and K. Atallah. “Magnetic gear dynamics for servo control.” In MELECON 2010-2010 15th IEEE Mediterranean Electrotechnical Conference, pp. 1192-1197. IEEE, 2010.
Nachemson, Alf, and Gösta Elfström. “Intravital wireless telemetry of axial forces in Harrington distraction rods in patients with idiopathic scoliosis.” The Journal of Bone & Joint Surgery 53, No. 3 (1971): 445-465.
Nachlas, I. William, and Jesse N. Borden. “The cure of experimental scoliosis by directed growth control.” The Journal of Bone & Joint Surgery 33, No. 1 (1951): 24-34.
Newton, P. “Fusionless Scoliosis Correction by Anterolateral Tethering . . . Can it Work?.” In 39th Annual Scoliosis Research Society Meeting. 2004.
Prontes, Isabel, http://wwwehow.com/about_4795793_longest-bone-body.html, published Jun. 12, 2012.
Rathjen, Karl, Megan Wood, Anna McClung, and Zachary Vest. “Clinical and radiographic results after implant removal in idiopathic scoliosis.” Spine 32, No. 20 (2007): 2184-2188.
Reyes-Sánchez, Alejandro, Luis Miguel Rosales, and Victor Miramontes. “External fixation for dynamic correction of severe scoliosis.” The Spine Journal 5, No. 4 (2005): 418-426.
Rinsky, Lawrence A., James G. Gamble, and Eugene E. Bleck. “Segmentai Instrumentation Without Fusion in Children With Progressive Scoliosis.” Journal of Pediatric Orthopaedics 5, No. 6 (1985): 687-690.
Schmerling, M. A., M. A. Wilkov, A. E. Sanders, and J. E. Woosley. “Using the shape recovery of nitinol in the Harrington rod treatment of scoliosis.” Journal of biomedical materials research 10, No. 6 (1976): 879-892.
Sharke, Paul. “The machinery of life.” Mechanical Engineering 126, No. 2 (2004): 30.
Shiha, Anis, Mohamed Alam El-Deen, Abdel Rahman Khalifa, and Mohamed Kenawey. “Ilizarov gradual correction of genu varum deformity in adults.” Acta Orthop Belg 75 (2009): 784-91.
Simpson, A. H. W. R., H. Shalaby, and G. Keenan. “Femoral lengthening with the intramedullary skeletal kinetic distractor.” Journal of Bone & Joint Surgery, British vol. 91, No. 7 (2009): 955-961.
Smith, John T. “The use of growth-sparing instrumentation in pediatric spinal deformity.” Orthopedic Clinics of North America 38, No. 4 (2007): 547-552.
Soubeiran, A., M. Gebhart, L. Miladi, J. Griffet, M. Neel, and J. Dubousset. “The Phenix M System. A Mechanical Fully Implanted Lengthening Device Externally Controllable Through the Skin with a Palm Size Permanent Magnet; Applications to Pediatric Orthopaedics.” In 6th European Research Conference in Pediatric Orthopaedics. 2006.
Takaso, Masashi, Hideshige Moriya, Hiroshi Kitahara, Shohei Minami, Kazuhisa Takahashi, Keijiro Isobe, Masatsune Yamagata, Yoshinori Otsuka, Yoshinori Nakata, and Masatoshi Inoue. “New remote-controlled growing-rod spinal instrumentation possibly applicable for scoliosis in young children.” Journal of orthopaedic science 3, No. 6 (1998): 336-340.
Tello, Carlos A. “Harrington instrumentation without arthrodesis and consecutive distraction program for young children with severe spinal deformities. Experience and technical details.” The Orthopedic clinics of North America 25, No. 2 (1994): 333-351.
Thaller, Peter Helmut, Julian Hirmetz, Florian Wolf, Thorsten Eilers, and Wolf Mutschler. “Limb lengthening with fully implantable magnetically actuated mechanical nails (PHENIX®)—Preliminary results.” Injury 45 (2014): S60-S65.
Thompson, George H., Lawrence G. Lenke, Behrooz A. Akbarnia, Richard E. McCarthy, and Robert M. Campbell. “Early onset scoliosis: future directions.” The Journal of Bone & Joint Surgery 89, no. suppl 1 (2007): 163-166.
Thonse, Raghuram, John E. Herzenberg, Shawn C. Standard, and Dror Paley. “Limb lengthening with a fully implantable, telescopic, intramedullary nail.” Operative Techniques in Orthopaedics 15, No. 4 (2005): 355-362.
Trias, A., P. Bourassa, and M. Massoud. “Dynamic loads experienced in correction of idiopathic scoliosis using two types of Harrington rods.” Spine 4, No. 3 (1978): 228-235.
Verkerke, G. J., Koops H. Schraffordt, R. P. Veth, H. J. Grootenboer, L. J. De Boer, J. Oldhoff, and A. Postma. “Development and test of an extendable endoprosthesis for bone reconstruction in the leg.” The International journal of artificial organs 17, No. 3 (1994): 155-162.
Verkerke, G. J., H. Schraffordt Koops, R. P. H. Veth, J. Oldhoff, H. K. L. Nielsen, H. H. Van den Kroonenberg, H. J. Grootenboer, and F. M. Van Krieken. “Design of a lengthening element for a modular femur endoprosthetic system.” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 203, No. 2 (1989): 97-102.
Verkerke, G. J., H. Schraffordt Koops, R. P. H. Veth, H. H. van den Kroonenberg, H. J. Grootenboer, H. K. L. Nielsen, J. Oldhoff, and A. Postma. “An extendable modular endoprosthetic system for bone tumour management in the leg.” Journal of biomedical engineering 12, No. 2 (1990): 91-96.
Wenger, H. L. “Spine Jack Operation in the Correction of Scoliotic Deformity: A Direct Intrathoracic Attack to Straighten the Laterally Bent Spine: Preliminary Report.” Archives of Surgery 83, No. 6 (1961): 901-910.
White III, Augustus A., and Manohar M. Panjabi. “The clinical biomechanics of scoliosis.” Clinical orthopaedics and related research 118 (1976): 100-112.
Yonnet, Jean-Paul. “A new type of permanent magnet coupling.” Magnetics, IEEE Transactions on 17, No. 6 (1981): 2991-2993.
Zheng, Pan, Yousef Haik, Mohammad Kilani, and Ching-Jen Chen. “Force and torque characteristics for magnetically driven blood pump.” Journal of Magnetism and Magnetic Materials 241, No. 2 (2002): 292-302.
Related Publications (1)
Number Date Country
20180296256 A1 Oct 2018 US
Provisional Applications (1)
Number Date Country
62242931 Oct 2015 US
Continuations (1)
Number Date Country
Parent PCT/US2016/057371 Oct 2016 US
Child 15953453 US