Adjustable engine temperature regulator

Information

  • Patent Grant
  • 6450134
  • Patent Number
    6,450,134
  • Date Filed
    Saturday, February 24, 2001
    23 years ago
  • Date Issued
    Tuesday, September 17, 2002
    22 years ago
Abstract
Temperature control for a liquid cooled internal combustion engine having a radiator through which liquid is circulated from a hose having a circular liquid passage orifice of a specified diameter. The temperature of the engine after being dully warmed up has a minimum value when the orifice is unobstructed and full open, the engine temperature increasing as the opening in the orifice is restricted and decreased. An internal rotating blade in slidable engagement with the orifice can assume any position with respect to the orifice between a minimum position at which the rotating blade produces a minimum restriction of the orifice and a maximum position at which the rotating blade produces a maximum restriction of the orifice. A manually operated device connected to the rotating blade places the rotating blade in any desired position between minimum and maximum positions.
Description




BACKGROUND OF THE INVENTION




Vehicles employing liquid cooled internal combustion engines as power sources have radiators through which the liquid is circulated from a hose having a circular water passage orifice. In order to maintain a suitable engine operating temperature, an engine thermostat having a preset temperature installed in the orifice to regulate the temperature by limiting the liquid flow through the cooling system. Typically, the thermostat incorporates a heat sensitive bimetal coil which reacts to the liquid coolant temperature by opening or closing the thermostat to allow or prevent circulation of liquid in order to establish and maintain the preset temperature.




Engines used in racing cars cannot use thermostats. Thermostats are not reliable because they can stick in a closed or open position creating either an overheating condition which can damage the engine or diminish engine performance. Instead, the thermostat is replaced by a cooling device known as a restrictor plate which is used in place of the bimetallic element. This device is a circular disk with a pre sized central opening. The size of the opening determines the pre set temperature. Changing the diameter of the central opening of the disk changes the operating temperature.




However, while disk changes can be made easily when the engine is cold and at rest, it is hazardous, difficult and time consuming to replace one disk with another while the engine is hot and such replacement cannot take place during a race. A skilled driver of a racing car may wish to change the operating temperature during a race because of ambient temperature, track and race condition changes during a race.




The present invention is directed toward a new type of temperature regulator which under manual operation of a racing car driver enables the operating temperature of an engine to be changed as desired during a race.




SUMMARY OF THE INVENTION




It is the primary object of this invention to provide a new type of temperature regulator which can be used to rapidly change the operating temperature of a liquid cooled internal combustion engine while the engine is hot.




Another object of this invention is to provide toward a new type of temperature regulator which under manual operation of a racing car driver enables the operating temperature of an engine to be changed as desired during a race.




Yet another object is to provide a new type of temperature regulator of the character indicate which is inexpensive, durable, and easy to install and maintain.




The invention employs a liquid cooled internal combustion engine having a radiator through which liquid is circulated from a hose having a circular liquid passage orifice of a specified diameter. The temperature of an engine after being fully warmed up has a minimum value when the orifice is unobstructed and is fully open, the engine temperature increasing as the opening in the orifice is restricted and decreased. In accordance with the principles of the invention, an internal rotating blade is placed in slidable engagement with the orifice. The rotating blade can assume any position with respect to the orifice between a minimum position at which the rotating blade produces a minimum restriction of the orifice and a maximum position at which the rotating blade produces a maximum restriction of the orifice. A manually operated means is connected to the rotating blade to place the rotating blade in any desired position between minimum and maximum positions.




This means includes a adjusting screw secured to the rotating blade which when turned actuates the rotating blade over the orifice. The position of the rotating blade is determined by suitable rotation of the adjusting screw. One end of a cable is affixed to the adjusting screw the other end of the cable can be disposed on the dash board of a racing car to enable the driver to rotate the adjusting screw through the cable and set the temperature as desired.




Typically, the orifice has a diameter of about one inch and the minimum and maximum temperatures can be 140 degrees and 260 degrees respectively.











BRIEF DESCRIPTION OF THE DRAWING




In the accompanying drawing which forms a part of the specification:





FIG. 1

is a top view of the temperature regulator with the cover plate removed showing the rotating plate the adjusting screw and the o-ring seal,





FIG. 2

is a top view of the adjusting screw with the o-ring installed and the rotating plate in place, also shown is a side view of the rotating plate





FIG. 3

is a top and side view of the cover plate





FIG. 4

s a top view of the temperature regulator with the cover plate, retaining screws, adjusting screw and the rotating plate in phantom,





FIG. 5

is a side view of the cover plate with the retaining screws,





FIG. 6

is a side view of the rotating plate,





FIG. 7

is a sectional view along line seven showing the rotating plate surface, the cover plate surface the mounting bolts, one modified for the temperature gauge and the cover plate retaining bolt threaded holes,





FIG. 8

is a top view of the temperature regulator with the thermostat housing in place, the retaining bolts, temperature gauge and adjusting screw, also show in phantom are the rotating plate, cover plate and cover plate retaining screws,





FIG. 9

is a side view of the temperature regulator in place on a typical intake manifold showing the thermostat housing, the mounting bolts partially in phantom, the temperature gauge, partially in phantom and the cover plate, cover plate retaining screws and rotating plate in phantom,





FIG. 10

is a top view of the temperature regulator with the cover plate removed showing the position of the adjusting screw when the rotating plate is rotated over the main orifice which is shown partially in phantom,











REFERENCE NUMERALS IN DRAWINGS






20


adjusting screw






22


regulator housing






24


cover plate






26


cover plate retaining screws






28


mounting holes






30


rotating plate






31


mounting bolt drilled for gauge






32


thermometer gauge






33


thermostat housing






34


intake manifold






35


o-ring seal groove






36


rotating plate surface






37




0


-ring seal






38


adjustment screw threads






40


adjustment threads in housing






42


housing cover plate surface






44


housing recess for rotating plate






45


actuating knob for rotating plate






47


pivot hole for rotating plate






48


main coolant orifice






49


groove for remote cable hookup






53


taped holes for retaining plate screws






60


coolant flow




ILLUSTRATIVE SPECIFIC EMBODIMENT




In the accompanying drawing which forms a part of this invention the main body of the present invention is indicated in general by the numeral


22


which houses the adjusting mechanism. The housing


22


incorporates mounting holes


28


and is comprised of an adjusting blade


30


, with an actuating knob


45


, two recess one for the adjusting blade


44


and one for the cover plate


42


the adjusting screw


20


and a threaded hole


40


. The adjusting screw


20


contains a machined groove


49


for a remote cable hook up, a machined groove


36


for the o-ring seal


37


to prevent coolant from leaking out of the housing


22


and a groove


36


for the adjusting blade


30


. The adjusting screw


20


is utilized to actuate the adjusting blade


30


which when actuated will cover a portion of the main coolant orifice


48


in the housing


22


. By adjusting the amount of coolant flow to and from the radiator the temperature can be regulated as desired. The adjusting blade


30


is held in place on the adjusting screw groove


36


by the cover plate


24


which is secured to the housing by three retaining screws


26


. One of the retaining screws


26


also acts as the pivot axis


47


for the adjusting blade


30


.The temperature regulator


22


fits between the thermostat housing


33


and the intake manifold


34


of an engine and takes the place of thermostat or a restrictor plate. It is secured in place using the holes in the intake manifold. One of the mounting bolts


31


is modified to accept a temperature gauge


32


so the engine operating temperature can be regulated accurately. It is apparent that the present engine temperature regulator provides a convenient and safe way of adjusting engine-operating temperature when the vehicle is at rest or during a race. While the invention has been, described by reference to an illustrative embodiment, it is not intended that the novel device be limited thereby, but that modifications thereof are intended to be included as falling within the broad spirit and scope of the foregoing disclosure, the following claims and the appended drawings.



Claims
  • 1. In a liquid cooled internal combustion engine having a radiator through which liquid is circulated from a hose having a circular liquid passage orifice of specified diameter, the temperature of the engine after being fully warmed up having a minimum value when the orifice is unobstructed and is fully open, the engine temperature increasing as the opening in the orifice is restricted and decreased, the improvement which comprises:an internal rotating blade in slidable engagement with the orifice which can assume any position with respect to the orifice between a minimum position at which the rotating blade produces a minimum restriction of the orifice and a maximum position at which the rotating blade produces a maximum restriction of the orifice; and manually operated means connected to the rotating blade to place the rotating blade in any desired position between minimum and maximum positions.
  • 2. The improvement of claim 1 wherein said means includes an adjusting screw attached at one end to the rotating blade, the other end attached to a cable being disposed remotely.
  • 3. The improvement of claim 2 wherein the position of the rotating blade being determined by the suitable rotation of the adjusting screw.
  • 4. In a liquid cooled internal combustion engine having a radiator through which liquid is circulated from a hose having a circular liquid passage orifice of specified diameter, nominally about one inch, the temperature of the engine after being fully warmed up having a minimum value when the orifice is unobstructed and is fully open, the engine temperature increasing as the opening in the orifice is restricted and decreased, the improvement which comprises:an internal rotating blade in a slidable engagement with the orifice which can assume any position with respect to the orifice between a minimum position at which the rotating blade produces a minimum restriction of the orifice and an engine operating temperature of about 160 degrees and a maximum position at which the rotating blade produces a maximum restriction of the orifice and an engine temperature of about 260 degrees; and manually operated means connected to the rotating blade in any desired position between minimum and maximum positions, said means including, a manually rotatable adjusting screw at one end of the rotating blade, the other end of the adjusting screw having a remote cable attached, and being disposed remotely, the position of the rotating blade being determined by the suitable rotation of the cable.
CROSS REFERENCE TO COPENDING APPLICATION

This patent application is related to Provisional Application Ser. No. 60/188,813 filed on Mar. 13, 2000.

US Referenced Citations (6)
Number Name Date Kind
1187535 LaPorte Jun 1916 A
5505164 Hollis Apr 1996 A
5555865 Kim Sep 1996 A
5799625 Ziolek et al. Sep 1998 A
6032618 Ferrari et al. Mar 2000 A
6109219 Sano Aug 2000 A
Provisional Applications (1)
Number Date Country
60/188813 Mar 2000 US