The present application relates generally to exercise equipment, and more particularly to exercise equipment that provides increased adjustability and/or easier access for users in wheelchairs.
Exercise is critical to the health and well-being of individuals. While there has been a substantial increase in the number and types of exercise systems in recent years, these systems often cannot be easily accessed and used by individuals with disabilities or physical challenges, such as persons in wheelchairs.
The present application discloses various embodiments of an exercise apparatus comprising novel features that result in an apparatus that is flexible in its configurations, easy to use, and capable of accommodating individuals of various sizes, strengths, and abilities, including but not limited to individuals in wheelchairs. The embodiments disclosed herein allow fitness centers and gyms to be more inclusive of people with disabilities, such as people in wheelchairs, and provide disabled people the opportunity to exercise in the same facilities and use the same equipment as their able-bodied friends and family members. Without limiting the scope of this disclosure, some of the features will now be discussed briefly.
In some embodiments disclosed herein, an exercise apparatus comprises an exercise station adapted to allow both able-bodied users and disabled users, including those in wheelchairs, to perform the exercise from substantially the same position. In some embodiments, an exercise apparatus comprises a resistance system coupled to an exercise station, and the exercise station comprises a frame, an arm assembly, and a seat assembly. The seat assembly may comprise a seat having a first position and a second position, wherein the first position accommodates use of the exercise apparatus by a user sitting on the seat and wherein the second position accommodates use of the exercise apparatus by a user seated in a wheelchair. The seat may be configured to move between the first position and the second position. In some embodiments, the second position is sufficiently removed from the first position to allow a user in a wheelchair to maneuver the wheelchair into the approximate location of the seat in the first position and to perform the exercise from the wheelchair. In some embodiments, the seat assembly is pivotably attached to the frame. The apparatus optionally comprises a frame extension, and the support member may be pivotably attached to the frame extension.
In some embodiments, the exercise station may comprise a means for securing the seat in the first position. For example, the means for securing the seat may comprise a stop. The stop may contact a surface and inhibit movement of the seat while a user is performing an exercise with the seat in the first position. The stop optionally comprises a horizontal portion that frictionally engages a surface. In some embodiments, the frame may comprise a retaining element and the stop may frictionally engage the retaining element. In some embodiments, the stop may further comprise a vertical portion that contacts the retaining element when the seat is in the first position.
In some embodiments, the means for securing the seat in the first position comprises a latch. In some embodiments, the means for securing the seat in the first position comprises a pull-pin adapted to engage a hole in the retaining element of the frame.
In some embodiments, the seat assembly comprises a biasing element that is biased to disengage the means for securing the seat in the first position. For example, where a seat assembly comprises a stop, the seat assembly may comprise a biasing element that biases the stop away from a surface. In some embodiments, the biasing element may be a spring or a hydraulic piston.
In some embodiments, the arm assembly comprises two or more handles. The location of the handles with respect to the user may be adjustable. The distance between the handles may also be adjustable.
The arm assembly may comprise a primary element coupled to an extension element and a handle element coupled to the extension element. The extension element may be moveable relative to the primary element and the handle element may be moveable relative to the extension element. The extension element may extend at an angle from the primary element. The angle between the extension element and the primary element may be adjustable. The handle element may extend at an angle from the extension element. The angle between the handle element and the extension element may be adjustable. In some embodiments, the extension element may be slideable and/or rotatable relative to the primary element. In some embodiments, the handle element may be slideable and/or rotatable relative to the extension element. In some embodiments, each of the handle elements may operate independently of the other. Alternatively, the arm assembly may be configured such that the handles operate together. For example, the primary elements may be rigidly coupled together.
In some embodiments, a handle assembly may be coupled to each handle element. The handle assembly may comprise one, two, three, or more handles. In some embodiments, the handle assemblies may be rotatable. In some embodiments, each handle assembly may comprise three handles, and each of the three handles may comprise the same or a different type of grip.
In some embodiments, the weight of the arm assembly may be at least partially counter-balanced. In some embodiments, the counterbalancing is sufficient to reduce the effective weight of the arm assembly to between about 0 pounds and about 10 pounds. In some embodiments, the counterbalancing is sufficient to reduce the effective weight of the arm assembly to between about 1 pound and about 5 pounds.
In some embodiments, the resistance system may comprise one or more weight stacks. In some embodiments, the resistance system may comprise a primary weight stack comprising multiple individual plates of a first weight and a secondary weight stack comprising multiple individual plates of a second weight, wherein the primary and secondary weight stacks are coupled together such that the amount of resistance supplied to the exercise station is the total weight from both weight stacks. In some embodiments, the weight of each individual plate in the secondary weight stack is one-tenth of the weight of an individual plate in the primary weight stack.
The exercise apparatus may comprise a means for adjusting the height of the seat. In some embodiments, a seat assembly comprises a seat, a seat anchor, a seat base, and a seat height adjustment mechanism. In some embodiments, the seat height adjustment mechanism comprises a pivot point, a lever comprising a first portion that extends substantially horizontally beneath the seat from the pivot point and a second portion that extends substantially vertically from the pivot point to the seat base, and a pin coupled to the second portion of the lever and adapted to engage holes in the anchor and base and thereby secure the seat at the desired height.
In some embodiments, a seat assembly for an exercise station may comprise a seat upon which a user may sit when performing an exercise, the seat adapted to move between a first position and a second position, a seat base, a stop adapted to contact a surface and inhibit lateral movement of the seat, a support member, and a biasing element. The biasing element may bias the stop away from the surface. In some embodiments the stop contacts the surface and inhibits lateral movement of the seat when the seat is in the first position and a user sits on the seat.
In certain embodiments, an exercise apparatus may comprise a resistance system coupled to an exercise station, the exercise station comprising a height-adjustable seat adapted to move between a first position in which the user can perform an exercise by sitting on the seat and a second position sufficiently removed from the first position to allow a user in a wheelchair to maneuver the wheelchair into the location of the seat in the first position and to perform the exercise from the wheelchair. The exercise station may optionally comprise a cantilever frame.
In some embodiments, a seat assembly may be adapted to be coupled to a pre-existing exercise station. The seat assembly may comprise a seat upon which a user may sit when performing an exercise, a seat base, a stop, and a support member pivotably coupled to a frame extension. In some embodiments, the seat may be adapted to move between a first position and a second position. In some embodiments, the frame extension may be adapted to be coupled to the frame of an exercise station. In some embodiments, the seat assembly may further comprise a biasing element that is biased to disengage the stop.
In some embodiments disclosed herein, a seat is adapted to be coupled to a frame of an exercise station, and the seat assembly may comprise a seat to accommodate a user performing an exercise, a means for inhibiting movement of the seat when a user sits on the seat in the first position, a support member coupled to a frame extension, and a means for facilitating movement of the seat between the first position and the second position. In some embodiments, the frame extension may be adapted to be coupled to a frame of an exercise station. In some embodiments, the seat may be adapted to move between a first position and a second position.
In some embodiments, the means for facilitating movement of the seat between the first and second position comprises a pivot that allows the support member to pivot relative to the frame extension. Alternatively, the means for facilitating movement of the seat between the first and second positions may comprise a hinge.
In certain embodiments, a method of adapting an exercise apparatus comprising an exercise station to be wheelchair accessible comprises providing a seat assembly comprising a support member coupled to a seat having a first position and a second position, wherein the first position accommodates use of the exercise apparatus by a user sitting on the seat and wherein the second position accommodates use of the exercise apparatus by a user seated in a wheelchair, providing a frame extension pivotably coupled to the support member, and coupling the frame extension to a frame of an exercise station. In some embodiments, the method further comprises removing a pre-existing seat from the exercise station.
In some embodiments, methods of manufacturing an exercise apparatus, or various aspects thereof, are described. For example, disclosed herein are novel methods of manufacturing an exercise station, a seat assembly, an arm assembly, a moveable seat, a height-adjustable seat, etc.
In some embodiments, an exercise apparatus comprises a resistance system coupled to an exercise station, the exercise station comprising a cantilever frame, an arm assembly, a seat assembly comprising a seat having a first position and a second position, wherein the first position accommodates use of the exercise station by a user sitting on the seat and wherein the second position accommodates use of the exercise station by a user sitting in a wheelchair, and wherein the seat is configured to move between the first position and the second position, and a means for securing the seat in the first position. In some embodiments, the cantilever frame comprises a back support structure configured to permit, with the seat in the second position, the seat of an electric wheelchair to be in the approximate location of the seat in the first position. The back support structure may be raised sufficiently to allow the components rearward of the seat of the electric wheelchair to extend below the back support structure.
In some embodiments, the seat assembly comprises a biasing element that is biased to disengage the stop. The biasing element may have a vertical bias that raises and disengages the stop when no downward force is exerted on the seat and lowers and engages the stop when the seat is in the first position and a user sits on the seat. In some embodiments, the seat is moveable between the first and second positions without any vertical lifting force.
In some embodiments, an exercise apparatus comprises a resistance system coupled to an exercise station, the exercise station comprising a cantilever frame, an arm assembly, a seat assembly pivotably coupled to the frame comprising a seat having a first position and a second position, wherein the first position accommodates use of the exercise station by a user sitting on the seat and wherein the second position accommodates use of the exercise station by a user seated in a wheelchair, and wherein the seat is configured to move between the first position and the second position, a stop adapted to inhibit movement of the seat by engaging a surface, and a biasing element that is biased to disengage the stop from the surface when the seat is in the first position and no force is exerted on the seat.
In some embodiments, the arm assembly comprises a primary element coupled to an extension element, and a handle element coupled to the extension element, wherein the extension element is moveable relative to the primary element and the handle element is moveable relative to the extension element. The distance between the handle elements may be adjustable. The arm assembly may be at least partially counter-balanced
In some embodiments, an exercise apparatus comprises a resistance system and an exercise station comprising a cantilever frame, a seat adapted to move between a first position in which the user can perform an exercise by sitting on the seat and a second position sufficiently removed from the first position to allow a user in a wheelchair to maneuver the wheelchair into the location of the seat in the first position and to perform the exercise from the wheelchair, means for adjusting the height of the seat, and an adjustable arm assembly, wherein the seat is moveable between the first and second positions without lifting the seat. In some embodiments, the exercise apparatus further comprises a stop configured to inhibit movement of the seat while a user sits on the seat in the first position.
Certain embodiments combine one or more features disclosed herein in order to produce an exercise apparatus that is easily used by both able-bodied and disabled persons. For purposes of summarizing the invention and the advantages achieved over the prior art, certain objects and advantages of the invention are described herein. Of course, it is to be understood that not necessarily all such objects or advantages need to be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught or suggested herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
All of these embodiments are intended to be within the scope of the invention herein disclosed. These and other embodiments will become readily apparent to those skilled in the art from the following detailed description having reference to the attached figures, the invention not being limited to any particular disclosed embodiment(s).
Although certain embodiments and examples are described below, those of skill in the art will appreciate that the invention extends beyond the specifically disclosed embodiments and/or uses and obvious modifications and equivalents thereof. Thus, it is intended that the scope of the invention herein disclosed should not be limited by any particular embodiments described below. The following detailed description sets forth several novel features for exercise equipment which, among other things, allows persons with disabilities, including but not limited to individuals confined to wheelchairs, to access and use exercise equipment. The description also sets forth novel features that increase the adjustability of the equipment, so that users of varying size, shape, strength, and ability can use the same apparatus.
The station 110 may comprise a seat assembly 140, which includes a seat 142. In some embodiments, the seat assembly 140 may be adapted such that the seat 142 is moveable between at least a first position and a second position. When in the first position, as illustrated in
The frame 112 optionally includes an extension 114, to which the seat support member 144 may be coupled. Alternatively, the seat support member 144 may be coupled directly to a back support structure 116, or to any other portion of the frame 112. As shown in
Based on the disclosure provided herein, it will be apparent to one of skill in the art that various mechanisms may be used for adapting the seat 142 to move between a first position, which allows able-bodied users to use the exercise station in a conventional manner, and a second position, which is sufficiently removed from the first position to allow a user in a wheelchair to maneuver into the exercise position. Although the seat assembly 140 of
The seat assembly may comprise a mechanism that assists in maintaining the seat 142 in the first position while a user is sitting on the seat and performing an exercise. In some embodiments, the seat assembly 140 may be locked or otherwise secured in the first position. For example, to inhibit (i.e., reduce or eliminate) the movement of the seat 142 when a user is sitting on the seat and performing an exercise with the seat 142 in the first position, the seat assembly 140 may comprise a stop 146 adapted to contact a retaining element 120 of the frame 112. As shown in
The horizontal portion of the stop 146 may be adapted to engage the top of the retaining element 120. In some embodiments, the stop 146 may frictionally engage the retaining element 120. In some embodiments, at least a portion of the stop 146 and/or the retaining element 120 may comprise foam, rubber, or other material to increase friction and inhibit movement of the seat 142. For example, when the seat 142 is in the first position the horizontal portion of the stop 146 may contact the top of the retaining element. The friction between these structures, particularly when under the additional force resulting from a user sitting on the seat, may inhibit lateral movement of the seat while the user is performing the exercise.
Based on the disclosure provided herein, those of skill in the art will appreciate that numerous mechanisms may be used to secure the seat 142 in the first position during exercise. For example, the seat assembly 140 may comprise a pin adapted to engage a hole in the retaining element 120 when the seat 142 is in the first position. Alternatively, a latch may couple the seat assembly to a retaining element.
In some embodiments, the movement of the seat 142 may be inhibited by a mechanism such as a stop, pull-pin, latch, or the like that is coupled to the support member 144 or the frame 112. Such a mechanism may inhibit the movement of the support member 144 relative to the frame 112. For example, in embodiments in which the support member 144 is pivotably coupled to the frame 112, the coupling may comprise a stop that inhibits the support member 144 from pivoting beyond a predetermined position.
In some embodiments, the seat assembly comprises a biasing element 148 as shown in
The use of a biasing element 148 may also provide additional options for securing the seat 142 in the first position. For example, the vertical portion of the stop 146 previously described may not be necessary with the use of a biasing element 148 because the user can sit on the seat 142, thereby depressing the biasing element 148 and lowering the base of the seat 150 such that at least a portion of the seat base 150 frictionally engages the surface on which the station is placed (floor, mat, etc.). In such embodiments, the movement of the seat may be inhibited without the use of a vertical portion of the stop 146 or a retaining element 120.
The embodiment shown in
The lever 162 may also comprise a substantially vertical portion 168, which extends from the pivot point 164 to the seat base 150. The vertical portion 168 of the lever 162 further comprises a pin 170. The seat anchor 152 and seat base 150 comprise corresponding holes through which the pin 170 can pass to secure the seat 142 at a desired height. The substantially vertical portion 168 of the lever may be any length, although in certain embodiments it is between about 4 and about 10 inches. In some embodiments, the substantially vertical portion 168 of the lever is between about 5 and about 7 inches in length.
The seat height adjustment mechanism 160 illustrated in
In other embodiments, the seat height may be fixed relative to the base 150. In some embodiments, the seat height may be fixed relative to the base, but the seat height may be adjusted by adjusting the support arm 144 relative to the frame 112. In some embodiments, the seat 142 is removable. In some embodiments, the seat assembly 140 may be detached from the frame 112.
In some embodiments, the seat assembly 140 may be configured to be coupled to an existing exercise station. In such embodiments, the support member 144 may be adapted to be coupled to the frame of the pre-existing exercise station. Alternatively, the support member 144 may be pivotably coupled to a frame extension 114, and the frame extension may be adapted to be rigidly attached to the pre-existing exercise station. As those of skill in the art will appreciate, numerous methods exist for coupling the moveable seat assembly disclosed herein to a frame of a pre-existing station.
In certain embodiments, a method of manufacturing an exercise apparatus may comprise coupling a resistance system 180 to an exercise station 110 comprising a frame 112, and pivotably coupling a seat assembly 140 to the frame 112. In certain embodiments, a method of manufacturing an exercise station may comprise coupling a seat that is moveable between a first position that accommodates use of the exercise apparatus by a user sitting on the seat and a second position that accommodates use of the exercise apparatus by a user seated in a wheelchair to a frame.
In some embodiments, a method of manufacturing a seat assembly 140 may comprise fixedly attaching a seat 142 to an anchor 152 and coupling the anchor 152 to a seat base 150 comprising holes and a stop 146. In some embodiments, a method of manufacturing a seat assembly 140 further comprises providing a horizontal portion of a stop 146 adapted to contact a surface, such as the surface of a retaining element 120 or the ground or floor, to inhibit movement of the seat 142. A method of manufacturing a seat assembly 140 may further comprise providing a vertical portion of a stopping mechanism 146 to contact, latch, or lock to a retaining element 120.
In certain embodiments, a method of manufacturing a seat assembly 140 may comprise providing a lever 162 that extends substantially horizontally below the surface of the seat 142 and substantially vertically beside the seat anchor 152 and seat base 150, and a pin 170 attached to the vertical portion 168 of the lever 162, wherein the pin 170 is adapted to pass through a hole in the anchor 152 and a corresponding hole in the base 150 to maintain the seat 142 at the desired height.
In some embodiments, a method of manufacturing a seat assembly 140 may comprise coupling a seat base 150 to a seat support member 144 and a biasing element 148. In some embodiments, a method of manufacturing a seat assembly 140 may further comprise providing a biasing element 148, which, when no load is placed on the seat 142, is sufficient to bias the seat base 150 to disengage a stopping mechanism. In some embodiments, the biasing element 148 biases the seat base 150 upwards such that, when no weight is placed on the seat 142, the biasing element 148 causes the seat base 150 to raise, thereby eliminating any contact by the seat base 150 or a stop 146 with a surface. In such an embodiment, the seat 142 may be moved from a first position to a second position without any vertical lifting by a user. In some embodiments, a method of manufacturing a seat assembly 140 may further comprise providing a biasing element 148 such that, when a weight is placed on the seat 142, the biasing element 148 depresses and the seat base 150 lowers to engage a stopping mechanism 146.
In certain embodiments, a method of adjusting the height of seat 142 of an exercise station 110 comprises grabbing the edge of the seat 142 with a single hand, using the fingers of said hand to lift a lever 162 positioned beneath the seat 142, thereby releasing a pin 170 from holes in an anchor 152 and base 150, lifting or lowering the seat 142 to the desired height, and releasing the lever 162 such that the pin 170 engages holes in the anchor 152 and base 150 to secure the seat 142 at the desired height.
The embodiments illustrated in
In some embodiments, the cantilever design may allow a user in an electric wheelchair to perform the exercise in substantially the same position as an able-bodied user performs the exercise with the seat in the first position. The cantilever design provides an opening below the back support structure 116, as shown in
In embodiments in which the frame 112 comprises a retaining member 120, the retaining member 120 should be sufficiently low profile that an electric wheelchair can move into position with its wheels on each side of the retaining member 120. In some embodiments, the height of the retaining member 120 is between 0.25 and 4 inches. In some embodiments, the height of the retaining member is about 2 inches.
The exercise apparatus disclosed herein may comprise an arm assembly 180. An example of an adjustable arm assembly disclosed herein is illustrated in
The arm assembly 180 may comprise a primary element 184, an extension element 186, and a handle element 188. In some embodiments, the extension element 186 may extend at an angle from, and may be adjustable relative to, the primary element 184. For example, the extension element 186 may comprise an adjustment mechanism 187 that enables the extension element 186 to move relative to the primary element 184. For example, in the embodiment illustrated in
The extension element 186 may extend from the primary element 184 in any direction and at any angle. The angle may be adjustable by, for example, adjustment mechanism 187. The length of the extension element 186 may also vary and the desired length may depend on the angle at which it extends from the primary element 184 and the maximum distance desired between the handles 182. Although
In some embodiments, the arm assembly 180 may comprise first and second primary elements, first and second extension elements, and first and second handle elements. In the embodiment illustrated in
The handle element 188 may be either fixed or moveable relative to the extension element 186. As illustrated in
In certain embodiments, a method of manufacturing an arm assembly 180 may comprise providing an extension element 186 that is coupled to a primary element 184. In some embodiments, a method of manufacturing an arm assembly 180 may further comprise coupling a handle element 188 to the extension element 186. In some embodiments, a method of manufacturing an arm assembly may further comprise coupling a handle assembly 185 to the handle element 188. In some embodiments, a method of manufacturing an arm assembly may further comprise providing two or more distinct handles 182 on a handle assembly, and coupling the handle assembly 185 to the handle element 188.
In some embodiments, the arm assembly 180 may be counter-balanced, so that the effective weight or resistance of the arm assembly 180 itself is reduced. Reducing the weight of the arm assembly 180 may be desirable because some users may not be able to lift the weight of the arm assembly 180. Counter-balancing may be achieved by establishing a pivot point 190 for the adjustable arm assembly 180, and adding weight 192 to the portion of the adjustable arm assembly 180 that is opposite the handles 182. Any amount of weight may be used to counter-balance the weight of the adjustable arm assembly 180 that is forward of the pivot point 190. In some embodiments, sufficient counter-balance weight is applied such that it offsets the weight of the portion of the adjustable arm assembly 180 that is forward of the pivot point 190, thereby rendering the arm assembly 180 virtually weightless to the user, unless additional resistance from the resistance system 180 is selected. The effective weight of the arm assembly 180 itself may vary based on the amount of weight on each side of the pivot point 190. The amount of counter-balancing may be selected by adding weight to the side of the arm assembly 180 opposite the handles, or by moving the pivot point. In some embodiments, the counter-balance is selected such that the effective weight or resistance to a user performing the exercise (without any additional resistance selected from the resistance system) is less than 10 pounds. In some embodiments, the effective weight of the arm assembly 180 is between about 1 and about 5 pounds.
In certain embodiments, a method of manufacturing an exercise apparatus 100 comprises coupling an exercise station 110 comprising an arm assembly 180 to a resistance system 180. In some embodiments, a method of manufacturing may further comprises defining a pivot point 190 for the arm assembly 180, and applying weight to the portion of the arm assembly 180 that is on the opposite side of the pivot point as the handles 182, thereby counterbalancing at least a portion of the weight of the arm assembly. In certain embodiments, a method of manufacturing an arm assembly 180 comprises providing independently operable primary elements 184a and 184b, such that when one of the primary elements (184a) is activated by a user performing the exercise, the other primary element (184b) does not move. Such a manufacturing method provides an arm assembly 180 by which the user can alternate between left-handed and right-handed exercises. In some embodiments, a method of manufacturing an arm assembly comprises rigidly coupling the primary elements 184a and 184b.
The adjustable arm assembly 180 may comprise any type of handle 182 conventionally used for weight-bearing exercise equipment. In some embodiments, the handle may be integral with the handle element 188. Alternatively, as illustrated in
The handle assembly 185 illustrated in
Alternative handles 182b and 182c may be suitable for users with little or no capability of grasping a conventional handle. For example, handle 182b may be a rigid cylindrical element with no protective covering, which will accommodate users wearing a cuffing device, which wraps around the user's hand to compensate for lack of grip. As another example, handle 182c may comprise a rigid element at least partially surrounded by a foam roller of sufficient size to allow the user to place the roller in their palms and perform the exercise without tightly grasping the handle. In some embodiments, the various handle types 182a, 182b, 182c may be removable from the handle assembly 185. For example, in the embodiment illustrated in
In some embodiments, the handle assembly 185 may be rotatable relative to the handle element 188. This allows the user to place any particular handle, for example handles 182a, closer to or farther away from the user. The handle assembly 185 may contain any number of individual handles.
In some embodiments, the handle assembly 185 may comprise multiple handles 182a, 182b, 182c with the same grip. This will allow the user to perform the exercise with their hands in different locations without rotating the handle assembly 185. In some embodiments, the handles may extend at different orientations. For example, in some embodiments a first handle 102a may extend vertically, whereas a second handle 102b may extend horizontally.
In certain embodiments, a method of manufacturing a handle assembly comprises providing two or more handles. In certain embodiments, a method of manufacturing a handle assembly further comprises providing at least two distinct types of grips on the handles. In certain embodiments, a method of manufacturing a handle assembly comprises providing three handles 182a, 182b, and 182c, the handle assembly being rotatable with respect to the handle element 188, such that the user may select the desired handle type by rotating the handle assembly.
The exercise apparatus 100 may comprise a resistance system 102 for performing the exercises. The resistance may be provided using a weight stack and a cable and pulley system as is well known in the art. Alternatively, resistance may be provided by hydraulic systems, rubber bands, flexible resistance bars, or any other means for providing resistance.
In some embodiments, the resistance system 102 may comprise one or more weight stacks.
In some embodiments, the weight stacks 104a and 104b may be coupled together, such that when the user of the exercise station 110 performs an exercise, the resistance is provided by the selected weight of both weight stacks 104a and 104b. In the embodiment shown in
The weight of the individual plates in the secondary stack, as well as the total weight of the secondary stack, may be selected based on the weight of the individual plates in the primary weight stack. For example, if the individual plates in the primary weight stack 104a are 5 pound weights, the secondary weight stack 104b may comprise individual plates of 0.5 pounds or 1 pound, to provide the user with the option to select from smaller incremental weight increases. However, if the individual plates in the primary weight stack 104a are 50 pounds, the individual plates in the secondary weight stack 104b may be 5 or 10 pounds. In some embodiments, the total amount of weight in the secondary weight stack is selected to be equal to, or slightly less than, the weight of an individual plate in the primary weight stack.
For example, if the primary weight stack 104a comprises thirty individual plates weighing 10 pounds each, a typical exercise apparatus comprising a single weight stack would allow the user to perform the exercise in 10-pound increments from 10 pounds to 180 pounds. Using a dual weight stack system described herein, however, the resistance system may comprise, for example, a primary weight stack comprises thirty individual plates of 10 pounds and a secondary weight stack comprising nine individual plates weighing 1 pound each. Such a configuration provides the user with the ability to increase the resistance in 1-pound increments, from a minimum of 1 pound to a maximum of 309 pounds.
The use of multiple weight stacks (or another form of resistance) is particularly useful for exercise equipment configured for use by individuals with disabilities. Many conventional exercise stations allow the user to adjust the weight only by relatively large increments, often five pounds, ten pounds, or more. Such increments are often too large for persons with disabilities, who may be able to perform the exercise at one resistance level, but may be unable to perform any exercises at the next available resistance level. By providing a system with multiple resistance increments, users can gradually increase the resistance in small increments. As will be readily apparent to those of skill in the art, any combination of weights may be used in the weight stacks 104a and 104b, and more than two weight stacks may be used. In addition, other forms of resistance may be used.
As shown in
By way of example only, various features of the embodiments disclosed herein are described in connection with a shoulder press exercise machine, as illustrated in
The configuration of the arm assembly may vary depending on the exercise. By way of example only,
In some embodiments, the exercise station is for performing seated rowing exercises, and an arm assembly similar to the assembly shown in
The foregoing description sets forth various examples of non-limiting embodiments. While the description gives some details regarding illustrative combinations and modes of the disclosed embodiments, other variations, combinations, modifications, modes, and/or applications of the disclosed feature and aspects of the embodiments are also within the scope of this disclosure, including those that become apparent to those of skill in the art upon reading this specification. In particular, it is contemplated that the various materials, dimensions, angles, shapes, sizes, and structures of each of the different disclosed embodiments may be used interchangeably and/or combined to form other embodiments. The scope of the inventions claimed herein is not limited by the foregoing description; rather, the scope is limited only by the claims.
This application is a continuation of U.S. Non-provisional application Ser. No. 15/910,860 entitled ADJUSTABLE EXERCISE APPARATUS filed Mar. 2, 2018, which is a continuation of U.S. application Ser. No. 15/008,367 entitled ADJUSTABLE EXERCISE APPARATUS, now U.S. Pat. No. 9,908,026 and filed Jan. 27, 2016, which is a continuation of U.S. application Ser. No. 13/772,223, entitled ADJUSTABLE EXERCISE APPARATUS, now U.S. Pat. No. 9,248,329, and filed on Feb. 20, 2013, which claims the benefit of U.S. Provisional Application No. 61/601,516, entitled ADJUSTABLE EXERCISE APPARATUS and filed on Feb. 21, 2012, the entirety of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61601516 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15910860 | Mar 2018 | US |
Child | 16292140 | US | |
Parent | 15008367 | Jan 2016 | US |
Child | 15910860 | US | |
Parent | 13772223 | Feb 2013 | US |
Child | 15008367 | US |