A variety of fasteners, such as bolts and screws, may be formed with socket heads, with a wide variety of socket head types being available. For instance, hex type sockets are widely used, as well as a variety of other types of sockets, including square or Robertson socket heads, double square socket heads, triple square socket heads, double hex socket heads, triangle-shaped or TA socket heads, etc. Most socket heads are provided in a range of sizes in both metric and SAE standards, creating a need for a wide variety of tools or adapters to engage the fasteners. Given the wide variety of socket head sizes currently in use for each socket head type, a large of number of tools are often required in order to address the different sizes of even a single type of socket head. For example, a hex key or wrench is a tool used to drive bolts and screws with hexagonal sockets or depressions formed in their heads. Presently, there is a one-to-one ratio used for each socket size to tool required. Thus, hex keys are typically produced in sets containing multiple sizes, and multiple sets may be required to fit a variety of different sizes in both SAE and metric standards.
The shortcomings of the prior art are overcome and additional advantages are provided through the provision, in one or more aspects, of an adjustable fastener tool for engaging a socket head. The adjustable fastener tool includes a support member, multiple engagement fingers, and an adjustment mechanism. The support member includes a central opening and multiple radially-extending tracks, and the multiple engagement fingers are associated with, and slidable along, the multiple radially-extending tracks of the support member. The multiple engagement fingers include jaws at radially inner ends with respective contact surfaces for engaging the socket head. The adjustment mechanism resides, at least in part, within the central opening in the support member and is coupled to the multiple engagement fingers. The adjustment mechanism facilitates adjusting location of the multiple engagement fingers, including the jaws, along the multiple radially-extending tracks. The adjustment mechanism includes an actuating member and multiple hinged trusses. A hinged truss of the multiple hinged trusses is hingedly coupled at one end to the actuating member and hingedly coupled at an other end to a respective engagement finger of the multiple engagement fingers. Movement of the actuating member results, via the hinged truss, in slidable movement of the respective engagement finger along its associated radially-extending track.
In another aspect, an adjustable fastener tool is provided for engaging a socket head. The adjustable fastener tool includes a support member, multiple engagement fingers, an adjustment mechanism, and a drive mechanism. The support member includes a central opening and multiple radially-extending tracks, and the multiple engagement fingers are associated with, and slidable along, the multiple radially-extending tracks of the support member. The multiple engagement fingers include jaws at radially inner ends with respective contact surfaces for engaging the socket head. The adjustment mechanism resides, at least in part, within the central opening in the support member and is coupled to the multiple engagement fingers. The adjustment mechanism facilitates adjusting location of the multiple engagement fingers, including the jaws, along the multiple radially-extending tracks. The adjustment mechanism includes an actuating member and multiple hinged trusses. A hinged truss of the multiple hinged trusses is hingedly coupled at one end to the actuating member and hingedly coupled at an other end to a respective engagement finger of the multiple engagement fingers. Movement of the actuating member results, via the hinged truss, in slidable movement of the respective finger along its associated radially-extending track. The drive mechanism is coupled to the support member for imparting a force to the adjustable fastener tool when engaging the socket head.
In a further aspect, a method of fabricating an adjustable fastener tool is provided for engaging a socket head. The method includes providing a support member with a central opening and multiple radially-extending tracks, and providing multiple engagement fingers. The multiple engagement fingers are associated with, and slidable along, the multiple radially-extending tracks of the support member. The multiple engagement fingers include at radially inner ends thereof jaws with respective contact surfaces for engaging the socket head. The method further includes providing an adjustment mechanism residing, at least in part, within the central opening in the support member, and coupled to the multiple engagement fingers. The adjustment mechanism facilitates adjusting location of the multiple engagement fingers, including the jaws, along the multiple radially-extending tracks. The adjustment mechanism includes an actuating member, and multiple hinged trusses. A hinged truss of the multiple hinged trusses is hingedly coupled at one end to the actuating member, and hingedly coupled at an other end to a respective finger of the multiple engagement fingers. Movement of the actuating member results, via the hinged truss, in slidable movement of the respective engagement finger along its associated radially-extending track.
Additional features and advantages are realized through the techniques of the present invention. Other embodiments and aspects of the invention are described in detail herein and are considered a part of the claimed invention.
One or more aspects of the present invention are particularly pointed out and distinctly claimed as examples in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
Aspects of the present invention and certain features, advantages and details thereof, are explained more fully below with reference to the non-limiting example(s) illustrated in the accompanying drawings. Descriptions of well-known materials, systems, devices, fabrication techniques, etc., are omitted so as to not unnecessarily obscure the invention in detail. It should be understood, however, that the detailed description and the specific example(s), while indicating aspects of the invention, are given by way of illustration only, and are not by way of limitation. Various substitutions, modifications, additions, and/or arrangements, within the spirit and/or scope of the underlying inventive concepts will be apparent to those skilled in the art from this disclosure. Note that reference is made below to the drawings, wherein the same or similar reference numbers used throughout different figures designate the same or similar components. Note further that numerous inventive aspects and features are disclosed herein, and unless inconsistent, each disclosed aspect or feature is combinable with any other disclosed aspect or feature as desired for a particular application, for instance, of an adjustable fastener tool for engaging a variety of differently-sized socket heads.
As noted, most socket heads are provided in a range of sizes in both metric and SAE standards, which has historically created a need for a wide variety of tool or adapter sizes to engage the different fasteners. Further, automation of manufacturing and service equipment continues to be a growing field. Tooling that allows for further automation of installation of differently-sized fasteners would have significant benefits in a manufacturing environment. Thus, to reduce the number of tools required and to further facilitate automation of various manufacturing processes, it is desirable to unify the conventional sets of tools for a particular type of socket head into a single variable or adjustable fastener tool.
Addressing this, disclosed herein are embodiments of adjustable fastener tools for engaging or gripping various-sized socket heads of any particular socket type. For instance, an adjustable fastener tool is disclosed for engaging various-sized hex socket heads in both SAE and metric standards. Note that the particular hex-type fastener tool embodiment of
As a particular example,
As illustrated in
In the embodiment of
As shown in
Those skilled in the art will note from the above discussion that provided herein are adjustable fastener tools for engaging various-sized socket heads of a particular type. The adjustable fastener tool includes a support member with a central opening and multiple radially-extending tracks, as well as multiple engagement fingers. The multiple engagement fingers are associated with, and slidable along respective radially-extending tracks of the multiple radially-extending tracks of the support member. The multiple engagement fingers include at radially inner ends thereof jaws with respective contact surfaces for engaging the socket head when the adjustable fastener tool is used to engage the socket head. Additionally, the fastener tool includes an adjustment mechanism residing, at least in part, within the central opening of the support member, and coupled to the multiple engagement fingers. The adjustment mechanism facilitates adjusting location of the multiple engagement fingers, and thereby the jaws, along the multiple radially-extending tracks. The adjustment mechanism may include an actuating member, and multiple hinged trusses. A hinged truss of the multiple hinged trusses may be hingedly coupled at one end to the actuating member and hingedly coupled at an other end to a respective engagement finger of the multiple engagement fingers. Movement of the actuating member advantageously results, via the hinged truss, in slidable movement of the respective engagement finger along its associated radially-extending track.
In one or more implementations, the actuating member includes a central shaft, such as a threaded central shaft, and a truss support member. The central shaft supports the truss support member, and each hinged truss of the multiple hinged trusses is hingedly coupled at one end to the truss support member, and hingedly coupled at an other end to a respective engagement finger of the multiple engagement fingers. Linear movement of the truss support member (along a central axis of the tool) results in radial movement of the multiple engagement fingers along the multiple tracks. The central shaft may be threadably adjustable relative to the support member. For instance, the support member may include internal threads within the central opening, or may include a cylinder with internal threads disposed within the central opening. In one or more embodiments, the truss support member may reside, in part, within a circumferential groove in the central shaft of the actuating member. For instance, the truss support member may be an affixment ring rotatably held, in part, within the circumferential groove in the central shaft. In this manner, the multiple hinged trusses are advantageously in continuous contact with the multiple engagement fingers during an expansion of the jaws and during a contraction of the jaws via the adjustment mechanism.
In one or more embodiments, the multiple radially-extending tracks of the support member may be, or may include, multiple radially-extending channels in a surface of the support member. Further, the multiple radially-extending tracks of the support member may each constrain a respective engagement finger, of the multiple engagement fingers, to radial movement during an expansion or contraction of the jaws between contracted and expanded positions. Advantageously, the multiple engagement fingers may be infinitely adjustable during expansion or contraction of the jaws between the contracted and expanded positions. As noted, linear movement of the actuating member is translated via, in part, the multiple hinged trusses, into radial movement of the multiple engagement fingers along the multiple radially-extending tracks of the support member. In one or more implementations, the jaws at the inner ends of the engagement fingers each include a contact surface to mate to a surface of the opening or recess in the socket head to be engaged, including (for instance) a corner in the opening of the socket head.
As illustrated in the figures, in one or more implementations, the support member of the adjustable fastener tool may be packaged as a cylinder for engagement by, for instance, a powered drive mechanism, or an unpowered drive mechanism, such as a handheld tool. An example of this is depicted in
In one or more implementations, a shaft collar clamp, such as available from W.W. Grainger, Inc. of Lake Forest, Ill., U.S., may be employed in association with the adjustable fastener tool. The shaft collar clamp may be associated with or affixed to the body of the tool, such as the support member, and be locked in place about the actuation shaft in order to, for instance, prevent rotation of the shaft during use of the fastener tool to turn a socket head fastener.
By way of further example,
As noted, the adjustable fastener tool may be packaged in (for instance) a cylindrical configuration, such as depicted in
Note that the fastener tools disclosed herein may be fitted to drills, socket wrenches, screw drivers, or other machines or tools, and be scaled-to-suit a variety of size ranges as desired. Advantageously, a fastener tool such as disclosed allows for infinite adjustability within a defined range between contracted and expanded positions, allowing the tool to be used, for instance, to assist in extracting socket head bolts that may be out of spec or size, or have partially stripped heads. Further, the infinite adjustability allows for the fastener tool to be used with socket heads of both SAE and metric standards. Alternatively, in one or more other embodiments, presets could be provided for added convenience.
In one or more implementations, the actuating member of the adjustment mechanism may be threaded, and be controlled to drive the engagement fingers in and out equally, as well as provide a strong lock feature, and allow for the above-noted infinite adjustment of the jaws or grippers between the designed contracted and expanded positions. The infinite adjustability of the fastener tool disclosed herein is obtained within the specified range between contracted and expanded positions. Further, in one or more embodiments, the use of pitched fingers or jaws allow the tool to grip the corners of the fastener opening. The fingers are linked together through the truss support member and the hinged trusses. As the inner shaft or cylinder is rotated, it moves the truss support member up and down, which causes, via the hinged trusses, the engagement fingers to move radial out or in. For instance, with an outward expansion of the engagement fingers, via an upward movement of the truss support member, the trusses rotate about, for instance, respective hinges or ball joints, constantly maintaining contact with the engagement fingers.
Advantageously, the adjustable fastener tools disclosed herein can be used to fit a range of fastener sizes, and provide torque across all expandable sizes. The fastener tools disclosed eliminate the need for a search for a correct sized socket or driver and can be used across both metric and SAE fasteners. Further, the disclosed fastener tools can work with out of specification fasteners or partially stripped fasteners. Additionally, the adjustable fastener tools disclosed can be mounted into, for instance, the chuck of a drill or other powered driver, such as a lathe, or other power tool, or be part of an unpowered tool, such as a handheld tool.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”), “include” (and any form of include, such as “includes” and “including”), and “contain” (and any form contain, such as “contains” and “containing”) are open-ended linking verbs. As a result, a method or device that “comprises”, “has”, “includes” or “contains” one or more steps or elements possesses those one or more steps or elements, but is not limited to possessing only those one or more steps or elements. Likewise, a step of a method or an element of a device that “comprises”, “has”, “includes” or “contains” one or more features possesses those one or more features, but is not limited to possessing only those one or more features. Furthermore, a device or structure that is configured in a certain way is configured in at least that way, but may also be configured in ways that are not listed.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below, if any, are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of one or more aspects of the invention and the practical application, and to enable others of ordinary skill in the art to understand one or more aspects of the invention for various embodiments with various modifications as are suited to the particular use contemplated.
Number | Name | Date | Kind |
---|---|---|---|
468241 | Douglas | Feb 1892 | A |
1188918 | Dunlap | Jun 1916 | A |
1279950 | Wenzel | Sep 1918 | A |
1760338 | Billmyer, Jr. | May 1930 | A |
3665791 | Carr | May 1972 | A |
4911040 | Kim | Mar 1990 | A |
2360054 | Haas | Oct 1994 | A |
6341544 | Falzone | Jan 2002 | B1 |
6622598 | Chang | Sep 2003 | B2 |
7150209 | Loomis et al. | Dec 2006 | B1 |
7174811 | Wright | Feb 2007 | B2 |
7389713 | Chen | Jun 2008 | B1 |
7748298 | Brown | Jul 2010 | B2 |
8371191 | Huang | Feb 2013 | B2 |
8601912 | Huang et al. | Dec 2013 | B2 |
9308629 | Gadd et al. | Apr 2016 | B2 |
20130074657 | Bishop | Mar 2013 | A1 |
20140109730 | Pelletier et al. | Apr 2014 | A1 |
20150343615 | Merrick | Dec 2015 | A1 |
20170291285 | Merrick et al. | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
2 248 415 | Apr 1992 | GB |
WO 2017015754 | Feb 2017 | WO |
Number | Date | Country | |
---|---|---|---|
20190344408 A1 | Nov 2019 | US |