The present invention relates generally to devices for removing the bark and small limbs from logs, and more particularly, to a flail assembly that can be adjustably located and configured within the flail housing of a debarking machine and/or with respect to the frame of the debarking machine.
In processing logs for various purposes, it is usually necessary to first remove the bark and limbs from the logs. Debarking machines are known for this purpose, and frequently include flail assemblies comprising two or more rotating shafts to which are attached multiple flail chains. If the logs are intended to be processed into chips, it is common for a debarking machine to be located adjacent to, attached to or combined with a log chipping machine. Furthermore, it is desirable to completely remove all bark prior to the chipping process, because bark is considered to be a contaminant in the chips.
In the debarking machine, logs are introduced into the space between the flail assemblies in a direction normal to the axes of rotation of the flail shafts. Typically, the shafts are arranged so that at least one is an upper shaft and another is a lower shaft, although they may be laterally offset from each other. In such a device, the feed line along which the logs are passed through the machine is located between an upper shaft and a lower shaft. In order to remove the bark and limbs from the log, at least some of the flail chains on the upper shaft must reach down along the sides of the log to at least the mid-point. Similarly, at least some of the flail chains on the lower shaft must reach upwardly along the sides of the log to the mid-point. The length of the flail chains on each shaft is dictated by the size of the largest log that is intended to be debarked and the size and positioning of the flail shafts in the debarking machine.
Flail chains may be thirty-six inches long or longer, and are mounted close together. During the debarking operation, the flail chains are subjected to significant stress. As a result, the chain links at the free ends of the flail chains will often break, typically requiring replacement of the flail chains in order to maintain the proper chain length. When the chain links at the free ends of the flail chains break, the other chain links in the flail chain are typically undamaged. Nevertheless, conventional practice requires discarding a flail chain when only one or a few links are damaged. Furthermore, it is a labor-intensive and time-consuming project to change all of the flail chains in a flail assembly.
The upper flail assembly may be mounted on the free end of a pivotable arm structure. In such circumstances, and depending on the relative location of any lower flail assemblies, the action of the flail against the surface of a log may create a reaction force that causes the flail assembly to “float” above the log. An example of such a flail assembly is shown in U.S. Pat. No. 4,719,950 (“the '950 patent”). As described therein, one end of a linear actuator is mounted to the machine frame and the other end is mounted to the pivotable arm structure at an intermediate position between the flail shaft and the pivot mount for the arm structure. This linear actuator is adapted to generate an upwardly directed force against the pivotable arm structure in order to offset only a part of the weight of the flail assembly, so that an additional force is required to raise the flail assembly. This additional force is provided by a gate that is mounted to the pivotable arm structure between the linear actuator and the pivot mount for the arm structure. However, the gate is mounted to extend downwardly at a fixed angle, so that the log being processed, regardless of its diameter, will push against the gate as the log is carried between the upper flail assembly and a fixed lower flail assembly. This gate insures that the shaft of the flail assembly is always a distance above the top of the log being processed that is determined by the configuration of the pivotable arm structure, the location of the linear actuator and the relative angle of the gate. The pivotable arm structure of the '950 patent cannot change the vertical location of the flail assembly shaft independently of the movement generated by the log being processed pushing against the gate. Furthermore, no mechanism is provided in the debarking machine disclosed in the '950 patent to allow for the use of flail chains that are shorter or longer than those shown. Therefore, if flail chains in the flail assembly of the '950 patent become damaged, they will all have to be replaced in order to maintain an efficient debarking operation. Furthermore, if it were deemed desirable to use shorter flail chains in the upper flail assembly of the debarking device of the '950 patent, the flail chains would not reach down far enough to provide for complete bark removal in the logs being processed. If it were deemed desirable to use longer flail chains, the flail chains of the upper flail assembly could damage the adjacent lower flail assembly or other components of the debarking device.
Consequently, it would be desirable if a flail assembly could be provided that would not require replacement of all of the flail chains when the free ends or one or more are damaged. It would be desirable if a flail assembly for a debarking machine could be provided that is adjustable in a vertical direction independently of the diameter of the log being processed. It would also be desirable if a flail assembly for a debarking machine could be provided that can use flail chains of differing lengths, depending on the desired operating conditions, which flail assembly is vertically adjustable without requiring contact between any support structure for the flail assembly and the log being processed.
Among the advantages of the invention is that it provides a flail assembly that may be adjustably mounted so as to permit the continued use of flail chains after the chain links on their free ends have been damaged or broken. It also provides a flail assembly that can use flail chains of various lengths. The invention also provides a flail assembly for a debarking machine that is adjustable in a vertical direction independently of the diameter of the log being processed. It also provides a flail assembly for a debarking machine that can use flail chains of differing lengths, depending on the desired operating conditions, which flail assembly is vertically adjustable without requiring contact between any support structure for the flail assembly and the log being processed. Other advantages and features of this invention will become apparent from an examination of the drawings and the ensuing description.
The use of the terms “a”, “an”, “the” and similar terms in the context of describing the invention are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising”, “having”, “including” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. The terms “substantially”, “generally” and other words of degree are relative modifiers intended to indicate permissible variation from the characteristic so modified. The use of such terms in describing a physical or functional characteristic of the invention is not intended to limit such characteristic to the absolute value which the term modifies, but rather to provide an approximation of the value of such physical or functional characteristic.
The use of any and all examples or exemplary language (e.g., “such as” and “preferably”) herein is intended merely to better illuminate the invention and the preferred embodiment thereof, and not to place a limitation on the scope of the invention. Nothing in the specification should be construed as indicating any element as essential to the practice of the invention unless so stated with specificity.
Various terms are specifically defined herein. These terms are to be given their broadest possible construction consistent with such definitions, as follows:
The term “debarking machine” refers to a machine for removing bark and small limbs from a log or to a machine having a debarking component and a log chipping component.
The term “shaft”, when used in reference to a flail assembly, comprises a shaft, disc or drum that is rotatable about an axis of rotation and to which one or more flail chains (as hereinafter defined) are attached.
The term “flail chain” refers to a chain or other elongate flexible device comprised of a plurality of interconnected components, one end of which is attached to a shaft that is rotated so that the free end, or a portion thereof, can come into contact with a log in a debarking machine or a debarking component of a combination debarking and chipping machine.
The term “chain link” refers to the links or other individual components that are interconnected to form a flail chain.
The term “flail assembly” refers to the shaft and bearings associated therewith, with flail chains attached.
The term “flail housing” refers to a housing that partially surrounds the flail assembly and may be pivotally attached to the frame of the debarking machine.
The term “processing direction” refers to the direction of travel of a log for processing through a flail assembly.
The term “vertical” and similar terms, when used to refer to a position or distance to, from or with respect to a shaft of a flail assembly, refers to a position or distance along a line that is generally perpendicular to the axis of rotation of the shaft and to the processing direction.
The terms “above”, “upwardly” and similar terms, when used in reference to a relative direction on or with respect to a flail assembly, or a debarking machine, or a component or portion of such an assembly or machine, refer to a relative direction that is farther away from the surface on which the assembly or machine is placed in order to process logs.
The terms “below”, “downwardly” and similar terms, when used in reference to a relative direction on or with respect to a flail assembly, or a debarking machine, or a component or portion of such an assembly or machine, refer to a relative direction that is closer to the surface on which the assembly or machine is placed in order to process logs.
The term “front end” and similar terms refer to the end of a debarking machine or a component or portion of such a machine, which is nearest the point at which a log to be processed is introduced into the machine.
The terms “forward”, “in front of”, and similar terms, as used herein to describe a relative position or direction on or in connection with a debarking machine, or a component of such a machine, refer to a relative position or direction towards the front end of the machine.
The terms “back end”, “rear end” and similar terms refer to the end of a debarking machine or a component or portion of such a machine, which is farther from the front end of the machine.
The terms “rearward”, “behind”, and similar terms, as used herein to describe a relative position or direction on or in connection with a debarking machine or a component of such a machine, refer to a relative position or direction towards the rear end of the machine.
The term “actuator” refers to an electric, hydraulic, pneumatic, electro-hydraulic or mechanical device that is adapted to apply a force to a component of a debarking machine with respect to the flail housing, frame or another component of the machine.
The term “linear actuator” refers to an actuator that generates force which is directed in a straight line. Common examples of “linear actuators” include double-acting hydraulic or pneumatic actuators which include a cylinder, a piston within the cylinder, and a rod attached to the piston. By increasing the pressure within the cylinder on one side of the piston (over that on the opposite side of the piston), the rod will extend from the cylinder or retract into the cylinder.
The invention comprises a flail assembly for a debarking machine. The flail assembly includes a shaft that is mounted for rotation about an axis that is generally perpendicular to the processing direction in which logs are moved for debarking and generally parallel to the plane of the surface on which the machine is placed. Attached to this shaft are a plurality of flail chains, each of which has a fixed end that is attached to the shaft, and a free end. The length of each flail chain defines an arc of rotation of the free end of the flail chain as the shaft is rotated. The invention comprises a flail assembly having a flail shaft that is adapted to be mounted in a plurality of alternative vertical positions with respect to a log being moved in the processing direction, wherein said positions are independent of the size or position of the log being processed, because the invention does not require that any part of the flail housing associated with the flail assembly contact the log being processed as it is moved in the processing direction. The invention may be employed to place the flail assembly at an optimum flailing position, regardless of the length of the flail chains on the flail assembly. The invention contemplates that as the flail chains wear and are broken, the worn or broken chain links may be removed and the vertical location of the shaft of the flail assembly adjusted to compensate for the reduction in length of the flail chains. In other circumstances, it may be desirable to vertically locate the shaft in alternative positions to provide for flail assemblies that can employ flail chains of different lengths.
In a preferred embodiment of the invention, the flail assembly is mounted within a flail housing that is itself pivotally attached to the machine frame. A linear actuator is mounted between the flail housing and the frame of the machine to generate a linearly directed force that counterbalances at least a part of the weight of the flail housing. A support stop is also mounted to the frame of the machine near the free end of the flail housing to prevent the free end of the flail assembly from falling below a predetermined vertical position (which is adjustable), in order to prevent the flail chains from “floating” to a position that is likely to cause damage to other components of the debarking machine.
When one or more chain links on the free end of one or more flail chains are damaged, broken or lost in operation of the flail assembly, or if for one reason or another, it is deemed desirable to change the length of the flail chains of a flail assembly, the vertical position of the shaft of the flail assembly may be changed and/or the combination of the vertical position of the shaft and the length of the flail chains may be changed, so that when the damaged chain links on the flail chains are removed or shorter flail chains are substituted, the shortened free ends of the flail chains will extend as far or nearly as far as the free ends of the original (or undamaged) flail chains, or otherwise as far as is desired.
In order to facilitate an understanding of the invention, the preferred embodiments of the invention and the best mode known by the inventors for carrying out the invention are illustrated in the drawings, and a detailed description thereof follows. It is not intended, however, that the invention be limited to the particular embodiments described or to use in connection with the apparatus illustrated herein. Therefore, the scope of the invention contemplated by the inventors includes all equivalents of the subject matter described herein, as well as various modifications and alternative embodiments such as would ordinarily occur to one skilled in the art to which the invention relates. The inventors expect skilled artisans to employ such variations as seem to them appropriate, including the practice of the invention otherwise than as specifically described herein. In addition, any combination of the elements and components of the invention described herein in any possible variation is intended to be encompassed by the claims, unless otherwise indicated herein or clearly excluded by context.
As shown in
Much of the bark that is removed by the flail assemblies falls into bark removal conveyor 30 for removal from the machine. Upper feed roll 17 helps to advance the flailed log into chipper disk 42, which rotates in a clockwise direction (as shown in
The shaft for either an upper or a lower flail assembly may be adjustably mounted in a flail housing or a mounting assembly for a flail assembly that permits vertical positioning of the shaft at a plurality of alternative vertical positions, so that flail chains that are damaged or otherwise shortened may continue to be used, or if for other reasons it is desirable to adjust the vertical location of the shaft of the flail assembly. This allows the operator of a debarking machine to position the shaft of the flail assembly in a suitable position that will allow for efficient debarking operation of logs of any suitable size, using flail chains of any suitable length, without running the risk that the flail chains will damage other components of the debarking machine. Furthermore, the invention provides a flail housing which comprises a support structure for the flail assembly and is adapted to locate the flail assembly in alternative vertical positions without requiring contact between any portion of the support structure for the flail assembly and the log being processed.
In a preferred embodiment of the invention, the flail housing has a pivot end which is pivotally mounted to the frame of the debarking machine and a free end. In this embodiment of the invention, a support stop that is attached to the frame of the debarking machine is provided to prevent the free end of the flail housing from falling or drifting below a predetermined vertical position as the flail assembly “floats” with respect to the log being processed, which position may be vertically adjusted depending on operating conditions. Thus, each of
As shown in
As shown in
As shown in
The configuration of components shown in the drawings may also be employed with flail chains having lengths that are different from the first and second lengths described herein. Various flail assembly mounting configurations and/or the use of flail chains of different lengths may be employed to change the vertical location of the shaft of a flail assembly so that when the damaged chain links on the flail chains are removed, or shorter flail chains are substituted, the shortened free ends of the flail chains will extend as far or nearly as far as the free ends of the original (or undamaged) flail chains, or otherwise as far as is desired.
Although this description contains many specifics, these should not be construed as limiting the scope of the invention but as merely providing illustrations of the presently preferred embodiments thereof, as well as the best mode contemplated by the inventors of carrying out the invention. The invention, as described and claimed herein, is susceptible to various modifications and adaptations, as would be understood by those having ordinary skill in the art to which the invention relates.
This application claims the benefit of U.S. Provisional Patent Application No. 62/156,399, which was filed on May 4, 2015.
Number | Name | Date | Kind |
---|---|---|---|
5322104 | Morey | Jun 1994 | A |
5349999 | Peterson | Sep 1994 | A |
20150076265 | Peterson | Mar 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20160325461 A1 | Nov 2016 | US |
Number | Date | Country | |
---|---|---|---|
62156399 | May 2015 | US |