Adjustable flow glaucoma shunts and methods for making and using same

Information

  • Patent Grant
  • 12329682
  • Patent Number
    12,329,682
  • Date Filed
    Friday, January 17, 2020
    5 years ago
  • Date Issued
    Tuesday, June 17, 2025
    a month ago
Abstract
Adjustable flow glaucoma shunts are disclosed herein. In one embodiment, for example, a variable flow shunt for treatment of glaucoma in a human patient includes an elongated outflow tube having (a) a proximal inflow portion configured for placement within an anterior chamber in a region outside of an optical field of view of an eye of the patient, and (b) a distal outflow portion at a different location of the eye. The variable flow shunt further includes a flow control mechanism positioned along the outflow tube between the inflow portion and the outflow portion. The flow control mechanism comprises one or more control elements transformable between an open position that allows fluid to flow through the outflow tube and resistance positions that partially obstruct or attenuate fluid flow through the outflow tube. During operation, the control element(s) are movable between positions in response to non-invasive energy.
Description
TECHNICAL FIELD

The present technology relates to adjustable flow glaucoma shunts and methods for making and using such devices.


BACKGROUND

Glaucoma (e.g., ocular hypertension) is a disease associated with an increase in pressure within the eye resultant from an increase in production of aqueous humor (aqueous) within the eye and/or a decrease in the rate of outflow of aqueous from within the eye into the blood stream. Aqueous is produced in the ciliary body at the boundary of the posterior and anterior chambers of the eye. It flows into the anterior chamber and eventually into the capillary bed in the sclera of the eye. Glaucoma typically results from a failure in mechanisms that transport aqueous out of the eye and into the blood stream.





BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present technology can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale. Instead, emphasis is placed on illustrating clearly the principles of the present technology. Furthermore, components can be shown as transparent in certain views for clarity of illustration only and not to indicate that the component is necessarily transparent. Components may also be shown schematically.



FIGS. 1A-1C illustrate glaucoma plate shunts configured to provide constant resistance to flow.



FIG. 2A is simplified front view of an eye E with an implanted shunt, and FIG. 2B is an isometric view of the eye capsule of FIG. 2A.



FIGS. 3A and 3B illustrate an adjustable flow glaucoma shunt configured in accordance with an embodiment of the present technology.



FIGS. 4A and 4B illustrate an adjustable flow glaucoma shunt configured in accordance with another embodiment of the present technology.



FIGS. 5A-5C illustrate a variable fluid resistor device configured in accordance with an embodiment of the present technology.



FIGS. 6A-6C illustrate an adjustable flow glaucoma shunt configured in accordance with still another embodiment of the present technology.





DETAILED DESCRIPTION

The present technology is directed to adjustable flow glaucoma shunts and methods for making and using such devices. In many of the embodiments disclosed herein, the adjustable flow glaucoma shunts comprise an adjustable fluid resistor (“resistor” within the context of this document refers to a fluid resistor), actuator, and/or actuation mechanism. Additionally, in certain embodiments, the shunts may also include an adjustable opening pressure control mechanism. These mechanisms can be selectively adjusted or modulated to increase or decrease the outflow resistance and/or opening pressure of the shunt in response to changes in any (or any combination of) intraocular pressure (IOP), aqueous production rate, native aqueous outflow resistance, and/or native aqueous outflow rate.


In one embodiment, for example, a variable flow shunt for treating glaucoma in a human patient comprises an elongated outflow tube having (a) a proximal inflow portion configured for placement within an anterior chamber in a region outside of an optical field of view of an eye of the patient, and (b) a distal outflow portion at a different location of the eye. The variable flow shunt further includes a flow control mechanism positioned along the outflow tube between the inflow portion and the outflow portion. The flow control mechanism comprises one or more control elements transformable between an open position that allows fluid to flow through the outflow tube and resistance positions that partially obstruct or attenuate fluid flow through the outflow tube. During operation, the control element(s) are movable between positions in response to non-invasive energy.


In another embodiment of the present technology, a shunt for treatment of glaucoma in a human patient comprises an elongated outflow drainage tube having a proximal inflow region and a distal outflow region. The shunt also includes an inflow control assembly at the proximal inflow region, and a transition region along the outflow tube between the inflow region and the outflow region. During operation, the transition region is transformable between a first shape and a second shape different than the first shape to inhibit or attenuate fluid flow through the outflow tube.


A method for treating glaucoma in a human patient in accordance with still another embodiment of the present technology can include positioning a variable flow shunt within an eye of the patient. The shunt comprises an elongated outflow drainage tube having a proximal inflow region at a first portion of the eye and a distal outflow region at a second, different portion of the eye. The method also includes transforming a flow control assembly carried by the elongated outflow drainage tube from a first configuration to second, different configuration to selectively control flow of aqueous through the variable flow shunt. Throughout the method, the flow control assembly may be actuated via non-invasive energy.


Specific details of various embodiments of the present technology are described below with reference to FIGS. 1A-6C. Although many of the embodiments are described below with respect to adjustable flow glaucoma shunts and associated methods, other embodiments are within the scope of the present technology. Additionally, other embodiments of the present technology can have different configurations, components, and/or procedures than those described herein. For instance, shunts configured in accordance with the present technology may include additional elements and features beyond those described herein, or other embodiments may not include several of the elements and features shown and described herein.


For ease of reference, throughout this disclosure identical reference numbers are used to identify similar or analogous components or features, but the use of the same reference number does not imply that the parts should be construed to be identical. Indeed, in many examples described herein, the identically numbered parts are distinct in structure and/or function.


Implantable Shunts for Glaucoma Treatment


Glaucoma is a degenerative ocular condition characterized by an increase in pressure within the eye resultant from an increase in production of aqueous humor (aqueous) within the eye and/or a decrease in the rate of outflow of aqueous from within the eye into the blood stream. The early stages of glaucoma are typically treated with drugs (e.g., eye drops). When drug treatments no longer suffice, however, surgical approaches may be used. Surgical or minimally invasive approaches primarily attempt to increase the outflow of aqueous from the anterior chamber to the blood stream either by the creation of alternative fluid paths or the augmentation of the natural paths for aqueous outflow.


Devices used to lower outflow resistance are generally referred to as “glaucoma shunts” or “shunts.” FIGS. 1A-1C, for example, illustrate several different traditional glaucoma plate shunts 100 (identified individually as 100a-c) configured to provide constant resistance to flow. The shunt 100a of FIG. 1A, for example, includes a plate 103a, a plurality of outflow ports 102a, one or more inflow ports 101, and tie-downs or engagement features 104a. The shunts 100b and 100c shown in FIGS. 1B and 1C, respectively, include several features similar to the features of shunt 100a. For example, these shunts 100b-c include plates 103b-c, outflow ports 102b-c, and tie-downs or engagement features 104b-c. The shunts 100b-c, however, include an inflow tube 105 instead of the inflow ports 101 of the shunt 100a.



FIGS. 2A and 2B illustrate a human eye E and suitable location(s) in which shunts 100a-c may be implanted within the eye. More specifically, FIG. 2A is a simplified front view of the eye E, and FIG. 2B is an isometric view of the eye capsule of FIG. 2A. Referring first to FIG. 2A, the eye E includes a number of muscles to control its movement, including a superior rectus SR, inferior rectus IR, lateral rectus LR, medial rectus MR, superior oblique SO, and inferior oblique 10. The eye E also includes an iris, pupil, and limbus.


Referring to FIGS. 2A and 2B together, shunt 100c is positioned such that inflow tube 105 is positioned in an anterior chamber of the eye, and outflow ports 102c are positioned at a different location within the eye. Depending upon the design of the device, the outflow ports 102c may be place in a number of different suitable outflow locations (e.g., between the choroid and the sclera, between the conjunctiva and the sclera). For purposes of illustration, only shunt 100c is shown implanted in the eye E. It will be appreciated, however, that shunts 100a-b may be similarly implanted within the eye E.


Outflow resistance changes over time as the outflow location goes through its healing process after surgical implantation of the device. Because the outflow resistance changes over time, in many procedures the shunt (e.g., shunts 100a-c) is modified at implantation to temporarily increase its outflow resistance. After a period of time deemed sufficient to allow for healing of the tissues and stabilization of the outflow resistance, the modification to the shunt is reversed, thereby decreasing the outflow resistance. Such modifications can be invasive, time-consuming, and expensive for patients. If such a procedure is not followed, however, the likelihood of creating hypotony and its resultant problems is high. Accordingly, the present technology provides variable flow glaucoma shunts that enable a user to remotely actuate a flow control mechanism to selectively alter the flow of fluid through the shunt. The selectively adjustable shunts may be similar in certain aspects to those described in PCT Patent Publication No. 2019/018807, titled “ADJUSTABLE FLOW GLAUCOMA SHUNTS AND METHODS FOR MAKING AND USING SAME,” the disclosure of which is incorporated by reference herein in its entirety.


Selected Embodiments of Variable Flow Glaucoma Shunts



FIGS. 3A-6C illustrate a number of different embodiments for variable flow glaucoma shunt devices, along with particular components and features associated with such devices. FIG. 3A, for example, illustrates a variable flow glaucoma shunt 300 (“shunt 300”) configured in accordance with an embodiment of the present technology. The shunt 300 includes an elongated drainage tube 302 (e.g., a fine bore length of thin walled tubing) having a proximal portion with an inflow portion 304 and a distal outflow portion 306 opposite the proximal portion. The inflow portion 304 of the shunt 300 is configured for placement within an anterior chamber in a region outside of the optical field of view of the eye, but within a region visible through the cornea. For purposes of illustration, the outflow portion 306 is shown relatively adjacent to the inflow portion 304. It will be appreciated, however, that the drainage tube 302 is sized and shaped to span a region between the anterior chamber and a desired outflow location within the eye of the patient (e.g., a bleb space).


The shunt 300 further includes a flow control mechanism 310 positioned along the drainage tube 302 and configured to act as a variable resistor during operation and selectively control flow of fluid through the drainage tube 302. In the illustrated embodiment, for example, the flow control mechanism 310 comprises a body portion 311 slidably positioned along the drainage tube 302. In other embodiments, however, the flow control mechanism 310 may be carried by or engaged with the drainage tube 302 in a different arrangement. The flow control mechanism 310 includes one or more control elements 312 (two are shown in the illustrated embodiment as a first control element 312a and a second control element 312b). The flow control elements 312a-b are configured to be selectively activated by non-invasive energy (e.g., a surgical laser, light, heat, etc.) and, upon activation, pivotably move into the flow path through the drainage tube 302 to inhibit/attenuate flow therethrough. In various embodiments, flow is modified in some manner (e.g., pressure and/or flow) between the activated and non-activated configurations. In various embodiments, activation inhibits and/or attenuates flow through the drainage tube. One will appreciate from the description herein that activation may refer to selecting or moving between one of a variety of positions or configurations of the flow control mechanism. Further, in various embodiments, in the non-activated configuration, the drainage tube 302 is fully open. In various embodiments, in the activated configuration, the drainage tube is fully closed, thus preventing/inhibiting fluid flow through the drainage tube 302.



FIG. 3B, for example, is a partially schematic cross-sectional side view of the shunt 300 during operation. Referring to FIGS. 3A and 3B together, the first control element 312a includes a first finger 314 and a second finger 316. The first and second fingers 314 and 316 are pivotably movable relative to each other and the drainage tube 302 to transform the flow control mechanism 310 between an open configuration and a variety of different partially closed configurations (up to a fully closed configuration). In the illustrated embodiment, the first finger 314 is positioned to partially overlap the second finger 316. In other embodiments, however, the first and second fingers 314 and 316 may have a different arrangement relative to each other.


The first and second fingers 314 and 316 also each include target indicia or marker(s) 318 (“targets 318”). One or more individual targets 318 are included on each of the first and second fingers 314 and 316 and positioned as markers/targets for non-invasive energy used to selectively activate the flow control mechanism 310. The first and second fingers 314 and 316 are composed of a shape memory material (e.g., nitinol) and adapted to pivotably move when such non-invasive energy is applied. For example, applying heat to the first finger 314 (e.g., non-invasive energy applied to target(s) 318 on the first finger 314) can induce this feature to depress or move downward, thereby pushing the corresponding second finger 316 into the flow path (as best seen in FIG. 3B). Likewise, applying heat to the second finger 316 can induce this feature to lift/pivotably move upward, thereby pushing the corresponding first finger 314 upward and back toward an initial, non-obstructive position within the flow path. The first finger 314 and/or second finger 316 can be selectively activated via the non-invasive energy to provide precise control over the flow control element 312 and the resulting fluid flow via the drainage tube 302.


In the illustrated embodiment, the shunt 300 includes two flow control elements 312a and 312b positioned adjacent each other along the drainage tube 302. In other embodiments, however, the shunt 300 may include a different number of flow control elements 312 (e.g., a single flow control element 312 or greater than two flow control elements 312). Further, the individual flow control elements 312 may have a different arrangement relative to each other along the drainage tube 302.



FIGS. 4A and 4B illustrate a shunt 400 configured in accordance with anther embodiment of the present technology. The shunt 400 includes a flow control mechanism 410 configured for use with the drainage tube 302 (or another suitable drainage tube), and configured to act as a variable resistor and selectively control flow of fluid through the tube. The shunt 400 includes several features similar to the features of the shunt 300 described above with reference to FIGS. 3A and 3B. For example, FIG. 4A is a partially exploded view of the shunt 400 showing individual components of the shunt 400, and FIG. 4B is an isometric view of the assembled flow control mechanism 410 before installation with the drainage tube 302. Referring to FIGS. 4A and 4B together, the shunt 400 includes a flow control mechanism 410 positioned along the drainage tube 302. Flow control mechanism 410 comprises a first plate 411a configured to be engaged with the drainage tube 302, and a second plate 411b configured to be operably coupled with or engaged with the first plate 411a. The flow control mechanism 410 further comprises a plurality of first flow control elements 412a carried by the first plate 411a, and a plurality of second flow control elements 412b carried by the second plate 411b. The first and second flow control elements 412a and 412b are positioned to be aligned when the first plate 411a and the second plate 411b are joined together and mated in a stacked configuration.


When engaged with the drainage tube 302, the flow control mechanism 410 is configured to function in a similar fashion to the flow control mechanism 310 described above with reference to FIGS. 3A and 3B. For example, the first flow control elements 412a each include a first finger 414 pivotably movable relative to the drainage tube 302 to transform the flow control mechanism 410 between an open configuration and a variety of different partially closed configurations (up to a fully closed configuration) in which the flow path through the drainage tube 302 is inhibited/attenuated (see, for example, the arrangement shown in FIG. 3B). The second flow control elements 412b each include a second finger 416 pivotably movable relative to the drainage tube 302 to engage the corresponding first fingers 414 and lift the first fingers 414 to transform the flow control mechanism 410 between the partially closed (or fully closed) configuration to a more open (or fully open) configuration. The first and second flow control elements 412a and 412b also each include target indicia or marker(s) 418. The targets 418 are positioned as markers/targets for non-invasive energy used to selectively activate the first and second flow control elements 412a and 412b during operation of the shunt 400.


In the illustrated embodiment, the flow control mechanism 410 of the shunt 400 includes three first flow control elements 412a and three second flow control elements 412b. In other embodiments, however, the shunt 400 may include a different number of flow control elements 412 and/or the individual flow control elements 412 may have a different arrangement relative to each other. In some embodiments, for example, the flow control elements 412 may be oriented in the opposite direction as that shown in FIGS. 4A and 4B.



FIGS. 5A-5C illustrate a variable fluid resistor shunt 500 (“shunt 500”) configured in accordance with an embodiment of the present technology. Referring to FIGS. 5A and 5B together, for example, drainage tube 502 comprises a first portion 504 and a second portion 506 opposite the first portion. A manifold 520 (e.g., a variable resistor assembly) is engaged with the drainage tube 502 and positioned at or adjacent with the second portion 506. The manifold 520 comprises multiple parallel lumens 522 arrayed across the width of the manifold 520 (FIG. 5A). For example, the manifold 520 can comprise two, three, four, five, six, or more lumens 522. When implanted in an eye, the manifold 520 can reside within a desired outflow location (e.g., a bleb space) or within a desired inflow location (e.g., an anterior chamber). Accordingly, the shunt 500 can be configured such that flow goes in either direction through the shunt 500.


Each of the lumens 522 further comprises a flow control element 524. As best seen in FIG. 5B, individual flow control elements 524 are transformable between a first (e.g., open) position in which flow is not impeded and a second (e.g., closed) position in which flow through the corresponding lumen 522 is blocked or attenuated. The flow control elements 524 are all individually addressable (e.g., via non-invasive energy or other suitable mechanisms) such that flow through each of the lumens 522 can be selectively controlled. Referring to FIG. 5C, for example, flow through a majority of the lumens 522 has been attenuated or blocked via the corresponding flow control elements 524, but flow through the three lumens 522 on the leftmost portion of the manifold 520 remains open. It will be appreciated that selectively controlling flow via the manifold 520 allows for precise variable control of fluid outflow via the shunt 500. Further, in other embodiments, the manifold 520 of the shunt 500 may include a different number of lumens 522 and/or flow control elements 524, and the flow control elements 524 may have a different configuration.


In some embodiments, the lumens 522 may each have the same flow resistance. In embodiments in which the lumens 522 have the same flow resistance, opening additional lumens 522 is expected to result in a generally linear increase in the drainage rate, and blocking lumens 522 is expected to result in a generally linear decrease in the drainage rate. For example, moving from a single open lumen to two open lumens is expected to generally double the drainage rate, while moving from two open lumens to three open lumens is expected to generally increase the drainage rate by 50 percent.


In other embodiments, however, the lumens 522 may have different flow resistances. Flow resistance through the lumens 522, and thus drainage rates through the lumens 522, can be varied based on, for example, a length of the lumen and/or a diameter of the lumen. The length of the lumen is generally proportional to the flow resistance of the lumen, whereas the diameter of the lumen is generally inversely proportional to the flow resistance of the lumen. Accordingly, each individual lumen 522 may have a unique length, diameter, or length and diameter combination that gives it a certain flow resistance. Individual channels can then be selectively opened (or closed) to achieve a desired flow rate.



FIGS. 6A-6C illustrate an adjustable flow glaucoma shunt 600 (“shunt 600”) configured in accordance with still another embodiment of the present technology. Referring first to FIG. 6A, for example, the shunt 600 includes an inflow control assembly 610 and an outflow drainage tube or outflow assembly 620. The inflow control assembly 610 is configured for placement within an anterior chamber in a region outside of the optical field of view of the eye, but within a region visible through the cornea. The outflow drainage tube 620 comprises tubing (e.g., a fine bore length of thin walled tubing) sized and shaped to span the region between the anterior chamber and a desired outflow location. As described in greater detail below, the inflow control assembly 610 comprises a control mechanism configured to act as a variable resistor during operation.



FIG. 6B is an enlarged view of the inflow control assembly 610 shown in operation. As best seen in FIG. 6B, the inflow control assembly 610 includes a first spring element 630a and a second spring element 630b arranged adjacent each other. In the illustrated embodiment, the first and second spring elements 630a and 630b are integrally formed from the same tube using a laser cutting process. In other embodiments, however, the first and second spring elements 630a and 630b may be separate, discrete components formed from different materials (e.g., nitinol, shape memory material, etc.). Further, it will be appreciated that the cut pattern, cut profile, and/or cut sizes within the tube may be optimized to increase/decrease flow through the spring elements 630a and 630b. The inflow control assembly 610 further includes a core element or plug feature 640 slidably received within an inner portion of the inflow control assembly 610 and selectively engaged with a selected spring element 630a or 630b.


As best seen in FIGS. 6B and 6C, in operation, the first and second spring elements 630a and 630b are configured to be selectively activated by non-invasive energy and, upon activation, expand to allow flow through the corresponding spring body (i.e., the helical cuts in the tube), as well as compress the opposing spring element. The core element 640 extends approximately the length of one of the spring elements (the first spring element 630a in the illustrated arrangement) and can be positioned such that when the first spring element 630a opens, there is little or no flow path therethrough. During further operation of the shunt 600, the compressed second spring element 630b can be targeted with non-invasive energy (e.g., laser energy), which causes the second spring element 630b to expand/actuate, while causing the first spring element 630a to compress, thereby oscillating the shunt 600 and selectively controlling the flow therethrough.


In further embodiments, the inflow control assembly 610 of the shunt 600 may include one or more additional spring elements 630 positioned to be actuated to selectively control fluid flow. Further, in some embodiments the shunt 600 can include a thermal isolation element positioned between the individual springs to help further ensure that only one spring actuates at a time after delivery of non-invasive energy. The thermal isolation element(s) are an optional feature that may not be included in some embodiments.


In many of the embodiments described herein, the actuators or fluid resistors are configured to introduce features that selectively impede or attenuate fluid flow through the drainage tube during operation. In this way, the actuators/fluid resistors can incrementally or continuously change the flow resistance through the drainage tube to selectively regulate pressure/flow. The actuators and fluid resistors configured in accordance with the present technology can accordingly adjust the level of interference or compression between a number of different positions, and accommodate a multitude of variables (e.g., IOP, aqueous production rate, native aqueous outflow resistance, and/or native aqueous outflow rate) to precisely regulate flow rate through the drainage tube.


The disclosed actuators and fluid resistors can all be operated using non-invasive energy. This feature allows such devices to be implanted in the patient and then modified/adjusted over time without further invasive surgeries or procedures for the patient. Further, because the devices disclosed herein may be actuated via non-invasive energy, such devices do not require any additional power to maintain a desired orientation or position. Rather, the actuators/fluid resistors disclosed herein can maintain a desired position/orientation without power. This can significantly increase the usable lifetime of such devices and enable such devices to be effective long after the initial implantation procedure.


Examples

Several aspects of the present technology are set forth in the following examples.


1. A variable flow shunt for treatment of glaucoma in a human patient, the variable flow shunt comprising:

    • an elongated outflow tube having (a) a proximal inflow portion configured for placement within an anterior chamber in a region outside of an optical field of view of an eye of the patient, and (b) a distal outflow portion at a different location of the eye; and
    • a flow control mechanism positioned along the outflow tube between the inflow portion and the outflow portion, wherein the flow control mechanism comprises one or more control elements transformable between an open position that allows fluid to flow through the outflow tube and at least one resistance position that reduces fluid flow through the outflow tube,
    • wherein during operation, the one or more control elements are movable between the open position and the at least one resistance position in response to non-invasive energy.


2. The variable flow shunt of example 1 wherein the one or more control elements are transformable between a first resistance position that provides a first level of reduction of fluid flow, and a second resistance position that provides a second level of reduction of fluid flow greater than the first level of reduction.


3. The variable flow shunt of example 1 wherein the one or more control elements are transformable between a first resistance position that provides a first level of flow reduction and a plurality of second resistance positions that provide increasing levels of flow reduction.


4. The variable flow shunt of example 1 or example 2 wherein the one or more control elements are configured to partially obstruct fluid flow through the outflow tube in the at least one resistance position by changing a diameter and/or a cross-sectional shape of a flow path through the outflow tube.


5. The variable flow shunt of any one of examples 1˜4 wherein the one or more control elements are movable between the open position and the at least one resistance position in response to laser energy.


6. The variable flow shunt of any one of examples 1-5 wherein the one or more control elements are configured to hold the open position or the at least one resistance position without power.


7. The variable flow shunt of example 1 wherein at least one control element comprises:

    • a first finger pivotably movable between a first, open position in which the first finger is out of a flow path through the outflow tube and one or more second resistance positions in which the first finger impedes fluid flow along the flow path; and
    • a second finger engaged with the first finger and configured to pivotably move the first finger from the one or more one or more second resistance positions toward the first open position,
    • wherein the first and second fingers are pivotably movable in response to the non-invasive energy.


8. A shunt for treatment of glaucoma in a human patient, the shunt comprising:

    • an elongated outflow drainage tube having a proximal inflow region and a distal outflow region;
    • an inflow control assembly at the proximal inflow region; and
    • a transition region along the outflow tube between the inflow region and the outflow region, wherein, during operation, the transition region is transformable between a first shape and a second shape different than the first shape to inhibit and/or attenuate fluid flow through the outflow tube.


9. The shunt of example 8 wherein the transition region is configured to transform between the first shape and the second shape upon application of non-invasive energy to one or more selected areas of the transition region.


10. The shunt of example 9 wherein the non-invasive energy is laser energy.


11. A method for treating glaucoma in a human patient, the method comprising:

    • positioning a variable flow shunt within an eye of the patient, wherein the shunt comprises an elongated outflow drainage tube having a proximal inflow region at a first portion of the eye and a distal outflow region at a second, different portion of the eye; and
    • transforming a flow control assembly carried by the elongated outflow drainage tube from a first configuration to a second, different configuration to selectively control flow of aqueous through the variable flow shunt,
    • wherein the flow control assembly is actuated via non-invasive energy.


12. The method of example 11 wherein transforming the flow control assembly carried by the elongated outflow drainage tube comprises actuating the flow control assembly, via the non-invasive energy, to pivotably move a control element of the control assembly into a flow path of the drainage tube such that flow along the flow path is attenuated.


13. The method of example 12, further comprising actuating the flow control assembly, via the non-invasive energy, to pivotably move the control element out of the flow path of the drainage tube such that flow along the flow path is returned to a non-attenuated state.


14. An adjustable flow shunt for treating glaucoma in a human patient, the shunt comprising:

    • an elongated outflow drainage tube having a proximal inflow region and a distal outflow region; and
    • an inflow control assembly at the proximal inflow region, wherein the inflow control assembly comprises—
      • a first spring element;
      • a second spring element positioned adjacent to the first element; and
      • a core element sized and shaped to be slidably received within one of the first or second spring elements,
    • wherein the first spring element is configured to be selectively activated by non-invasive energy and, upon activation, expand such that (a) the second spring element positioned adjacent the first spring element is compressed, and (b) the expansion selectively allows fluid flow through the expanded first spring element.


15. The adjustable flow shunt of example 14 wherein the inflow control assembly is configured for placement within an anterior chamber in a region outside of the optical field of view of the eye.


16. The adjustable flow shunt of example 14 or example 15 wherein the spring element is configured to be activated via laser energy.


17. The adjustable flow shunt of any one of examples 14-16 wherein the spring element is composed of a shape memory material.


18. The adjustable flow shunt of any one of examples 14-16 wherein the spring element is composed of nitinol.


19. A variable fluid resistor shunt for treatment of glaucoma, the variable fluid resistor shunt comprising:

    • an elongated drainage tube having a first portion configured to be in fluid communication with a fluid chamber in an eye of a human patient and a second portion opposite the first portion;
    • a variable resistor assembly configured to selectively control flow of fluid through the drainage tube, wherein the variable resistor assembly comprises—
      • a base portion;
      • multiple fluid lumens arranged in an array across the base portion in fluid communication with the drainage tube; and
      • a plurality of flow control elements, wherein each fluid lumen includes a flow control element positioned to selectively control fluid flow along the corresponding fluid lumen;
    • wherein, during operation, the individual flow control elements are configured to be selectively targeted and actuated via non-invasive energy to change each flow control element between a first open position in which fluid can flow through the corresponding fluid lumen and a second at least partially closed position in which fluid flow through the corresponding fluid lumen is reduced.


20. The variable fluid resistor shunt of example 19 wherein at least two of the multiple fluid lumens have a different flow resistance when the corresponding flow control element is in the first open position.


21. The variable fluid resistor shunt of example 19 or example 20 wherein the multiple fluid lumens include a first lumen and a second lumen, and wherein the first lumen has a first diameter and the second lumen has a second diameter greater than the first diameter.


22. The variable fluid resistor shunt of any of examples 19-21 wherein the multiple fluid lumens include a first lumen and a second lumen, and wherein the first lumen has a first length and the second lumen has a second length greater than the first length.


23. The variable fluid resistor shunt of example 19 wherein each of the multiple fluid lumens have the same flow resistance when the corresponding flow control element is in the first open position.


CONCLUSION

The above detailed description of embodiments of the technology are not intended to be exhaustive or to limit the technology to the precise form disclosed above. Although specific embodiments of, and examples for, the technology are described above for illustrative purposes, various equivalent modifications are possible within the scope of the technology as those skilled in the relevant art will recognize. For example, any of the features of the variable flow shunts described herein may be combined with any of the features of the other variable flow shunts described herein and vice versa. Moreover, although steps are presented in a given order, alternative embodiments may perform steps in a different order. The various embodiments described herein may also be combined to provide further embodiments.


From the foregoing, it will be appreciated that specific embodiments of the technology have been described herein for purposes of illustration, but well-known structures and functions associated with variable flow shunts have not been shown or described in detail to avoid unnecessarily obscuring the description of the embodiments of the technology. Where the context permits, singular or plural terms may also include the plural or singular term, respectively.


Moreover, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in reference to a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of the items in the list. Additionally, the term “comprising” is used throughout to mean including at least the recited feature(s) such that any greater number of the same feature and/or additional types of other features are not precluded. It will also be appreciated that specific embodiments have been described herein for purposes of illustration, but that various modifications may be made without deviating from the technology. Further, while advantages associated with some embodiments of the technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein.

Claims
  • 1. A variable flow shunt for treatment of glaucoma in a human patient, the variable flow shunt comprising: an elongated outflow tube having (a) a proximal inflow portion configured for placement within an anterior chamber in a region outside of an optical field of view of an eye of the patient, and (b) a distal outflow portion at a different location of the eye; anda flow control mechanism positioned along the outflow tube between the inflow portion and the outflow portion, wherein the flow control mechanism comprises two actuation elements in contact with and partially overlapping each other, wherein the two actuation elements are selectively actuatable to pivotably move the flow control mechanism between an open position that allows fluid to flow through the outflow tube and at least one resistance position that reduces fluid flow through the outflow tube, and wherein the actuation elements include— a first actuation element selectively actuatable to move the flow control mechanism from the open position to the at least one resistance position, anda second actuation element selectively actuatable to move the flow control mechanism from the resistance position back toward the open position, andwherein, during operation, the flow control mechanism is pivotably movable between the open position and the at least one resistance position in response to non-invasive laser energy.
  • 2. The variable flow shunt of claim 1 wherein the flow control mechanism is pivotably movable between a first resistance position that provides a first level of reduction of fluid flow, and a second resistance position that provides a second level of reduction of fluid flow greater than the first level of reduction.
  • 3. The variable flow shunt of claim 1 wherein the flow control mechanism is pivotably movable between a first resistance position that provides a first level of flow reduction and a plurality of second resistance positions that provide increasing levels of flow reduction.
  • 4. The variable flow shunt of claim 1 wherein the flow control mechanism is configured to partially obstruct fluid flow through the outflow tube in the at least one resistance position by changing a cross-sectional shape of a flow path through the outflow tube.
  • 5. The variable flow shunt of claim 1 wherein the actuation elements are configured to hold the flow control mechanism in the open position or the at least one resistance position without power.
  • 6. The variable flow shunt of claim 1 wherein: the first actuation element comprises a first finger pivotably movable between a first, open position in which the first finger is out of a flow path through the outflow tube and one or more second resistance positions in which the first finger impedes fluid flow along the flow path; andthe second actuation element comprises a second finger c, wherein the second finger is engaged with the first finger and configured to pivotably move the first finger from the one or more one or more second resistance positions toward the first open position,wherein the first and second fingers are pivotably movable in response to the non-invasive laser energy.
  • 7. A shunt for treatment of glaucoma in a human patient, the shunt comprising: an elongated outflow drainage tube having an inflow region and an outflow region; anda transition region along the outflow tube between the inflow region and the outflow region, wherein the transition region comprises a first actuation element and a second actuation element in contact with and partially overlapping the first actuation element, andwherein, during operation— the first actuation element of the transition region is actuatable to change the transition region from a first cross-sectional shape to a second cross-sectional shape different than the first cross-sectional shape to inhibit and/or attenuate fluid flow through the outflow tube, andthe second actuation element of the transition region is actuatable to change the transition region from the second cross-sectional shape back toward the first cross-sectional shape to increase fluid flow through the outflow tube, andwherein the transition region is configured to transform between the first cross-sectional shape and the second cross-sectional shape upon application of non-invasive laser energy to one or more selected areas of the transition region.
  • 8. A method for treating glaucoma in a human patient, the method comprising: positioning a variable flow shunt within an eye of the patient, wherein the shunt comprises— an elongated outflow drainage tube having a proximal inflow region at a first portion of the eye and a distal outflow region at a second, different portion of the eye; anda flow control assembly carried by the elongated outflow drainage tube, wherein the flow control assembly includes a first actuation element and a second actuation element in contact with and partially overlapping each other,wherein the first actuation element is selectively actuatable to move the flow control assembly from a first configuration in which flow of aqueous along a flow path of the drainage tube is not impeded to a second, different configuration in which the flow of aqueous is attenuated, andwherein the second actuation element is selectively actuatable to move the flow control mechanism from the second configuration back toward the first configuration; andtransforming the flow control assembly carried by the elongated outflow drainage tube, via laser energy from an energy source external to the patient, to pivotably move the first actuation element of the flow control assembly from the first configuration to the second configuration to selectively reduce the flow of aqueous along the flow path.
  • 9. The method of claim 8, further comprising transforming the flow control assembly, via the laser energy, to pivotably move the second actuation element of the flow control assembly from the second configuration back toward the first configuration such that the first and second actuation elements are moved out of the flow path of the drainage tube and flow along the flow path is returned to a non-attenuated state.
  • 10. The variable flow shunt of claim 1 wherein the actuation elements are composed of a shape memory material.
  • 11. The shunt of claim 7 wherein the transition region is composed, at least in part, of a shape memory material.
  • 12. The method of claim 8, further comprising pivotably moving the first actuation element, via the laser energy, to a plurality of additional second configurations that provide increasing levels of flow attenuation along the flow path through the drainage tube.
  • 13. The method of claim 8 wherein transforming the flow control assembly from the first configuration to the second configuration comprises changing a cross-sectional shape of the flow path through the drainage tube.
  • 14. The method of claim 8 wherein the first and second actuation elements are composed, at least in part, of a shape memory material.
  • 15. The variable flow shunt of claim 1 wherein the two actuation elements are positioned to move together during operation.
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application is a 35 U.S.C. § 371 U.S. National Phase application of International Patent Application No. PCT/US2020/014186, filed Jan. 17, 2020, which claims the benefit of U.S. Patent Application No. 62/794,430, filed Jan. 18, 2019, and titled “ADJUSTABLE FLOW GLAUCOMA SHUNTS AND METHODS FOR MAKING AND USING SAME,” the disclosures of which are incorporated herein by reference in their entireties.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2020/014186 1/17/2020 WO
Publishing Document Publishing Date Country Kind
WO2020/150663 7/23/2020 WO A
US Referenced Citations (319)
Number Name Date Kind
4401107 Harber et al. Aug 1983 A
4402681 Haas et al. Sep 1983 A
4595390 Hakim et al. Jun 1986 A
5070697 Van Zeggeren Dec 1991 A
5123906 Kelman Jun 1992 A
5300020 L'Esperance, Jr. Apr 1994 A
5476445 Baerveldt et al. Dec 1995 A
5601094 Reiss Feb 1997 A
5792118 Kurth et al. Aug 1998 A
6077298 Tu et al. Jun 2000 A
6077299 Adelberg et al. Jun 2000 A
6203513 Yaron et al. Mar 2001 B1
6261256 Ahmed Jul 2001 B1
6450984 Lynch et al. Sep 2002 B1
6508779 Suson Jan 2003 B1
6589203 Mitrev Jul 2003 B1
6626858 Lynch et al. Sep 2003 B2
6638239 Bergheim Oct 2003 B1
6666841 Gharib et al. Dec 2003 B2
6736791 Tu et al. May 2004 B1
6789447 Zinck Sep 2004 B1
7025740 Ahmed Apr 2006 B2
7207965 Simon Apr 2007 B2
7354416 Quiroz-Mereado et al. Apr 2008 B2
7364564 Sniegowski et al. Apr 2008 B2
7458953 Peyman Dec 2008 B2
7699882 Stamper et al. Apr 2010 B2
7717872 Shetty May 2010 B2
7947008 Grahn et al. May 2011 B2
8012134 Claude et al. Sep 2011 B2
8206333 Schmidt Jun 2012 B2
8206440 Guarnieri Jun 2012 B2
8298240 Giger et al. Oct 2012 B2
8308701 Horvath et al. Nov 2012 B2
8414635 Hyodoh et al. Apr 2013 B2
8506515 Burns et al. Aug 2013 B2
8540659 Berlin Sep 2013 B2
8579848 Field et al. Nov 2013 B2
8585629 Grabner et al. Nov 2013 B2
8663303 Horvath et al. Mar 2014 B2
8702639 Van Der Mooren Apr 2014 B2
8721702 Romoda et al. May 2014 B2
8753305 Field et al. Jun 2014 B2
8758290 Horvath et al. Jun 2014 B2
8765210 Romoda et al. Jul 2014 B2
8771220 Nissan et al. Jul 2014 B2
8801766 Reitsamer et al. Aug 2014 B2
8828070 Romoda et al. Sep 2014 B2
8852136 Horvath et al. Oct 2014 B2
8852137 Horvath et al. Oct 2014 B2
8852256 Horvath et al. Oct 2014 B2
8882781 Smedley et al. Nov 2014 B2
8915877 Cunningham et al. Dec 2014 B2
8932247 Stergiopulos Jan 2015 B2
8974511 Horvath et al. Mar 2015 B2
9017276 Horvath et al. Apr 2015 B2
9095411 Horvath et al. Aug 2015 B2
9095413 Romoda et al. Aug 2015 B2
9113994 Horvath et al. Aug 2015 B2
9125723 Horvath et al. Sep 2015 B2
9192518 Horvath et al. Nov 2015 B2
9226851 Gunn Jan 2016 B2
9271869 Horvath et al. Mar 2016 B2
9283115 Lind Mar 2016 B2
9283116 Romoda et al. Mar 2016 B2
9289324 Johnson Mar 2016 B2
9326891 Horvath et al. May 2016 B2
9375347 Stergiopulos Jun 2016 B2
9393153 Horvath et al. Jul 2016 B2
9555410 Brammer et al. Jan 2017 B2
9585789 Silvestrini et al. Mar 2017 B2
9585790 Horvath et al. Mar 2017 B2
9592154 Romoda et al. Mar 2017 B2
9610195 Horvath Apr 2017 B2
9636254 Yu et al. May 2017 B2
9636255 Haffner et al. May 2017 B2
9655778 Tyler May 2017 B2
9655779 Bigler et al. May 2017 B2
9693900 Gallardo Inzunza Jul 2017 B2
9693901 Horvath et al. Jul 2017 B2
9757276 Penhasi Sep 2017 B2
9808373 Horvath et al. Nov 2017 B2
9877866 Horvath et al. Jan 2018 B2
9883969 Horvath et al. Feb 2018 B2
9980854 Horvath et al. May 2018 B2
10004638 Romoda et al. Jun 2018 B2
10080682 Horvath et al. Sep 2018 B2
10085884 Reitsamer et al. Oct 2018 B2
10154924 Clauson et al. Dec 2018 B2
10159600 Horvath et al. Dec 2018 B2
10195078 Horvath et al. Feb 2019 B2
10195079 Horvath et al. Feb 2019 B2
10231871 Hill Mar 2019 B2
10238536 Olson et al. Mar 2019 B2
10285853 Man et al. May 2019 B2
10307293 Horvath et al. Jun 2019 B2
10314743 Romoda et al. Jun 2019 B2
10322267 Hakim Jun 2019 B2
10369048 Horvath et al. Aug 2019 B2
10405903 Biesinger et al. Sep 2019 B1
10335030 Alhourani Oct 2019 B2
10342703 Siewert et al. Nov 2019 B2
10463537 Horvath et al. Nov 2019 B2
10470927 Horvath et al. Nov 2019 B2
10363168 Schieber et al. Dec 2019 B2
10492948 Baerveldt Dec 2019 B2
10524959 Horvath Jan 2020 B2
10524958 Camras et al. Mar 2020 B2
10596035 Stergiopulos et al. Apr 2020 B2
10758412 Velasquez Apr 2020 B2
10716663 Salahieh et al. Jul 2020 B2
11122975 Rodger et al. Jan 2021 B2
10912675 Lubatschowski Feb 2021 B2
11166847 Badawi et al. Feb 2021 B2
11166849 Mixter et al. Feb 2021 B2
10952897 Smith Mar 2021 B1
10960074 Berdahl Mar 2021 B2
11007061 Passman et al. May 2021 B2
11039954 Cohen et al. Jun 2021 B2
11058581 Mixter et al. Jul 2021 B2
11065154 Sponsel et al. Jul 2021 B1
11083624 Stein et al. Aug 2021 B2
11166848 Mixter et al. Nov 2021 B2
11291585 Schultz et al. Apr 2022 B2
11517477 Lilly et al. Dec 2022 B2
11529258 Chang et al. Dec 2022 B2
11596550 Chang et al. Mar 2023 B2
11737920 Chang et al. Aug 2023 B2
11766355 Argento et al. Sep 2023 B2
11865283 Schultz et al. Jan 2024 B2
12220350 Mixter et al. Feb 2025 B2
12226343 Mixter et al. Feb 2025 B2
20010011585 Cassidy et al. Aug 2001 A1
20020177891 Miles et al. Nov 2002 A1
20020193725 Odrich Dec 2002 A1
20030079329 Yaron et al. May 2003 A1
20030127090 Gifford et al. Jul 2003 A1
20030163079 Burnett Aug 2003 A1
20030183008 Bang Oct 2003 A1
20040010219 McCusker et al. Jan 2004 A1
20040162545 Brown et al. Aug 2004 A1
20040190153 Esch Sep 2004 A1
20040193095 Shadduck Sep 2004 A1
20040254520 Porteous et al. Dec 2004 A1
20050049578 Tu et al. Mar 2005 A1
20050059956 Varner et al. Mar 2005 A1
20050182350 Nigam Aug 2005 A1
20050196424 Chappa Sep 2005 A1
20060004317 Mauge et al. Jan 2006 A1
20060069340 Simon Mar 2006 A1
20060155300 Stamper Jul 2006 A1
20060212113 Shaolian et al. Sep 2006 A1
20060276739 Brown Dec 2006 A1
20070010837 Tanaka Jan 2007 A1
20070078371 Brown et al. Apr 2007 A1
20070088432 Solovay et al. Apr 2007 A1
20070265646 McCoy et al. Nov 2007 A1
20070299487 Shadduck Dec 2007 A1
20080077071 Yaron et al. Mar 2008 A1
20080103440 Ferren et al. May 2008 A1
20080119891 Miles et al. May 2008 A1
20080125691 Yaron et al. May 2008 A1
20080228127 Burns et al. Sep 2008 A1
20080277332 Liu Nov 2008 A1
20090012483 Blott et al. Jan 2009 A1
20090036818 Grahn et al. Feb 2009 A1
20090043321 Conston et al. Feb 2009 A1
20090243956 Keilman et al. Oct 2009 A1
20090259236 Burnett et al. Oct 2009 A2
20090287136 Castillejos Nov 2009 A1
20090314970 McAvoy Dec 2009 A1
20090326432 Schmidt et al. Dec 2009 A1
20090326517 Bork et al. Dec 2009 A1
20100114006 Baerveldt May 2010 A1
20100234791 Lynch et al. Sep 2010 A1
20100241077 Geipel et al. Sep 2010 A1
20100249691 Van Der Mooren et al. Sep 2010 A1
20120035525 Silvestrini Feb 2012 A1
20120065570 Yeung et al. Mar 2012 A1
20120078220 Fallin et al. Mar 2012 A1
20120089073 Cunningham, Jr. Apr 2012 A1
20120232461 Seaver et al. Sep 2012 A1
20130085440 Bohm Apr 2013 A1
20130131577 Bronstein et al. May 2013 A1
20130150773 Nissan et al. Jun 2013 A1
20130150776 Bohm et al. Jun 2013 A1
20130158381 Rickard Jun 2013 A1
20130197621 Ryan et al. Aug 2013 A1
20130199646 Brammer et al. Aug 2013 A1
20130205923 Brammer et al. Aug 2013 A1
20130211312 Gelvin Aug 2013 A1
20130267887 Kahook et al. Oct 2013 A1
20130317412 Dacquay et al. Nov 2013 A1
20130338564 Rickard et al. Dec 2013 A1
20140046439 Dos Santos et al. Feb 2014 A1
20140081195 Clauson et al. Mar 2014 A1
20140236068 Van Der Mooren et al. Aug 2014 A1
20140309611 Wilt et al. Oct 2014 A1
20150011926 Reitsamer et al. Jan 2015 A1
20150034217 Vad Feb 2015 A1
20150045716 Gallardo Inzunza Feb 2015 A1
20150142049 Delgado et al. May 2015 A1
20150230843 Palmer et al. Aug 2015 A1
20150257931 Sanchez Sep 2015 A1
20150265469 Olson et al. Sep 2015 A1
20150313603 Bodewadt et al. Nov 2015 A1
20160058615 Camras et al. Mar 2016 A1
20160067093 Johnson et al. Mar 2016 A1
20160151179 Favier et al. Jun 2016 A1
20160220794 Negre Aug 2016 A1
20160256317 Horvath et al. Sep 2016 A1
20160256318 Horvath et al. Sep 2016 A1
20160256319 Horvath et al. Sep 2016 A1
20160287439 Stergiopulos Oct 2016 A1
20160354244 Horvath et al. Dec 2016 A1
20160354245 Horvath et al. Dec 2016 A1
20170027582 Khoury et al. Feb 2017 A1
20170071791 Piven Mar 2017 A1
20170087016 Camras Mar 2017 A1
20170017279 Horvath et al. Jun 2017 A1
20170172798 Horvath et al. Jun 2017 A1
20170172799 Horvath Jun 2017 A1
20170312125 Clauson et al. Nov 2017 A1
20170348149 Stergiopulos et al. Dec 2017 A1
20170348150 Horvath et al. Dec 2017 A1
20180014828 Fonte et al. Jan 2018 A1
20180028361 Haffner et al. Feb 2018 A1
20180028366 Tout et al. Feb 2018 A1
20180092775 de Juan, Jr. et al. Apr 2018 A1
20180147089 Horvath et al. May 2018 A1
20180177633 Haffner et al. Jun 2018 A1
20180206878 Uspenski et al. Jul 2018 A1
20180250166 Lubatschowski Sep 2018 A1
20180256320 Millwee et al. Sep 2018 A1
20180333296 Heitzmann et al. Nov 2018 A1
20190000673 Field et al. Jan 2019 A1
20190021907 Horvath et al. Jan 2019 A1
20190038462 Vandiest Feb 2019 A1
20190038463 Kasic Feb 2019 A1
20190046356 Laroche Feb 2019 A1
20190060118 Hill Feb 2019 A1
20190133826 Horvath et al. Mar 2019 A1
20190121278 Kawamura et al. Apr 2019 A1
20190142632 Badawi et al. May 2019 A1
20190151079 Zaldivar May 2019 A1
20190167475 Horvath et al. Jun 2019 A1
20190240069 Horvath et al. Aug 2019 A1
20190247231 McClunan Aug 2019 A1
20190254873 Camras et al. Aug 2019 A1
20190274881 Romoda et al. Sep 2019 A1
20190274882 Romoda et al. Sep 2019 A1
20190307608 Lee et al. Oct 2019 A1
20190344057 Cima et al. Nov 2019 A1
20190350758 Horvath et al. Nov 2019 A1
20190353269 Ossmer et al. Nov 2019 A1
20190358086 Camras et al. Nov 2019 A1
20190374384 Xie et al. Dec 2019 A1
20200069469 Horvath et al. Mar 2020 A1
20200085620 Euteneuer et al. Mar 2020 A1
20200121503 Badawi et al. Apr 2020 A1
20200121504 Stegmann et al. Apr 2020 A1
20200129332 Van Der Mooren et al. Apr 2020 A1
20200170839 Borrmann et al. Jun 2020 A1
20200179171 Crimaldi et al. Jun 2020 A1
20200214891 Bigler et al. Jul 2020 A1
20200229977 Mixter et al. Jul 2020 A1
20200229980 Horvath Jul 2020 A1
20200229981 Mixter et al. Jul 2020 A1
20200229982 Mixter et al. Jul 2020 A1
20200246188 Horvath et al. Aug 2020 A1
20200253725 Hadba et al. Aug 2020 A1
20200261271 Horvath et al. Aug 2020 A1
20200276050 Simons et al. Sep 2020 A1
20200306086 Da Silva Curiel et al. Oct 2020 A1
20200345549 Lu et al. Nov 2020 A1
20200376239 Heilman et al. Dec 2020 A1
20210015665 Hacker et al. Jan 2021 A1
20210030590 Blanda et al. Feb 2021 A1
20210038158 Haffner et al. Feb 2021 A1
20210069486 Hakim Mar 2021 A1
20210106462 Sherwood et al. Apr 2021 A1
20210128357 de Juan, Jr. et al. May 2021 A1
20210137736 Cavuto et al. May 2021 A1
20210137737 Burns et al. May 2021 A1
20210161713 Bouremel et al. Jun 2021 A1
20210196516 Ianchulev Jul 2021 A1
20210205132 Horvath et al. Jul 2021 A1
20210212858 Tran et al. Jul 2021 A1
20210251806 Schultz et al. Aug 2021 A1
20210282922 Cohen-Tzemaeh et al. Sep 2021 A1
20210298948 Haffner et al. Sep 2021 A1
20210315806 Haffner Oct 2021 A1
20210330499 Wardle et al. Oct 2021 A1
20220142818 Chang et al. May 2022 A1
20220160545 Mixter et al. May 2022 A1
20220160546 Mixter et al. May 2022 A1
20220168146 Badawi et al. Jun 2022 A1
20220202613 Chang et al. Jun 2022 A1
20220203078 May Jun 2022 A1
20220241565 Nae et al. Aug 2022 A1
20220265974 Saul et al. Aug 2022 A1
20220273491 Brown Sep 2022 A1
20220339035 Lilly et al. Oct 2022 A1
20220354695 Badawi et al. Nov 2022 A1
20220387216 Schultz et al. Dec 2022 A1
20220387217 Argento et al. Dec 2022 A1
20230086856 Chang et al. Mar 2023 A1
20230092196 Argento et al. Mar 2023 A1
20230201544 Schultz et al. Jun 2023 A1
20230233378 Chang et al. Jul 2023 A1
20230240891 Lilly et al. Aug 2023 A1
20230285192 Chang et al. Sep 2023 A1
20240139029 Chang et al. May 2024 A1
20240173169 Schultz et al. May 2024 A1
20240277522 Schultz et al. Aug 2024 A1
20240277523 Schultz et al. Aug 2024 A1
20240325697 Schultz et al. Oct 2024 A1
20240399122 Bronez et al. Dec 2024 A1
20250010044 Schultz et al. Jan 2025 A1
Foreign Referenced Citations (134)
Number Date Country
2014200171 Jan 2014 AU
2014201621 Mar 2016 AU
2016201445 Mar 2016 AU
2018200325 Feb 2018 AU
2017274654 Dec 2018 AU
2020201818 Apr 2020 AU
2017439185 May 2020 AU
2018412569 Oct 2020 AU
112017025859 Aug 2018 BR
112020008969 Oct 2020 BR
2987953 Dec 2016 CA
3067172 Dec 2018 CA
3080713 May 2019 CA
3093160 Sep 2019 CA
101360523 Feb 2009 CN
101965211 Feb 2011 CN
103476371 Dec 2013 CN
104490515 Apr 2015 CN
106726124 May 2017 CN
108743016 Nov 2018 CN
11405875 Jul 2020 CN
2020011460 Nov 2020 CO
10217061 Mar 2003 DE
102010015447 Oct 2011 DE
102017124885 Apr 2019 DE
102018112065 Nov 2019 DE
102019204846 Oct 2020 DE
1292256 Mar 2003 EP
1380317 Jan 2004 EP
1737531 Jan 2007 EP
2552369 Jan 2017 EP
3302381 Apr 2018 EP
1765234 Oct 2019 EP
2999430 Nov 2019 EP
2677981 Apr 2020 EP
3659495 Jun 2020 EP
3518846 Aug 2020 EP
3666236 Aug 2020 EP
3687374 Aug 2020 EP
3706653 Sep 2020 EP
3730104 Oct 2020 EP
3735947 Nov 2020 EP
3773377 Feb 2021 EP
3846747 Jul 2021 EP
3846748 Jul 2021 EP
3329884 Aug 2021 EP
2389138 Sep 2021 EP
3870120 Sep 2021 EP
3313335 Nov 2021 EP
2725550 Sep 2019 ES
2602434 Sep 2022 GB
1252748 May 2019 HK
043303 Aug 2019 HU
2001-523519 Nov 2001 JP
2013505065 Feb 2013 JP
5576427 Aug 2014 JP
2017526504 Sep 2017 JP
2018-501010 Jan 2018 JP
2018519892 Jul 2018 JP
2018130580 Aug 2018 JP
2018529466 Oct 2018 JP
2019517366 Jun 2019 JP
201905934 Dec 2019 JP
2020049361 Apr 2020 JP
2018015684 Feb 2018 KR
20190019966 Feb 2019 KR
20200021551 Feb 2020 KR
20200059305 May 2020 KR
2640455 Aug 2019 PL
2640455 May 2019 PT
2687764 May 2019 RU
2018142990 Jun 2020 RU
11202008604 Oct 2020 SG
201906873 Jun 2019 TR
WO1992019294 Nov 1992 WO
WO1996019249 Jun 1996 WO
WO2004073564 Sep 2004 WO
WO2004081613 Sep 2004 WO
WO2007011302 Jan 2007 WO
WO2007087061 Aug 2007 WO
WO2009111645 Sep 2009 WO
WO2010111528 Sep 2010 WO
WO2011034740 Mar 2011 WO
WO2012040380 Mar 2012 WO
WO2012113450 Aug 2012 WO
WO2014130574 Aug 2014 WO
WO2016033270 Mar 2016 WO
WO2016100500 Jun 2016 WO
WO2016149425 Sep 2016 WO
WO2016196841 Dec 2016 WO
WO2017058656 Apr 2017 WO
WO2018229766 Dec 2018 WO
WO2019018807 Jan 2019 WO
WO2019094004 May 2019 WO
WO2019094004 May 2019 WO
WO2019165053 Aug 2019 WO
WO2019172940 Sep 2019 WO
WO2020150663 Jul 2020 WO
WO2020215068 Oct 2020 WO
WO2020223491 Nov 2020 WO
WO2020231993 Nov 2020 WO
WO2020261184 Dec 2020 WO
WO2021028703 Feb 2021 WO
WO2021068078 Apr 2021 WO
WO2021072315 Apr 2021 WO
WO2021072317 Apr 2021 WO
WO2021113730 Jun 2021 WO
WO2021142255 Jul 2021 WO
WO2021151007 Jul 2021 WO
WO2021163566 Aug 2021 WO
WO2021168130 Aug 2021 WO
WO2021174298 Sep 2021 WO
WO2021176332 Sep 2021 WO
WO2021188952 Sep 2021 WO
WO2021204312 Oct 2021 WO
WO2021212007 Oct 2021 WO
WO2021230887 Nov 2021 WO
WO2022159723 Jul 2022 WO
WO2022175681 Aug 2022 WO
WO2022220861 Oct 2022 WO
WO2023004067 Jan 2023 WO
WO2023278452 Jan 2023 WO
WO2023009366 Feb 2023 WO
WO2023063961 Apr 2023 WO
WO2023064491 Apr 2023 WO
WO2023091307 May 2023 WO
WO2023107486 Jun 2023 WO
WO2023215461 Nov 2023 WO
WO2024026397 Feb 2024 WO
WO2024030949 Feb 2024 WO
WO2024097723 May 2024 WO
WO2024097743 May 2024 WO
WO2024220861 Oct 2024 WO
201708295 May 2020 ZA
Non-Patent Literature Citations (38)
Entry
International Search Report and Written Opinion received for PCT Application No. PCT/US22/35324, filed on Jun. 28, 2022, Applicant: Shifamed Holdings, LLC, Date of Mailing: Nov. 22, 2022, 12 pages.
Extended European Search Report received for EP Application No. 20741616.5, Applicant: Shifamed Holdings, LLC, Date of Mailing: Oct. 5, 2022, 8 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US22/37747, filed on Jul. 20, 2022, Applicant: Shifamed Holdings, LLC, Date of Mailing: Dec. 6, 2022, 15 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US22/37917, filed on Jul. 21, 2022, Applicant: Shifamed Holdings, LLC, Date of Mailing: Dec. 15, 2022, 15 pages.
Keulegan et al. “Pressure Losses for Fluid Flow in Curved Pipes,” Journal of Research of the National Bureau of Standards, vol. 18, Jan. 31, 1937 (Jan. 31, 1937), 26 pages.
Olsen et al. “Human sclera: thickness and surface area,” American Journal of Ophthalmology, vol. 125, Issue. 2, https://pubmed.ncbi.nlm.nih.gov/9467451, Feb. 1, 1998 (Feb. 1, 1998), 1 page.
International Search Report and Written Opinion received for PCT Application No. PCT/US22/048863, filed on Nov. 3, 2022, Applicant: Shifamed Holdings, LLC, Date of Mailing: Feb. 16, 2023, 13 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US20/55144, filed on Oct. 9, 2020, Applicant: Shifamed Holdings, LLC, Date of Mailing: Feb. 1, 2021, 16 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US20/55141, filed on Oct. 9, 2020, Applicant: Shifamed Holdings, LLC, Date of Mailing: Jan. 29, 2021, 11 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US21/14774, filed on Jan. 22, 2021, Applicant: Shifamed Holdings, LLC, Date of Mailing: May 12, 2021, 10 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US21/17962, filed on Feb. 12, 2021, Applicant: Shifamed Holdings, LLC, Date of Mailing: Jun. 7, 2021, 12 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US21/23238, filed on Mar. 19, 2021, Applicant: Shifamed Holdings, LLC, Date of Mailing: Jul. 8, 2021, 10 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US21/18601, filed on Feb. 18, 2021, Applicant: Shifamed Holdings, LLC, Date of Mailing: Jul. 19, 2021, 12 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US21/27742, filed on Apr. 16, 2021, Applicant: Shifamed Holdings, LLC, Date of Mailing: Oct. 7, 2021, 13 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US18/43158, filed on Jul. 20, 2018, Applicant: Shifamed Holdings, LLC, Date of Mailing: Nov. 23, 2018, 12 pages.
International Search Reportand Written Opinion received for PCT Application No. PCT/US20/41159, filed on Jul. 8, 2020, Applicant: Shifamed Holdings, LLC, Date of Mailing: Oct. 28, 2020, 13 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US20/41152, filed on Jul. 8, 2020, Applicant: Shifamed Holdings, LLC, Date of Mailing: Oct. 28, 2020, 13 pages.
International Search Reportand Written Opinion received for PCT Application No. PCT/US20/14186, filed on Jan. 17, 2020, Applicant: Shifamed Holdings, LLC, Date of Mailing: Jun. 4, 2020, 13 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US21/49140, filed on Sep. 3, 2021, Applicant: Shifamed Holdings, LLC, Date of Mailing: Dec. 7, 2021, 22 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US21/55258, filed on Oct. 15, 2021, Applicant: Shifamed Holdings, LLC, Date of Mailing: Feb. 28, 2022, 18 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US22/13336, filed on Jan. 21, 2022, Applicant: Shifamed Holdings, LLC, Date of Mailing: Apr. 11, 2022, 9 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US22/52002, filed on Dec. 6, 2022, Applicant: Shifamed Holdings, LLC, Date of Mailing: Mar. 21, 2023, 11 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US22/46604, filed on Oct. 13, 2022, Applicant: Shifamed Holdings, LLC, Date of Mailing: Mar. 30, 2023, 11 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US23/80290, filed on Nov. 17, 2023, Applicant: Shifamed Holdings, LLC, Date of Mailing: May 15, 2024, 12 pages.
English translation of Japanese Office Action received for Application No. 2022-521301, Applicant: Shifamed Holdings, LLC, Date of Mailing: Jun. 3, 2024, 3 pages.
Extended European Search Report received for EP Application No. 23158246.1, Applicant: Shifamed Holdings, LLC, Date of Mailing: Aug. 7, 2023, 7 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US23/20973, filed on May 4, 2023, Applicant: Shifamed Holdings, LLC, Date of Mailing: Sep. 21, 2023, 15 pages.
Extended European Search Report received for EP Application No. 20874212.2, Applicant: Shifamed Holdings, LLC, Date of Mailing: Oct. 18, 2023, 8 pages.
Extended European Search Report received for EP Application No. 20875070.3, Applicant: Shifamed Holdings, LLC, Date of Mailing: Dec. 19, 2023, 7 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US23/71501, filed on Aug. 2, 2023, Applicant: Shifamed Holdings, LLC, Date of Mailing: Jan. 18, 2024, 20 pages.
Extended European Search Report received for EP Application No. 21744394.4, Applicant: Shifamed Holdings, LLC, Date of Mailing: Jan. 26, 2024, 7 pages.
Extended European Search Report received for EP Application No. 21787751.3; Applicant: Shifamed Holdings, LLC, Date of Mailing: Mar. 15, 2024, 8 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US23/71116, filed on Jul. 27, 2023, Applicant: Shifamed Holdings, LLC, Date of Mailing: Mar. 1, 2024, 12 pages.
Extended European Search Report received for EP Application No. 22743262.2; Applicant: Shifamed Holdings, LLC, Date of Mailing: Oct. 28, 2024, 8 pages.
Collins Dictionary, Textured definition and meaning, 2024, Collins Dictionary, https://www.collinsdictionary.com/dictionary/english/textured, Year: 2024, 1 page.
English translation of Chinese Office Action received for CN Application No. 201880060989.1; Applicant: Shifamed Holdings, LLC, Date of Mailing: Oct. 18, 2024, 9 pages.
English translation of Japanese Office Action received for Application No. 2022-521302; Applicant: Shifamed Holdings, LLC, Date of Mailing: Dec. 24, 2024, 7 pages.
Extended European Search Report received for EP Application No. 21937177.0, Applicant: Shifamed Holdings, LLC, Date of Mailing: Jan. 16, 2025, 6 pages.
Related Publications (1)
Number Date Country
20220087865 A1 Mar 2022 US
Provisional Applications (1)
Number Date Country
62794430 Jan 2019 US