This invention relates to nozzles and more particularly to adjustable nozzles configured to control the flow of water through a conduit.
Water flow devices such as ornamental water fountains generally include means for providing water from a source, filling an area such as a basin and draining the water away. In some conventional water fountains, one or more jets are utilized to force water into the air, under pressure, to a desired distance. In other conventional water fountains a nozzle causes the water to reach a certain distance.
Ornamental water fountains may utilize a plurality of nozzles to provide separate streams of water. For instance, the plurality of nozzles may be configured to provide streams of water that travel to the same point. In other arrangements, plurality of nozzles may be configured to provide streams of water that travel to different points and are tailored to be aesthetically pleasing to a viewer. It is often desirable to adjust the nozzle to control the distance of each stream. Over time, streams configured to travel to the same point may need adjusting to continue traveling to the same point. Furthermore, it may be desirable to change the characteristics of streams, such as the volume and velocity of a stream and the distance that one or more streams travels.
In conventional nozzles, a fountain owner or technician adjusts the characteristics of a stream by disassembling the nozzle, adjusting the internal components, and reassembling the nozzle or adjusting upstream valving that controls the water flow to the nozzle. After testing the distance of the water flowing from the adjusted nozzle, the fountain owner or technician may be required to disassemble the nozzle, adjust the internal components a second time, and reassemble the nozzle. These steps may need to be repeated until desired water stream characteristics are achieved.
Disassembling, adjusting the nozzle components, and reassembling the nozzle take a relatively long amount of time. If the nozzle must be reassembled, tested, and adjusted again, the amount of time is even longer. Accordingly, a need exists for a fountain nozzle in which the characteristics, such as volume, velocity, and distance, of the water stream may be adjusted without disassembling the nozzle.
In some conventional water fountain systems, a secondary valve, separate from the nozzle, may control water flow characteristics. These systems may require water fountain owners to purchase a nozzle and a secondary valve to provide the user with control over water flow characteristics. Therefore, a need exists for a water fountain system that does not require the user or water fountain owner to purchase and install a secondary valve in order to allow the user to control the water flow characteristics.
Various aspects and embodiments of the present invention provide a nozzle having a first end for receiving water, a second end for allowing water to exit and an internal valve for controlling the flow of water through the nozzle. Unlike existing fountain nozzles, the nozzle of the present invention may include a valve having an adjustable component that may be adjusted using a tool or manually. Instead of disassembling the nozzle, the tool may be used to adjust the adjustable component. For example, the adjustable component may be adjusted longitudinally with respect to the axis of the nozzle using a tool (or manually), thereby increasing or decreasing (or otherwise changing) water flow characteristics, such as the volume, velocity and distance of the water stream exiting the nozzle, as desired.
In one embodiment of the invention, the nozzle includes a valve having an adjustable component configured to controllably impinge the flow of water. The adjustable component may be essentially tubular with at least part of the surface threaded for communicating with a nozzle wall and include a first end configured to connect to a tool. A tool may be inserted through a nozzle second end, connected to the adjustable component and used to rotate the adjustable component, thereby changing the adjustable component's position and the amount in which the water flow is impinged.
In another embodiment of the invention, a nozzle may include an adjustable component that is essentially tubular and include a first end for connecting to a tool and a tapered second end for impinging the flow of water. At least part of the adjustable component's outer surface may be threaded for coupling with an internal nozzle wall. The tapered second end cooperates with an internal wall of the nozzle first end to impinge the flow of water. The amount that the water is impinged depends on the location of the adjustable component within the nozzle. A tool inserted into a second end of the nozzle may be used to adjust the location of the adjustable component.
In another embodiment of the invention, a nozzle is provided having an adjustable component that is a spout. The spout may have an outside surface, a first end configured to impinge the flow of water, and a second end configured to connect to a tool for changing the location of the spout. The spout first end may include a plurality of openings located in the first end and configured to allow more or less water to flow through the valve depending on the position of the spout. When the spout changes position, for example by rotating or translating the spout with a tool, the openings allow more or less water to flow through the nozzle, as desired.
In some embodiments of the invention, the nozzle may include a ball socket to allow the angle of the water stream to be adjusted.
In some embodiments of the invention, the tool may be a Phillips, hex or flat screwdriver.
In some embodiments of the invention, water flow characteristics through a nozzle may be adjusted by inserting a tool into a first end of the nozzle, detachably coupling the tool to an adjustable component associated with a valve in the nozzle, rotating the tool to change the position of the adjustable component, and removing the tool from the nozzle first end.
Optional, non-exclusive objects of the present invention include providing a fountain nozzle in which water flow characteristics, such as the volume, velocity, and distance of a water stream may be easily adjusted.
Another optional, non-exclusive object of various embodiments of the present invention is to provide a nozzle in which the volume, velocity, and distance of a water stream may be adjusted without disassembling the nozzle.
It is a further optional, non-exclusive object of some embodiments of the present invention to provide a valve having an adjustable component that may be accessed, using a tool, to adjust the location of the adjustable component.
It is a further optional, non-exclusive object of some embodiments of the present invention to provide a nozzle having an internal valve to adjust the volume and velocity of the flow of water through the nozzle without needing a secondary valve in the water fountain system.
Other objects, features, and advantages of the present invention will become apparent with reference to the remainder of the text and the drawings of this application.
Shown in
In the embodiment illustrated in
The location of the adjustable component 26 may be adjusted in accordance with double-headed arrow 32. To adjust the adjustable component 26, a tool such as a screwdriver is inserted through the spout 16 of nozzle first end 12. The tool is connected to the adjustable component first end 28, such as by inserting the tool into a slot or other opening in the adjustable component first end 28 and rotating the tool in one direction to change the adjustable component 26 to further from the nozzle first end 12 and an opposite direction to change the position of the adjustable component 26 to closer to the nozzle first end 12. Depending on the location of the adjustable component 26 relative to the nozzle first end 12, the flow of water through the nozzle may be impinged more or less. For instance, the area available for the water to flow through the nozzle 10 decreases as the adjustable component 26 is adjusted closer to the nozzle first end 12. Accordingly, the volume and velocity of the water exiting the nozzle first end 12 is decreased while the velocity of the exiting water is increased. Similarly, as the adjustable component 26 is adjusted further away from the nozzle first end 12, the volume of the exiting water increases while the velocity decreases. The adjustable component 26 may be adjusted while water is exiting the spout 16 or when water is not flowing through the nozzle 10.
The ball socket 118 may be connected to a nozzle chamber 119 to allow water to exit the nozzle 100 at an angle. In some embodiments, an O-ring (not shown) may be conventionally located at the bottom and/or top of the ball socket 118 to form a seal. An O-ring located at the bottom and/or top of the ball socket 118, however, may not allow the ball socket 118 to fully rotate and change angles and/or may allow leaks when the ball socket 118 is rotated since water may flow past the O-ring when the ball socket 118 is rotated to certain positions. Therefore, in some embodiments of the present invention, an O-ring 125 may cooperate with the ball socket 118 at the equatorial position of the ball socket 118 to form a seal. When the O-ring 125 is located at the equatorial position, the ball socket 118 is allowed to fully rotate and the angle of the ball socket 118 may be changed without leaks occurring since the O-ring 125 is not at a position in which water might flow around it. The position of the ball socket 118 may be changed manually or by using the same or a different tool to change the position of the adjustable component 126.
The nozzle 100 may also contain a first inner wall 120 and a second inner wall 122. The first inner wall 120 and second inner wall 122 may form a channel 124 for water to flow through and the adjustable component 126 may be in the channel 124. The adjustable component 126, as illustrated in
The adjustable component 226, as illustrated in
For example, a tool, such as a screwdriver or other similar device, may be inserted through the spout 216, connected to the adjustable component first end 228, and rotated to change the location of the adjustable component 226. As the adjustable component 226 is adjusted closer to the nozzle chamber second end 224, the impingement of the water flow is increased, thereby decreasing the volume of water exiting the nozzle spout 216 and increasing the velocity of the exiting water. As the adjustable component 226 is adjusted further away from the nozzle chamber second end 224, the impingement of the water flow is decreased, thereby increasing the volume of water exiting the nozzle spout 216 and decreasing the velocity of the exiting water.
As illustrated in
The adjustable spout 302 may have an outer surface 318 with at least a portion that is threaded 320 for connecting the adjustable spout 302 to an inner wall of the nozzle or a ball socket 322. In some embodiments, the ball socket 322 may allow the angle of the adjustable spout 302 to be changed and include a surface 324 for receiving the adjustable spout threaded portion 320. The adjustable spout first end 304 is configured to receive a tool, such as a wrench or other similar device, to rotate the adjustable spout 302 from the outside. Although the adjustable spout first end 304 in
The adjustable spout openings 308, 310, 312 cooperate with the nozzle chamber ledge 314 to impinge the flow of water. Depending on the location of the adjustable spout 302 relative to the nozzle chamber ledge 314, the flow of water through the nozzle may be impinged more or less. To change the position of the adjustable spout 302, a tool is connected to the adjustable spout first end 304 and is used to rotate the adjustable spout 302. When the adjustable spout 302 is rotated in one direction, the adjustable spout 302 is adjusted downward and towards the nozzle chamber ledge 314, thereby increasing the impingement experienced by the water flowing through the nozzle 300, decreasing the water flow volume, and increasing the water flow velocity. When the adjustable spout 302 is rotated in the opposite direction, the adjustable spout 302 is adjusted away from the nozzle chamber ledge 314, thereby decreasing the impingement experienced by the water flowing through the nozzle 300, decreasing the water flow volume, and increasing the water flow velocity.
The adjustable spout 302 illustrated in
The adjustable spout 502 may have a first end 512 having an opening for allowing water to exit the nozzle and configured to receive a tool, a second end 514 for cooperating with the impinging component 504 to impinge the flow of water through the nozzle 500, and a outer surface 516. A portion of the outer surface 516 may be threaded to connect the adjustable spout 502 to an inside wall 518 of the nozzle 500. To control the volume and velocity of the water flow, a tool, such as a wrench or other similar device, is connected to the adjustable spout first end 512 and used to rotate the adjustable spout 502. When the adjustable spout 502 is rotated in one direction, the adjustable spout 502 may be moved downward and toward the impinging component 504, thereby increasing the impingement experienced by the flow of water through the nozzle 500, decreasing the volume of water exiting the nozzle 500 and increasing the velocity of the water flow. When the adjustable spout 502 is rotated in the opposite direction, the adjustable spout 502 may be moved upward and away from the impinging component 504, thereby decreasing the impingement experienced by the flow of water through the nozzle 500, increasing the volume of water exiting the nozzle 500 and decreasing the velocity of the water flow. Accordingly, the volume, velocity, and thus the distance of the stream of water exiting the nozzle may be adjusted without disassembling the nozzle.
The nozzle 600 also includes a spout 610 having a ball socket 612. The ball socket 612 may be adapted to change position to allow water to exit the nozzle 600 at a desired angle.
The foregoing is provided for purposes of illustrating, explaining, and describing embodiments of the present invention. Further modifications, adaptations and additional components added to these embodiments will be apparent to those skilled in the art and may be made without departing from the scope or spirit of the invention.
This application is a continuation application of U.S. patent application Ser. No. 11/805,313, titled “Adjustable Flow Nozzles,” filed May 23, 2007, which claims benefit of U.S. Provisional Patent Application Ser. No. 60/808,300, titled “Adjustable Flow Nozzles” and filed May 25, 2006, the entire contents of each of which are hereby incorporated by this reference.
Number | Date | Country | |
---|---|---|---|
60808300 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11805313 | May 2007 | US |
Child | 12831379 | US |