1. Field of the Invention
This invention relates to fluid handling processes and apparatus. More particularly, this invention relates to new methods and apparatus for distributing the flow of fluid from a fluidic insert or oscillator.
2. Description of the Related Art
Fluidic inserts or oscillators are well known for their ability to provide a wide range of distinctive liquid sprays. The distinctiveness of these sprays is due to the fact that they are characterized by being oscillatory in nature, as compared to the relatively steady state flows that are emitted from standard spray nozzles.
U.S. Pat. No. 4,052,002 (Stouffer & Bray) shows in its FIG. 5 one of the characteristic flow patterns that can be achieved with a fluidic oscillator. This fluidic oscillator is shown in the typical manner—that is, only some form of its top or bottom views is presented as it is assumed that it is essentially a two-dimensional device for which such views are sufficient to reveal the internal geometry of its fluid passages or fluidic circuit. Common features of such a fluidic circuit include: (a) a fluid source inlet, (b) at least one power nozzle configured to accelerate the movement of the fluid that flows under pressure through the insert, (c) a fluid pathway that connects the fluid source inlet and the power nozzle/s, (d) an interaction chamber downstream of the power nozzle and through which the fluid flows and in which the fluid flow phenomena is initiated that will eventually lead to the flow from the insert being of an oscillating nature, (e) feedback or control passages (see FIG. 5's indicia 18 and 19 which mark the entries to these feedback passages), and (f) a fluid outlet or throat from which the fluid exits the fluidic oscillator or insert.
Despite much prior art relating to the development of fluidic inserts and fluidic circuits, the nature of the housings or enclosures that surround fluidic inserts and the methods for mounting fluidic inserts had, until recently, changed only slowly over the years. Representative examples of the housings for fluidic inserts and the methods for mounting them are described in U.S. Pat. Nos. 6,062,491, 7,014,131, 5,845,845, 6,464,150 and in U.S. Patent Publication Nos. 2004-0227021, 2004-0164189, 2006-0108442 and 2006-0043110, which are incorporated herein by reference in their entirety.
As fluidic inserts have continued to be used in more types of applications, the need has arisen to fabricate them and their housing so that they can be located in and incorporated into ever diminishing size spaces. Thus, the opportunity has arisen to re-examine and improve upon the technology involved in such fluidic inserts and the methods for mounting them.
There has been summarized above, rather broadly, the prior art that is related to the present invention in order that the context of the present invention may be better understood and appreciated. In this regard, it is instructive to also consider the objects and advantages of the present invention.
It is an object of the present invention to provide improved and more versatile fluidic inserts which can be used to help meet the smaller size constraints that continued to be placed upon fluid spray devices.
It is a further object of the present invention to provide improved and more versatile fluidic inserts that will enable the spray devices which use them to be used in a wider range of service applications.
It is an object of the present invention to provide novel methods for mounting for fluidic inserts that can be helpful in improving upon the actual spray performance of the spray devices or nozzle assemblies that utilize fluidic oscillators.
It is also an object of the present invention to provide fluidic spray assemblies (i.e., fluidic oscillators with their enclosures) that can provide specific types of desired sprays that have heretofore not been achievable with conventional fluidic technology.
These and other objects and advantages of the present invention will become readily apparent as the invention is better understood by reference to the accompanying summary, drawings and the detailed description that follows.
Recognizing the need for the development of improved fluidic spray devices that can better address the unique surface wetting challenges and problems associated with automotive sprayers, the present invention is generally directed to satisfying the needs set forth above and overcoming the disadvantages identified with prior art devices and methods.
In accordance with the present invention, the foregoing need can be satisfied by providing a fluidic spray device that in a first preferred embodiment includes the following elements: (a) a base having boundary surfaces including top, bottom and side edge surfaces, (b) a plurality of projections extending from a base boundary surface chosen from the group consisting of its top and bottom surfaces, wherein these projections are configured and spaced so as to provide the interior geometry of the flow passages for a fluidic circuit having a power nozzle and an interaction region located downstream of the power nozzle, and (c) wherein the flow passages that are proximate the base edges having no sidewalls to form edge boundaries for these flow passages.
In a second preferred embodiment, this devise further includes a secondary housing having an outer surface that includes a front and a rear face, an intermediate boundary surface that connects these faces, and a housing passage having interior walls that extends between the faces, with this housing passage having a definable front and a rear portion. The intersection of the housing passage's rear portion with the rear face of the housing forms the opening to a cavity formed by the interior walls of the housing passage's rear portion. Additionally, the housing passage's front portion is configured so as to form a throat whose intersection with the housing's front face forms an outlet from which the spray which flows from the device issues.
Thus, there has been summarized above, rather broadly, the present invention in order that the detailed description that follows may be better understood and appreciated. There are, of course, additional features of the invention that will be described hereinafter and which will form the subject matter of the claims to this invention.
a)-1(b) show, respectively, a perspective and a top view of a preferred embodiment of the present invention. Shown is a fluidic insert or device 10 that has a top surface 14 that is configured, in this instance, according to the fluidic circuit geometry disclosed in U.S. Pat. No. 6,253,782 (although it should be noted that many of the fluidic circuits previously mentioned in the “Related Art” section of this application could have served as guidance for the configuring the top surface of this device) and which is shown herein in
a)-3(b) show a perspective and a cross-sectional view of a secondary housing that is suitable for use with the insert shown in
a)-4(b) show a perspective and a cross-sectional view of a primary housing that is suitable for use with the secondary housing shown in
b)-5(d) show, respectively, a perspective view of a housing that is suitable for use with this insert, and top and cross-sectional views of this housing and the insert located within this housing.
b) shows a housing that is suitable for enclosing the insert shown in
a) shows a similar version of the preferred embodiment previously seen in
b) shows a suitable housing for the insert shown in
a) and 8(b) show, respectively, a perspective view of a side-less, double spray, fluidic device and the “dual throat” housing in which this device is inserted.
c) shows a cross-sectional, side view of the housing of
Before explaining at least one embodiment of the present invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting.
We have discovered unique methods and means for improving the performance of fluidic oscillators that must adhere to strict size and configuration requirements, such as those encountered in providing sprayers for automotive applications where, in addition to the cosmetically dictated size and configuration requirements, there are often very demanding requirements for the surface wetting properties of the sprays that flow from such sprayers.
A common problem encountered in developing and producing fluidic oscillators or inserts for use in automotive windshield applications is designing a fluidic circuit which can give the desired spray characteristics (e.g., at flow rates of 400 ml/minute and operating pressures of 9 psig, uniform coverage with spray droplets of a target area located approximately 25 cm in front of the sprayer and having a target area width of approximately 80 cm) and which can be fitted onto the top or bottom surface of a fluidic insert that is constrained to have only a very limited width (e.g., typical acceptable widths are on the order of 8-9 mm).
Since such inserts are typically made by plastic injection molding methods, those knowledgeable with such manufacturing methods will understand that such methods impose further constraints on the geometry of such inserts. For example, a 8 mm wide fluidic insert has only about 6 mm width of room on its top or bottom surface for accommodating a fluidic circuit since the wall thickness of such pieces must typically be about 1 mm or larger.
a)-1(b) show, respectively, a perspective and a top view of a preferred embodiment of the present invention. Shown is a fluidic insert or device 10 that has a top surface 14 that is configured, in this instance, according to the fluidic circuit geometry disclosed in U.S. Pat. No. 6,253,782 (although it should be noted that many of the fluidic circuits previously mentioned in the “Related Art” section of this application could have served as guidance for the configuring the top surface of this device).
This fluidic device 10, which we denote herein as a “side-less or wall-less” fluidic insert, consists of a base 12 which has boundary surfaces which include a top 14, bottom 16, parallel front 18; and rear 20 surfaces or faces, a straight right side 22 surface and a straight left side 24 surfaces that is parallel to the right side 22 surface; additionally this device has a centerline that extends between its front and rear surfaces. The separation distance between the parallel right 22 and left 24 sides defines the essentially uniform width of this base for a fluidic insert. The separation distance between its parallel front 18 and rear 20 surfaces as measured along the device's centerline defines the length of this base for a fluidic insert. Its top surface has projections 26 which extend solely above and perpendicular to the device's base so as to not further increase the width of the base, and whose height and shape are dictated by the requirement that these projections make up the internal components or flow passages of a fluidic circuit whose actual configuration can take any one of the many previously referenced designs that are known for fluidic circuits.
Meanwhile, the design of the fluidic circuit of U.S. Pat. No. 6,253,782 is seen to have the common features of: a fluid source inlet 4a, five filter posts 4b which serve to capture any large-size debris particles in the circuit's flowing liquid that could clog the smaller downstream orifices or flow passages, two power nozzles 4c, 4d that are formed at the edges 4e, 4f of a somewhat streamline-shaped barrier 4g which stretches almost all the way from the circuit's right 4h to its left 4i sidewall, an interaction chamber 4j downstream of the power nozzles and through which the liquid flows and in which the fluid flow phenomena is initiated that will eventually lead to the flow from the insert being of an oscillating nature, and a fluid outlet 4k or throat from which a liquid exits this circuit. Note that it is the sidewalls 4h, 4i of this representative standard insert which ultimately requires it to be wider than the present invention since the present invention, as explained further below, has no such comparable sidewalls at the edges 22, 24 of its base 12.
Returning to
The present invention's fluidic circuit could also have had appropriately shaped throat posts located proximate its front surface 18 so as to form the throat that is a characteristic feature of these fluidic circuits. However, for this embodiment, these features have been made a part of the front portion of a secondary housing passage into which this base 12 is press fitted.
Shown in
a)-4(b) show an example of the primary housing 50 into which the secondary housing could be fitted. It has a top 52 outer surface which is aerodynamically streamlined from its rear 54 to its front 56 face. This front face has an opening 58 to a cavity 60 which extends into the body of this housing 50. A portion 62 of this cavity's inner surface 64 is configured to form a socket so that this cavity can accommodate the ball shaped portion 32 of the secondary housing 30. An orifice 66 extends from the bottom of this cavity to allow a liquid to flow into this housing.
This combination of secondary and primary housings is seen to provide an end-user of such spray devices with the ability to set a plurality of directional orientations of the secondary housing's outlet 36a relative to that of the primary housing 50. Thus, the combination allows for an end-user to manually adjust the direction of the spray which issues from this device.
It can be noted that this combination of housings was made effectively possible (i.e., recall that such devices have very strict geometry and size restrictions that they must meet) by the realization that the task of providing sidewalls for the incorporated fluidic circuit could be handled by the walls of the secondary housing's cavity. This allows for the addition of an additional boundary wall within such a device without the device exceeding its width constraints. Note also that the flexibility of adjusting this device's spray direction means that the overall width of the incorporated fluid circuit need not be as large as those found in conventional applications since the width of the spray's wetted area can be reduced since most target areas can now be more effectively addressed by more precisely aiming the direction of this device's spray.
In other applications in which this spray directional adjustability feature is not needed, the use of the side-less fluidic spray devices disclosed herein allows for the overall width of such sprayers to be reduced.
a)-5(c) show, respectively, perspective, top and cross-sectional views of an example of an alternative “rear loading” housing which is suitable for use with the insert shown in
It can be noted that the use of this “rear-loading” housing also has the benefit of eliminating the spurious sprays (i.e., “streamers’) that could previously appear at the front edges of a fluidic insert's contact points with its surrounding housing.
An additional benefit of this type of housing is that it allows for fabrication techniques to be employed in the construction of such plastic molded parts which result in it being easier to modify the critical design features of such housings. For example, small design feature changes to commercially produced, standard fluidic inserts usually means making changes to the depths and fan angles of such fluidic circuits by employing assorted grinding operations on the steel molds which are used to make such pieces. Such changes usually limit fan and deflection angle changes to 3 degrees or less.
With a fluidic circuit throat being integrated into the housing, changes to this throat can now be made by employing a blade device in the housing's throat. It has been found that such blade devices can make changes to the throat that yield fan angle changes of 30 degrees and deflection angle changes of 4 degree or more.
A still further advantage of this type of housing, since a throat no longer has to be an element of the to-be-inserted insert's fluidic circuit, is that the insertion depth to which the fluidic insert is inserted into its housing can be easily varied. This effectively allows one to control the length of a fluidic circuit's interaction chamber (i.e., the distance between the fluidic circuit's power nozzles/s and the entrance to its throat), which provides one a further means to affect the fan angle of the sprays which issue from such devices.
The secondary housing 70 for this embodiment is similar to that previously shown in
a) shows a similar version of the preferred embodiment previously seen in
The methods of the present invention have also been combined with “double spray” insert technology to yield yet another embodiment of the present invention.
This housing 80 is similar to that shown in
It can be noted that the widths of this housing's orifices 88, 90 are different, the bottom orifice 88 being wider than the top orifice 90. This difference serves to allow for the creation of top and bottom sprays having differing horizontal fan angles. Many other differences between these sprays can be made by making other changes to the flow paths of the two sprays. For example, one could simply construct this fluidic device so that its top and bottom surfaces use different fluidic circuits. As previously noted, there are many fluidic circuits in the prior art that can be used in the present invention to create many differing embodiments of the present invention.
The foregoing is considered as illustrative only of the principles of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, and because of the wide extent of the teachings disclosed herein, the foregoing disclosure should not be considered to limit the invention to the exact construction and operation shown and described herein. Accordingly, all suitable modifications and equivalents of the present disclosure may be resorted to and still considered to fall within the scope of the invention as hereinafter set forth in the claims.
Number | Name | Date | Kind |
---|---|---|---|
3185166 | Horton | May 1965 | A |
3563462 | Bauer | Feb 1971 | A |
3791584 | Drew et al. | Feb 1974 | A |
4052002 | Stouffer | Oct 1977 | A |
4088269 | Schlick | May 1978 | A |
4151955 | Stouffer | May 1979 | A |
4157161 | Bauer | Jun 1979 | A |
4231519 | Bauer | Nov 1980 | A |
4398664 | Stouffer | Aug 1983 | A |
4463904 | Bray | Aug 1984 | A |
4508267 | Stouffer | Apr 1985 | A |
4515315 | Corsette | May 1985 | A |
4562867 | Stouffer | Jan 1986 | A |
4944457 | Brewer | Jul 1990 | A |
5035361 | Stouffer | Jul 1991 | A |
5181660 | Stouffer et al. | Jan 1993 | A |
5213269 | Srinath et al. | May 1993 | A |
5577664 | Heitzman | Nov 1996 | A |
5749525 | Stouffer | May 1998 | A |
5820034 | Hess | Oct 1998 | A |
5845845 | Merke et al. | Dec 1998 | A |
5906317 | Srinath | May 1999 | A |
5971301 | Stouffer et al. | Oct 1999 | A |
6186409 | Srinath et al. | Feb 2001 | B1 |
6240945 | Srinath et al. | Jun 2001 | B1 |
6253782 | Raghu | Jul 2001 | B1 |
6354515 | Matsumoto et al. | Mar 2002 | B1 |
6360965 | Clearman | Mar 2002 | B1 |
6575386 | Thurber et al. | Jun 2003 | B1 |
6805164 | Stouffer | Oct 2004 | B2 |
7316362 | Miyauchi | Jan 2008 | B2 |
20030178506 | Kondou | Sep 2003 | A1 |
20030234303 | Berning et al. | Dec 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20060226266 A1 | Oct 2006 | US |