Adjustable flux transfer shunt trip actuator and electric power switch incorporating same

Information

  • Patent Grant
  • 6218921
  • Patent Number
    6,218,921
  • Date Filed
    Thursday, February 24, 2000
    24 years ago
  • Date Issued
    Tuesday, April 17, 2001
    23 years ago
Abstract
A flux transfer shunt trip actuator has an elongated seat member extending between the legs of a U-shaped magnetically permeable frame member. A plunger is magnetically latched against the seat formed by the seat member in a retracted position by permanent magnets positioned adjacent the seat. The field generated by permanent magnets produces a latching force which exceeds a bias force generated by a helical compression spring extending along the elongated seat member and biasing the plunger toward an actuated position spaced from the seat. A coil surrounding the elongated seat member and the spring, generates an electromagnetic field when energized which bucks the permanent magnet field so that the plunger is driven to the actuated position by the spring. Preload on the spring is adjusted by an adjusting member positioned along a threaded shaft coaxial with the spring and extending from the bight of the U-shaped frame in the opposite direction from the pair of legs of the frame. A pair of opposed cylindrical sections project from the adjusting member through the bight and bear against the spring.
Description




BACKGROUND OF THE INVENTION




Field of the Invention




This invention relates to actuators for electrically operating switches in electric power circuits, and to electric power switches incorporating such actuators. The actuator is a flux transfer shunt trip actuator in which a coil is pulsed to generate a field which bucks the holding force generated by permanent magnets so that the spring drives the actuator to an actuated position to trip the operating mechanism of the electric power switch. More particularly, it relates to an arrangement for adjusting the response of the flux transfer shunt trip actuator.




Background Information




Electric power switches, such as for example, circuit breakers, transfers switches, network protectors, disconnects, and the like, typically have a stored energy powered operating mechanism that is tripped to rapidly open the power contacts of the switch. It is common to have electrically actuated devices actuating or tripping the operating mechanism. Even in the case of a circuit breaker with a thermal-magnetic trip unit, an electrically actuated device is often also provided to alternatively actuate the operating mechanism from a remote location or for other conditions, such as under voltage, loss of phase, or off frequency. In many cases, an electronic trip circuit is used instead of a thermal-magnetic mechanism for overcurrent protection.




It is becoming wide spread for the electronic circuits now used to actuate these trip devices to generate logic levels signals which have insufficient energy to actuate solenoids previously used for these purposes. A low energy device which has been developed to trip the operating mechanism of an electric power switch in response to logic level signals, is the flux transfer shunt trip actuator. These devices utilize a spring to bias a plunger to an actuated position. Permanent magnets generate sufficient magnetic force to override the actuating force generated by this spring and hold the plunger in an unactuated, typically a retracted, position. The actuating signal is applied to a coil to generate an electromagnetic force which bucks the force generated by the permanent magnets. With the permanent magnet field at least partially cancelled, the spring actuates the plunger. A short duration pulse applied to the coil is sufficient to actuate the plunger and trip the operating mechanism of the switch.




While these flux transfer shunt trip devices are very effective, slight variations in the strength of the magnets, springs, or even plating thicknesses can affect the current required to release the plunger. U.S. Pat. No. 5,886,605 discloses a flux transfer shunt trip actuator which incorporates an arrangement for calibrating the device. In this patented actuator, the spring biasing the plunger to the tripped position is mounted inside the cylindrical plunger. A screw threaded into the free end of the plunger bears against the spring to adjust the spring preload. While this is effective for calibrating the device, it results in changing the effective length of the plunger, and therefore, varies the spacing between the plunger and a trip button on the operating mechanism of the electric power switch.




Accordingly, there is room for improvement in flux transfer shunt trip actuators and electric power switch incorporating them.




In fact, there is a need for a flux transfer shunt trip actuator and an electric power switch incorporating such an actuator, which provides an improved arrangement for calibrating the actuator.




More particularly, there is a need for such an actuator and electric power switch incorporating the actuator, in which the actuator can be calibrated without affecting the spacing between the actuator plunger and the operating mechanism of the electric power switch.




There is a more specific need, for an improved flux transfer shunt trip device and an electric power switch incorporating the actuator, in which the preload on a spring biasing the actuator plunger can be adjusted without affecting the positioning or length of the plunger.




SUMMARY OF THE INVENTION




These needs and others are satisfied by the invention which is directed to a flux transfer shunt trip actuator in which the actuator can be calibrated by adjustment of the preload biasing spring without changing the position or length of the actuator plunger biased by this spring. More particularly, the invention relates to a flux transfer shunt trip actuator which includes a housing having a magnetically permeable seat, a magnetically permeable plunger mounted by the housing for movement between a retracted position with a first end seated against the seat and an actuated position with the magnetically permeable plunger spaced from the seat. A biasing spring biases the plunger toward the actuated position. One or more permanent magnets generate a permanent magnet force sufficient to overcome the biasing spring to hold the magnetically permeable plunger in a retracted position seated against the magnetically permeable seat. A coil generates an electromagnetic field when energized which bucks the permanent magnet field so that the biasing spring moves the plunger to the actuated position. An adjustment device adjusts the preloading on the biasing spring without adjusting the position or length of the plunger.




More specifically, the housing comprises a magnetically permeable U-shaped frame having a bight and a pair of legs spaced apart and extending from the bight. The permanent magnet or magnets are mounted between the legs and define a gap. A magnetically permeable seat member projecting from the bight toward the gap terminates in a free end which forms the seat. The first end of the magnetically permeable plunger extends into the gap when seated in the retracted position against the seat. The biasing spring has a first end bearing against the magnetically permeable plunger and the adjusting device comprises an adjusting member and a mount mounting the adjusting member for movement relative to the bight toward and away from the magnetically permeable plunger. The adjusting member bears against the second end of the biasing spring to adjust the preload. Thus, the actuator is calibrated through adjustment of the preload on the biasing spring, yet the plunger length and position do not change.




Even more specifically, the mount for the adjusting member is a threaded shaft which is coaxial with the seat member. The adjusting member is moved along the threaded shaft by a threaded member which engages the threaded shaft and bears against the adjustment member to set the position of the adjusting member on the threaded shaft and, therefore, the preload on the spring. In a preferred embodiment of the invention, the threaded shaft projects from the bight of the frame in a direction opposite the orientation of the legs of the frame. The adjusting member has at least one projection extending toward and engaging the first end of the biasing spring. In a particularly preferred embodiment, these projections extend through apertures in the bight of the frame and are a pair of opposed cylindrical sections each bearing against the biasing spring which is a helical compression spring coaxially mounted on the seat member together with the coil.




The invention also embraces the electric power switch incorporating such an adjustable flux transfer shunt trip actuator.




It is therefore, an object of the invention to provide an improved flux transfer shunt trip actuator and an electric power switch incorporating such an actuator.




It is a further object of the invention to provide such an improved actuator and electric power switch incorporating the actuator in which the actuator can be calibrated without affecting the length of the actuator plunger.




It is a more specific object of the invention to provide such actuator and electric power switch which can be calibrated by adjusting the preload on the biasing spring without changing the position or length of the plunger.











BRIEF DESCRIPTION OF THE DRAWINGS




A full understanding of the invention can be gained from the following description of the preferred embodiments when read in conjunction with the accompanying drawings in which:





FIG. 1

is a schematic illustration of an electric power switch in the form of a circuit breaker employing an adjustable flux transfer shunt trip actuator in accordance with the invention;





FIG. 2

is an exploded isometric view of the adjustable flux transfer shunt trip actuator;





FIG. 3

is a longitudinal sectional view of the actuator assembled and in the retracted position; and





FIG. 4

is a longitudinal sectional view similar to that of

FIG. 3

showing the actuator in the actuated position.











DESCRIPTION OF THE PREFERRED EMBODIMENT




The invention is directed toward an adjustable flux transfer shunt trip actuator for an electric power switch, such as, for example, a circuit breaker, a transfer switch, a disconnect switch, and the like. For purposes of illustration, the invention will be described in relation to a circuit breaker.




Referring to

FIG. 1

, an electric power circuit


1


having conductors


3


is protected by a circuit breaker


5


. The circuit breaker includes a pair of separable power contacts


7


connected in the conductors


3


. While a single line representation of the conductors


3


is used for clarity, the electrical power system can be multiphase, typically


3


phase, in which case, separable contacts


7


would be connected in series with each phase conductor.




The circuit breaker


5


includes an operating mechanism


9


which is typically a spring powered mechanism which opens and closes the separable contacts


7


. As is conventional, the operating mechanism can be manually operated to open and close the separable contacts


7


.




The operating mechanism can also be automatically operated to open the separable contact


7


in response to overcurrent conditions in the conductors


3


by a trip unit


11


. The trip unit can be either of the well-known thermal-magnetic type or electronic type. In either case, the trip unit


11


monitors the current in the conductors


3


and trips the operating mechanism


9


under certain overcurrent conditions.




The circuit breaker


5


also includes a flux transfer shunt trip actuator


13


having a plunger


15


which is normally held in a retracted position shown in FIG.


1


. In the circuit breaker shown, the flux transfer shunt trip actuator


13


provides an auxiliary means for opening the separable contacts


7


. The actuator


13


is actuated by an electrical signal provided on the leads


17


. This signal can be generated in several ways. For instance, the signal can be generated at a remote location as by an operator in a control room or at a panel board. Also, the signal on the lead


17


can be generated by an under voltage relay (not shown), a loss of phase relay (not shown) or an off-frequency relay (also not shown). When the flux transfer shunt trip actuator


13


is actuated, the plunger is extended to an actuated position in which it engages the trip unit, such as through a trip button


19


. In accordance with the invention, the flux transfer shunt trip actuator


13


has an adjustment device


21


which allows the actuator to be calibrated for response to the actuating signal delivered on the leads


17


.




Turning to

FIGS. 2-4

, the flux transfer shunt trip actuator


13


includes a magnetically permeable frame


23


in the form of a U-shaped member


25


having a bight


27


and a pair of spaced apart legs


29


extending from the bight. A seat member in the form of a stationary pin


31


is secured to the bight by threaded shaft


33


having a first threaded end


35


which extends through an aperture


37


and threads into a tapped bore


39


in the seat member


31


. The seat member


31


extends between the pair of legs


29


and terminates in a seat


41


.




The magnetically permeable plunger


15


is supported for axial movement toward and away from the seat


39


by a nonmagnetically permeable guide


43


mounted in an end plate


45


. The end plate


45


has tabs


47


which snap into openings


49


in the free ends of the pair of legs


29


. A helical compression spring


51


is concentrically mounted on the seat member


31


and has a first end


53


which bears against a circular flange


55


forming a first end of the magnetically permeable plunger


15


. The other or second end


56


of the spring


51


bears against the bight


27


of the U-shaped member


25


.




A coil


57


is wound on one end of a molded bobbin


59


and is encapsulated by an insulating cover


61


. The bobbin is supported between the pair of legs


29


on the U-shaped member


25


with the coil coaxial with and extending over the seat member


31


and the helical compression spring


51


. The forward end


63


of the bobbin


59


forms a support for a pair of permanent magnets


65


which are spaced apart to form gap


66


. These permanent magnets


65


generate a permanent magnet field which circulates through the magnets


65


, the gap


66


, the seat member


31


, the bight


27


and the pair of legs


29


.




The helical compression spring


51


biases the plunger


15


away from the seat


41


toward an extended or actuated position shown in FIG.


4


. However, when the plunger is pushed inward so that the flange forming a first end


55


seats against the seat


41


, the permanent magnet field generated by the magnets


65


is sufficient to overcome the bias generated by the spring and thereby magnetically latch the plunger in the retracted position shown in FIG.


3


.




The coil


57


is wound such that when energized it generates an electromagnetic field which bucks the permanent magnet field generated by the permanent magnets


65


. The bias force generated by the spring then exceeds the magnetic latching force and the plunger is driven by the spring to the actuated position shown in FIG.


4


. With the coil deenergized, the actuator can be reset by physically pushing the plunger back to the retracted position.




As previously mentioned, variations in the strength of the permanent magnets


65


, the spring


51


and even plating thicknesses on the U-shaped member


25


, the seat member


31


, or the plunger


15


can affect the current that must be applied to the coil in order to release the plunger. In order to compensate for these variations and provide for calibration of the actuator, the flux transfer shunt trip actuator


13


is provided with an adjusting device


67


for adjusting the preload on the bias and spring


51


. The adjusting device


67


includes an adjusting member


69


which is moveable along a second threaded end


71


of the threaded shaft


33


which projects from the bight


27


in a direction opposite the direction of the pair of legs


29


and forms a mount for the adjusting member. This adjusting member has at least one projection, preferably a pair of opposed cylindrical sections


73


which extend through complementary apertures


75


in the bight


27


and bear against the biasing spring


51


. The position of the adjusting member


69


on the threaded shaft


33


is set by a threaded member in the form of nut


77


. By turning the nut


77


to move the adjusting member


69


toward the bight


27


, the preload on this biasing spring


51


is increased. The threaded shaft


33


has a hexagonal center section


79


by which it may be gripped for threading the first threaded end


35


into the seat member


31


during assembly.




Thus, it can be appreciated that movement of the adjusting member


69


toward and away from the bight


27


increases or decreases the preload on the spring


51


, respectively, but does not affect the position, or the length of the plunger


15


. Also, since the adjustment is made at the rear end of the actuator, the adjustments can easily be made with the actuator in place.




While specific embodiments of the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of invention which is to be given the full breadth of the claims appended and any and all equivalents thereof.



Claims
  • 1. A flux transfer shunt trip actuator for an electric power switch comprising:a magnetically permeable frame incorporating a seat; a magnetically permeable plunger mounted within said magnetically permeable frame for movement between a retracted position with a first end seated against said seat and an actuated position with said magnetically permeable plunger spaced from said seat; a biasing spring biasing said magnetically permeable plunger toward said actuated position; at least one permanent magnet generating a permanent magnet force sufficient to overcome said biasing spring to hold said magnetically permeable plunger in said retracted position seated against said seat; a coil generating an electromagnetic force when energized bucking said permanent magnet force so that said biasing spring moves said magnetically permeable plunger to said actuated position; an adjustment device adjusting preloading on said biasing spring without adjusting position or length of said magnetically permeable plunger; and wherein said magnetically permeable frame comprises a magnetically permeable U-shaped member having a bight and a pair of legs spaced apart and extending from said bight, said at least one permanent magnet being mounted between said pair of legs and defining a gap, said magnetically permeable frame further including a magnetically permeable seat member projecting from said bight toward said gap and terminating in a free end forming said seat, said first end of said magnetically permeable plunger extending into said gap when seated against said seat in said retracted position, said biasing spring extending along said seat member and having a first end bearing against said first end of said magnetically permeable plunger, and said adjustment device including an adjustment member, and a mount mounting said adjustment member for movement relative to said bight toward and away from said magnetically permeable plunger, said adjusting member bearing against said biasing spring to adjust preload on said biasing spring.
  • 2. The flux transfer shunt trip actuator of claim 1 wherein said coil is mounted between said pair of legs of said magnetically permeable U-shaped member and concentric with said magnetically permeable seat member.
  • 3. The flux transfer shunt trip actuator of claim 2 wherein said magnetically permeable seat member comprises an elongated solid member, and said biasing spring comprises a helical compression spring concentrically mounted over said elongated solid member.
  • 4. The flux transfer shunt trip actuator of claim 1 wherein said mount comprises a threaded shaft co-axial with said magnetically permeable seat member, said adjusting member being moveable along said threaded shaft, said mount further including a threaded member engaging said threaded shaft and bearing against said adjusting member to position said adjusting member on said threaded shaft.
  • 5. The flux transfer shunt trip actuator of claim 4 wherein said threaded shaft projects from said bight in a direction opposite of said pair of legs, said adjusting member being moveable along said threaded shaft and having at least one projection engaging said biasing spring.
  • 6. The flux transfer shunt trip actuator of claim 5 wherein said at least one projection extending from said adjusting member comprises two projections extending through apertures in said bight.
  • 7. The flux transfer shunt trip actuator of claim 6 wherein said two projections comprise a pair of opposed cylindrical sections.
  • 8. The flux transfer shunt trip actuator of claim 7 wherein said coil is mounted in said U-shaped member co-axially with said magnetically permeable seat member and said cylindrical sections.
  • 9. The flux transfer shunt trip actuator of claim 8 wherein said magnetically permeable seat member comprises an elongated solid member and said biasing spring comprises a helical compression spring concentrically mounted over said elongated solid member.
  • 10. An electric power switch comprising:separable electrical contacts; an operating mechanism for closing said separable electrical contacts and for opening said separable electrical contacts when tripped; and a flux transfer shunt trip actuator comprising: a U-shaped magnetically permeable frame member mounted adjacent said operating mechanism and having a bight and a pair of legs spaced apart and extending from said bight; a magnetically permeable elongated seat member extending from said bight between said pair of legs; a magnetically permeable plunger mounted between said pair legs for axial movement between a retracted position in which said magnetically permeable plunger is seated against said magnetically permeable elongated seat member and an actuated position in which said magnetically permeable plunger is spaced from said magnetically permeable elongated seat member; a biasing spring mounted between said bight and said magnetically permeable plunger and having a first end bearing against said magnetically permeable plunger to bias plunger toward said actuated position; permanent magnet means mounted between said pair of legs and said plunger generating a permanent magnet field which circulates through said permanent magnet means, said magnetically permeable plunger, said magnetically permeable elongated seat member, said bight and said pair of legs, said permanent magnet force being sufficient to overcome said biasing spring to hold said magnetic permeable plunger in said retracted position; a coil generating an electromagnetic force when energized bucking said permanent magnet force so that said biasing spring moves said magnetically permeable plunger to said actuated position; and an adjustment device bearing against a second end of said biasing spring to selectively position said second end of said biasing spring to adjust preload on said biasing spring.
  • 11. The electric power switch of claim 10 wherein said permanent magnet means comprises at least two permanent magnets spaced apart between said pair of legs to form a gap into which said first end of said magnetically permeable plunger extends in said retracted position.
  • 12. The electrical power switch of claim 11 wherein said biasing spring comprises a helical compression spring concentrically mounted with said magnetically permeable elongated seat member.
  • 13. The electric power switch of claim 11 wherein said adjusting device comprises a mount in the form of a threaded shaft extending co-axially with said magnetically permeable elongated seat member, an adjusting member movable along said threaded shaft, and a threaded member threaded on said threaded shaft and bearing against said adjusting member to fix a position of said adjusting member along said threaded shaft.
  • 14. The electric power switch of claim 13 wherein said threaded shaft projects axially from said bight in an opposite direction from said pair of legs, and wherein said adjusting member includes a pair of projections extending axially toward and bearing against said second end of said biasing spring.
  • 15. The electric power switch of claim 14 wherein said pair of projections extend through openings in said bight.
  • 16. The electric power switch of claim 15 wherein said pair of projections comprise opposed cylindrical sections.
  • 17. The electric power switch of claim 16 wherein said coil is mounted between said pair of legs co-axially with said magnetically permeable elongated seat member, said helical compression spring, and said opposed cylindrical sections.
US Referenced Citations (5)
Number Name Date Kind
4489295 Altenhof, Jr. et al. Dec 1984
4639701 Shimp Jan 1987
5453724 Seymour et al. Sep 1995
5886605 Ulerich et al. Mar 1999
5912604 Harvey et al. Jun 1999