The present invention relates generally to transmission jacks. More particularly, the present invention relates to a foot pedal and foot actuated mechanism for actuating a hydraulic piston pump in a transmission jack.
Automobiles and other vehicles need to be serviced from time to time. One complex portion of an automobile or other vehicle that needs servicing is the transmission. The transmission is a heavy component and often is serviced with the aid of a transmission jack, which can support the weight of the transmission. A transmission jack can be used to install or remove a transmission. Furthermore, the transmission jack maybe used to support the transmission while the transmission is being worked on.
Transmission jacks are often hydraulic. A foot pedal may be used to actuate a hydraulic cylinder to provide the hydraulic pressure. One problem with current foot pedal mechanisms used for operating hydraulic cylinders is that some foot pedal mechanisms are not able to generate enough hydraulic pressure to lift the transmission to certain heights. Another problem is that the pump piston may experience seal failures contributed to shear forces put on the piston. These shear forces may be inherent with four bar mechanisms which are typically used to actuate the piston.
Accordingly, it is desired to provide a method and apparatus that can better lift heavier loads and also increase piston seal durability by reducing the shear load on the pump piston by reducing or eliminating shear forces imparted on the piston from the mechanism actuating the piston.
The foregoing needs are met, to a great extent, by the present invention. In one aspect, an apparatus is provided that, in some embodiments, a method or apparatus is provided that can provide additional mechanical advantage in order to lift heavier loads. Further, the method and apparatus in some embodiments may increase piston seal durability by reducing shear loads imparted onto the piston pump from the inputting mechanism.
In accordance with one embodiment of the present invention, a foot actuated pivoting lever is provided. The lever may include: a lever member having two ends, one end configured to attach to a mechanism configured to receive an input from the lever member; and a pedal pivotally attached proximate to the other end of the lever member, wherein the pedal is configured to pivot between a first and a second position, wherein in the first position, the pedal lies on top of a section of the lever member and, in the second position, the pedal extends beyond the lever member.
In accordance with another embodiment of the present invention, a mechanism for actuating a piston may be provided. The mechanism may include: an input lever; an input bracket attached to the lever; a fixed bracket pivotally connected to the input bracket; a connecting link pivotally connected to the fixed bracket; a rocker link pivotally connected to the connecting link and also pivotally connected to the input bracket; and a pusher attached to the rocker link and configured to push on the piston when the rocker rotates.
In accordance with another embodiment of the present invention, a method of actuating a cylinder may be provided. The method may include: configuring a foot pedal to move an input lever; connecting an input bracket attached to the lever; fixing a bracket; pivotally connecting the fixed bracket to the input bracket; connecting a connecting link pivotally to the fixed bracket; connecting a rocker link; pivotally connecting the rocker link to the connecting link; pivotally connecting the rocker link to the input bracket; providing a pusher attached to the rocker link; and configuring the pusher link to push on the piston when the rocker rotates in a particular direction.
In accordance with another embodiment of the present invention, a foot actuated pivoting lever may be provided. The lever may include: a lever member having two ends, one end configured to attach to a mechanism configured to receive an input from the lever member; and means for extending a lever arm of the lever member pivotally attached proximate to the second end of the lever member, wherein the extending means is configured to pivot between a first and a second position, wherein in the first position, the extending means lies on top of a section of the lever member and in the second position the extending means extends beyond the lever member.
In accordance with yet another embodiment of the present invention, a mechanism for actuating a piston may be provided. The mechanism may include: means for inputting a force into the mechanism; an input bracket attached to the inputting means; a fixed bracket pivotally connected to the input bracket; a connecting link pivotally connected to the fixed bracket; a rocker link pivotally connected to the connecting link and also pivotally connected to the input bracket; and a pusher attached to the rocker link and configured to push on the piston when the rocker rotates.
There has thus been outlined, rather broadly, certain embodiments of the invention in order that the detailed description thereof herein may be better understood, and in order that the present contribution to the art may be better appreciated. There are, of course, additional embodiments of the invention that will be described below and which will form the subject matter of the claims appended hereto.
In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of embodiments in addition to those described and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein, as well as the abstract, are for the purpose of description and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the conception upon which this disclosure is based may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
The invention will now be described with reference to the drawing figures, in which like reference numerals refer to like parts throughout. An embodiment in accordance with the present invention provides a transmission jack that has a foot pedal which operates a hydraulic piston to raise a jack.
An embodiment in accordance with the invention is shown in
A linkage mechanism 24 is configured to provide a mechanical advantage to generate hydraulic pressure in order to raise the lifting rod 16 within the hydraulic jack 14. The linkage mechanism 24 includes an input bar 26. The input bar 26 may be made of rectangular tube stock steel as shown or may be of a variety of different materials and/or cross sections. The rectangular steel tube stock shown in the drawings is meant to be an example and is in no way limiting. The input bar 26 has a foot pedal 28 attached. The foot pedal 28 provides a wide platform for an operator to place his or her foot in order to press down on the foot pedal, and thus the input bar 26, to actuate the linkage mechanism 24. The foot pedal 28 includes an abrasive surface 30 or a skid reducing surface. The abrasive surface 30 allows the user's foot to be gripped by the abrasive surface 30 and, therefore, be less likely to slip off of the foot pedal 28.
The abrasive surface 30 can be a variety of surfaces. For example, it may be a sand paper like surface having a sticky back that is stuck on to the metal foot pedal 28. In other embodiments of the invention, foot pedal 28 may have a roughed surface machine cast, stamped, or otherwise impressed or imparted onto the foot pedal 28.
The foot pedal 28 includes an attaching bracket 36. The attaching bracket 36 provides a wide portion and defines a hole 33 in which the hinge pin 32 can reside. The undersurface of the foot pedal 28 may include teeth 38. The purpose of the teeth 38 is similar to that of the abrasive surface 30, in that it allows a user's foot to contact the foot pedal 28 with a high degree of friction, thus, when a user's foot is pressing down onto the foot pedal 28, the user's foot or shoe is less likely to slip off of the foot pedal 28. When a user places his or her foot on the teeth 38 of the foot pedal 28 and pushes down, the foot pedal 38 exerts a downward force on the hinge pin 32 and an upward force upon the underside 40 of the input bar 26, thus creating a moment. The overall result is that the foot pedal 28 acts as an extension of the input bar 26 to effectively lengthen the lever arm and thereby increase the moment generated by the downward force on the foot pedal 28. Effectively, the length of the input bar 26 is combined with the length of the foot pedal 28, thereby increasing the moment exerted where the input bar 26 is pivotally connected to the linkage mechanism 24 (as shown in
The input bracket 44 is pivotally attached to a fixed bracket 50. The fixed bracket 50 is fixed or attached to the cylinder block 54. Cylinder block 54 is connected to or attached to the frame 18. Thus, the fixed bracket 50, in some embodiments of the invention, does not rotate.
The fixed bracket 50 is pivotally attached to a connecting link 56. The connecting link 56 may have a corresponding second connecting link also labeled 56 located opposite the first connecting link 56 as shown in
Bearings 52 may also be used in the pivot connections. A bearing 52 may be placed in joints containing the pivot connections. Bearings may be placed in joints, such as joints in the input bracket 44, fixed bracket 50 or the input link 56. The bearing 52 may reduce the friction of the hinge pin 32 rotating within the bearing 52. In some embodiments of the invention, the bearing 52 may be an oil impregnated bronze bearing which is commonly known and used in the art.
As shown in
The pusher 70 has a generally rounded face and avoids inputting a shear force on to the piston assembly 64. The nature and geometry of the linkage mechanism 24 is such that the rocker link 60, for the most part, applies only a vertical force upon the piston assembly 64. The geometry of the pusher 70 helps reduce any residual right to left forces or, in other words, shear forces that may have been imparted by the rocker link 60 to the piston assembly 64, by merely moving to one side or the other of the piston assembly 64 as the rocker link 44 moves. Thus, primarily only vertical forces are imparted from the rocker link 60 onto the piston assembly 64.
The many features and advantages of the invention are apparent from the detailed specification, and thus, it is intended by the appended claims to cover all such features and advantages of the invention which fall within the true spirit and scope of the invention. Further, since numerous modifications and variations will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation illustrated and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.
This application claims benefit of U.S. Provisional Application No. 61/552,804, entitled “ADJUSTABLE FOOT PEDAL, LINKAGE, AND METHOD FOR ACTUATING A HYDRAULIC CYLINDER,” which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3303720 | Jaulmes | Feb 1967 | A |
3307425 | Sykes et al. | Mar 1967 | A |
3811339 | Konzorr | May 1974 | A |
4591179 | Nakamura | May 1986 | A |
6561487 | Siglock | May 2003 | B2 |
Number | Date | Country | |
---|---|---|---|
20130104695 A1 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
61552804 | Oct 2011 | US |