Pistols typically ship from the factory having a fixed trigger actuation force. End users who want to change the trigger actuation force must often purchase additional springs and components and utilize the services of a gunsmith to install and tune the pistol. In many cases, modifying a firearm in any way potentially voids the warranty and can create an unsafe situation for the end user. A trigger system that enables the end user to adjust the trigger actuation force without the services of a gunsmith while maintaining safe operation of the sidearm would be welcomed.
Various embodiments of the disclosure include a trigger assembly that enables a high level of user adjustment without the services of a gunsmith and without compromising the safe operation of the firearm. The trigger assembly is compact in design, suitable for implementation in sidearms such has pistols and hand guns. An end user can fine tune the trigger actuation force to their preference or depending on the application without having to purchase additional components or perform modifications to the firearm. Adjustment of the trigger actuation force is desirable because different shooting disciplines require different trigger actuation forces. For example, for firearms utilized in competition, a trigger actuation force in a range of 2 pounds-force (lbf) to 4 lbf is often preferred; for standard duty and carry, a trigger actuation force in a range of 4 lbf to 7 lbf is often preferred; for many state law enforcement agencies, a trigger actuation force of 10 lbf is required.
Structurally, the disclosed adjustable force trigger mechanism is packaged as a locking block and trigger assembly. The assembly includes a torsion spring that bridges the locking block and trigger and is retained by an indexing pin. The indexing pin can be rotated to tighten or loosen the torsion spring, thereby increasing or decreasing the actuation force required to actuate the trigger.
Various embodiments of the disclosure are directed to a trigger assembly with adjustable actuation force for a firearm, comprising a trigger mount defining a lateral bore about a pivot axis, an indexing pin mounted to the trigger mount within the lateral bore, a trigger supported by the indexing pin, the trigger and the indexing pin being rotatable about the pivot axis, and a torsion spring including a first end coupled to the indexing pin and a second end coupled to the trigger mount, the torsion spring configured to apply a biasing force that opposes actuation of the trigger.
Rotation of the indexing pin in a first rotational direction within the lateral bore increases the biasing force, and rotation of the indexing pin in a second rotational direction within the lateral bore decreases the biasing force, the second rotational direction being opposite the first rotational direction. In some embodiments, the firearm is a sidearm.
The lateral bore may define an inner diameter, and wherein indexing pin includes a distal end that forms a close, sliding fit within the inner diameter, the distal end of the indexing pin being rotatable within the inner diameter. In some embodiments, the lateral bore defines a major diameter and a minor diameter. The indexing pin may include a shaft portion having a distal end, the distal end forming a close, sliding fit within the minor diameter and being rotatable within the minor diameter. In some embodiments, the torsion spring is a coil spring surrounding the shaft portion, and may be housed within the major diameter. The shaft portion of the indexing pin may define a pin keyway that extends parallel to a central axis of the shaft portion. In some embodiments, the trigger mount defines a bore keyway adjacent the lateral bore and extends parallel to the pivot axis. The first end of the torsion spring may be disposed in the pin keyway and the second end of the torsion spring disposed in the bore keyway.
In some embodiments, the indexing pin includes a head portion. The head portion may include a tool feature for mating with an external tool, and be rotatable within the major diameter of the lateral bore. In some embodiments, the head portion includes a detent and the trigger defines a notch, the detent being configured to engage the notch to secure the indexing pin and the trigger in a fixed rotational relationship. In some embodiments, the head portion defines a polygonal cross-section and the trigger defines a complementary polygonal recess, the polygonal cross-section being configured to engage the complementary polygonal recess to secure the indexing pin and the trigger in a fixed rotational relationship.
In some embodiments, the trigger includes a finger hook portion that depends from a bracket portion, the bracket portion including a first ear portion that defines a first lateral through passage and a second ear portion that defines a second lateral through passage, the first lateral through passage and the second lateral through passage being concentric about the pivot axis. The trigger assembly may be configured for insertion into and removal from a receiver of a firearm.
Various embodiments of the disclosure are directed to a method for adjusting an actuation force of a trigger assembly for a firearm, comprising: providing a kit including a trigger assembly; and providing instructions on a tangible, non-transitory medium. The instructions may include: rotating an indexing pin within a trigger of the trigger assembly from a first rotational position to a second rotational position to change a torsional tension of a torsion spring of the trigger assembly, the trigger being rotatable about the indexing pin of the trigger assembly for actuating a firearm, the torsion spring being coupled to the indexing pin and the trigger; and securing the indexing pin to the trigger in the second rotational position. In some embodiments, the instructions include removing the trigger assembly from the firearm prior to the step of releasing. The instructions may include replacing the trigger assembly within the firearm after the step of securing. In some embodiments, the instructions in the step of providing instructions includes inserting the torsion spring into the trigger prior to the step of rotating the indexing pin. The instructions in the step of providing instructions may include releasing the indexing pin from the trigger of the trigger assembly prior to the step of rotating the indexing pin.
A feature and advantage of embodiments is a user adjustable pull force on a trigger mechanism.
A feature and advantage of embodiments is a simple safety trigger of minimal components.
A feature and advantage of embodiments is an adjustable pull mechanism where a spring controlling the trigger pull force is contained within a closed cavity substantially precluding any debris or other material from interfering with the spring operation.
Referring to
Referring to
The locking block 22 defines a lateral bore 42 into which the indexing pin 26 is inserted. The lateral bore 42 defines a bore axis 44 and a cavity 45 conformingly sized for the torsion spring 28, the bore passes laterally through the locking block 22. In some embodiments, the lateral bore 42 defines a major diameter 46 accessible from a first side 48 of the locking block 22 and reduces to a minor diameter 52 on a second or opposing side 54 of the locking block 22. A bore keyway 56 may extend radially from the major diameter 46 of the lateral bore 42 and parallel to the bore axis 44.
The trigger 24 includes a bracket portion 62 and a finger hook portion 64. The bracket portion 62 includes first and second ear portions 66 and 68 that are laterally spaced to straddle the locking block 22 at the bore axis 44 defining a yoke about the trigger support frame 22. The trigger 24 may also include a safety trigger 70 that is nested or otherwise adjacent the finger hook portion 64 of the main trigger 24 with an embodiment discussed in detail below. The structure and function of representative safety triggers suitable herein are explained, for example, at U.S. Pat. No. 9,810,496 to Kolev et al., U.S. Pat. No. 9,658,007 to Withey, and U.S. Pat. No. 6,553,706 to Gancarz et al., all of which are assigned to the owner of the present application, and the disclosures of which are hereby incorporated by reference herein in their entirety except for express definitions and patent claims contained therein. Other references describing representative safety triggers 70 that may be utilized include U.S. Pat. No. 6,843,013 to Cutini et al., U.S. Pat. No. 8,220,193 to Lynch, U.S. Pat. No. 8,250,799 to Duperry et al., U.S. Patent No. 9,046,313 to Lutton et al., U.S. Pat. No. 9,222,745 to Kallio, U.S. Pat. No. 9,383,153 to Nebeker et al., U.S. Pat. No. 9,970,723 to Findlay et al., U.S. Pat. No. 9,970,724 to Acker, U.S. Pat. No. 10,006,734 to Findlay, U.S. Pat. No. 10,030,927 to Theiss, and U.S. Pat. No. 10,156,409 to Laney et al., the disclosures of which are hereby incorporated by reference herein in their entirety except for express definitions and patent claims contained therein.
As best shown in
In some embodiments, the first and second ear portions 66 and 68 define first and second lateral through passages 82 and 84, respectively, that are concentric about a pivot or actuation axis 86. The first lateral through passage 82 of the first ear portion 66 may be sized to match the major diameter 46 of the lateral bore 42 of the locking block 22, and the second lateral through passage 84 of the second ear portion 68 may be sized to match the minor diameter 52 of the lateral bore 42. In some embodiments, the first ear portion 66 defines one or more notches 88 that extend radially from the first lateral through passage 82. The first ear portion 66 may include a collar 92 that projects laterally outward, the collar 92 defining the notch(es) 88.
The indexing pin 26 includes a shaft portion 102 and a head portion 104 concentric about a central axis 106, the central axis 106 being substantially parallel to or concentric with the bore axis 44 and the pivot axis 86 when the trigger assembly 20 is fully assembled. The shaft portion 102 may be dimensioned at a distal end 112 to provide a close, sliding fit within the minor diameter 52 of the lateral bore 42. The head portion 104 is dimensioned to fit within the first lateral through passage 82 of the first ear portion 66 and the major diameter 46 of the lateral bore 42 of the locking block 22. In some embodiments, the head portion 104 includes at least one detent 114 that projects radially. The detent 114 is dimensioned to laterally slide into the notch(es) 88. The shaft portion 102 may define a pin keyway 116 that extends parallel to the central axis 106. In some embodiments, the head portion 104 defines a tool feature 118 for coupling with a tool, for example, a hexagonal socket 122 for mating with a hexagonal wrench. The tool feature 118 may be sized for mating with tools other than a hexagonal wrench, e.g., a straight slot for mating with a flat head screw driver, cross slots for mating with a PHILLIPS screw driver, or a starred socket for mating with a TORX® bit.
In some embodiments, the torsion spring 28 is a coil spring 132a that coils around the indexing pin 26 and defines an inner coil diameter 134 and an outer coil diameter 136. The coil spring 132a includes a first end leg 142 that extends radially inward from the inner coil diameter 134 and a second end leg 144 that extends radially outward from the outer coil diameter 136.
To assemble the trigger assembly 20, the coil spring 132a is inserted into the major diameter 46 of the lateral bore 42 of the locking block 22 and slide in a second lateral direction 146 toward the second side 54, so that the second end leg 144 extends into the bore keyway 56 that extends parallel to the lateral bore 42. The trigger 24 is positioned so that the pivot axis 86 of the trigger 24 aligned with the bore axis 44 of the lateral bore 42. The indexing pin 26 is positioned and rotated so that the pin keyway 116 is aligned with the first end leg 142 of the coil spring 132a, and the indexing pin 26 inserted into the lateral bore 42 so that the distal end 112 of the shaft portion 102 is inserted into the minor diameter 52 of the lateral bore 42 and the head portion 104 of the indexing pin 26 enters the major diameter 46 of the first ear portion 66. With the second end leg 144 of the coil spring 132a lodged in the bore keyway 56 and the first end leg 142 of the coil spring 132a lodged in the pin keyway 116, the indexing pin 26 is rotated so that the detent 114 on the head portion 104 is aligned with one of the notches 88 of the first ear portion 66 and the indexing pin 26 pushed further into the first lateral through passage 82 and lateral bore 42 so that the detent 114 is registered within the notch 88. The trigger assembly 20 is then mounted into a receiver 150 (depicted in phantom in
In operation, to adjust the actuation force F, the indexing pin 26 is released from the trigger 24, rotated to change the torsional tension of the torsion spring 28, and secured to the trigger 24. In some embodiments, the indexing pin 26 is slid within the lateral bore 42 in a first lateral direction 148 so that the head portion 104 protrudes partially out of the first ear portion 66, far enough so that the detent 114 is removed from the notch 88. The indexing pin 26 may then be rotated about the central axis 106 to tighten or loosen the coil spring 132a. In this way, the torsion spring 28 (e.g., the coil spring 132a) can remain within the trigger assembly 20 (e.g., within the lateral bore 42) during the tension adjustment operation without being removed from the trigger assembly 20, enabling the user to readily loosen or tighten the trigger actuation force F relative to the previous setting without need for independently tracking the previous tension setting. In some embodiments, the trigger assembly 20 is removed from the receiver 150 to perform the adjustment; in other embodiments, the indexing pin 26 is accessible without need for removing the trigger assembly 20 from the firearm 18.
Optionally, the torsion spring 28 (e.g., coil spring 132a) may be removed and replaced with another torsion spring (e.g., coil spring 132b) of similar construction (
For the depicted embodiment, rotation of the indexing pin 26 in a clockwise direction as viewed in
In some embodiments, the trigger assembly 20 or kit 16 enables the trigger actuation forces F to be set within a range of 1 lbf to 12 lbf inclusive; in some embodiments, a range of 2 lbf to 10 lbf inclusive; in some embodiments, a range of 4 lbf to 7 lbf inclusive; in some embodiments, a range of 2 lbf to 4 lbf inclusive; in some embodiments, a range of 6 ounces of force to 5 lbf inclusive. Herein, a range that is said to be “inclusive” includes the end point values of the stated range as well as all values therebetween.
In some embodiments, the various operational steps and characteristics described above are included in the instructions 14 for assembly or operation. The instructions 14 may be provided on a tangible, non-transitory medium. Non-limiting examples of a tangible, non-transitory medium include a paper document and computer-readable media including compact disc and magnetic storage devices (e.g., hard disk, flash drive, cartridge, floppy drive). The computer-readable media may be local or accessible over the internet. The instructions 14 may be complete on a single medium, or divided among two or more media. For example, some of the instructions 14 may be written on a paper document that instruct the user to access one or more of the steps of the method over the internet, the internet-accessible steps being stored on a computer-readable medium or media. The instructions 14 may be in the form of written words, figures, and/or video presentations.
Functionally, disposing the end legs 142 and 144 of the coil spring 132 within the keyways 116 and 56 enables the indexing pin 26 to be translated laterally within the lateral bore 42 without stretching or compressing the coil spring 132 and generating an attendant opposing force. This enables better control of the indexing pin 26 when adjusting the actuation force F. The collar 92, though not necessary, may provide a deeper notch for securing the detent 114 during transfer and mounting of the trigger assembly 20 to the receiver 150. The tool feature 118 provides a way to manipulate and rotate the indexing pin 26 during adjustment of trigger actuation force F (e.g., using a hexagonal wrench seated in the depicted hexagonal socket 122).
By exchanging the coil spring 132, the adjustment characteristics of the actuation force F may be altered. For example, by replacing the coil spring 132a with a replacement coil spring 132b having a higher torsional spring constant, the change in the actuation force F per incremental rotation of the coil spring 132b is increased, thereby increasing the range of the available actuation forces F. By replacing the coil spring 132a with a replacement coil spring 132c having a lower torsional spring constant, the change in the actuation force F per incremental rotation of the coil spring 132c is decreased, thereby increasing the resolution of the trigger actuation force adjustment. For embodiments where a plurality of replacement coil springs 132 are available, the user or retailer can, for example, alter the available ranges of the actuation force F to suit personal or targeted demographic preferences, or provide greater adjustment resolution over a plurality of actuation force ranges. In the depicted embodiment, there are four notches 88 uniformly distributed about the bore axis 44, such that the detent 114 realigns with one of the notches 88 for every 90 degrees of rotation about the central axis 106. Accordingly, the end user can reset the indexing pin 26 after a quarter turn for the depicted embodiment. The inner coil diameter 134 may be sized large enough relative to the outer diameter of the shaft portion 102 and the outer coil diameter 136 may be sized small enough relative to the inner diameter of the lateral bore 42 to enable radial contraction and expansion of the coil spring 132 over several incremental rotations of the indexing pin 26 in both rotational directions. After rotating the indexing pin 26 for one or more incremental rotations, the detent 114 is aligned for seating within one of the notches 88. In some embodiments, upon securing the indexing pin 26 within the notch 88, the trigger assembly 20 is returned to the receiver 150.
The use of more or less than four notches 88 is also contemplated. Using only one notch, for example, limits the incremental rotation of the indexing pin 26 about the central axis 106 to full turns. The greater the number of the plurality of notches 88, the greater the resolution of the trigger actuation force adjustment. For example: two notches 88 may be defined at 180 degree rotational increments, enabling the indexing pin 26 to be reset in ½ turns; three notches 88 may be defined at 120 degree rotational increments to enable the indexing pin 26 to be reset in ⅓ turns; six notches may be defined at 60 degree rotational increments to enable the indexing pin 26 to be reset in ⅙ turns; and so on.
Referring to
Referring to
Each of the additional figures and methods disclosed herein can be used separately, or in conjunction with other features and methods, to provide improved devices and methods for making and using the same. Therefore, combinations of features and methods disclosed herein may not be necessary to practice the disclosure in its broadest sense and are instead disclosed merely to particularly describe representative and preferred embodiments.
Various modifications to the embodiments may be apparent to one of skill in the art upon reading this disclosure. For example, persons of ordinary skill in the relevant arts will recognize that the various features described for the different embodiments can be suitably combined, un-combined, and re-combined with other features, alone, or in different combinations. Likewise, the various features described above should all be regarded as example embodiments, rather than limitations to the scope or spirit of the disclosure.
Persons of ordinary skill in the relevant arts will recognize that various embodiments can comprise fewer features than illustrated in any individual embodiment described above. The embodiments described herein are not meant to be an exhaustive presentation of the ways in which the various features may be combined. Accordingly, the embodiments are not mutually exclusive combinations of features; rather, the claims can comprise a combination of different individual features selected from different individual embodiments, as understood by persons of ordinary skill in the art.
Any incorporation by reference of documents above is limited such that no subject matter is incorporated that is contrary to the explicit disclosure herein. Any incorporation by reference of documents above is further limited such that no claims included in the documents are incorporated by reference herein. Any incorporation by reference of documents above is yet further limited such that any definitions provided in the documents are not incorporated by reference herein unless expressly included herein.
Unless indicated otherwise, references to “embodiment(s)”, “disclosure”, “present disclosure”, “embodiment(s) of the disclosure”, “disclosed embodiment(s)”, and the like contained herein refer to the specification (text, including the claims, and figures) of this patent application that are not admitted prior art.
For purposes of interpreting the claims, it is expressly intended that the provisions of 35 U.S.C. 112(f) are not to be invoked unless the specific terms “means for” or “step for” are recited in the respective claim.
This application is a continuation of U.S. application Ser. No. 16/657,893, filed Oct. 18, 2019, which claims the benefit of U.S. Provisional Patent Application No. 62/747,372, filed Oct. 18, 2018, the disclosures of which are hereby incorporated by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
62747372 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16657893 | Oct 2019 | US |
Child | 17229317 | US |