This invention relates in general to hydrocarbon well stimulation equipment and methods for downhole hydraulic fracturing, and in particular, to equipment, systems and methods used in multi-pad drilling and fracturing operations in order to align skid mounted fracturing manifold modules of a fracturing manifold system for adjustable connection to a shared fracturing manifold trunk line.
Current methods for completing hydrocarbon wells often require initial high pressure fracturing fluids to be introduced to hydraulically fracture the formation, increasing permeability and allowing the flow of hydrocarbons during production. The stimulation services provide the high pressure fracturing fluid, which is transported through the fracturing manifold system to fracturing trees rated for the high-pressure stimulation on the wellheads. On multi-pad well sites, the fracturing manifold system controls the flow of the fracturing fluid to the corresponding well being stimulated and isolates flow to the other wells.
This process of hydraulic fracturing (“fracking”) creates hydraulic fractures in rocks, to increase the output of a well. The hydraulic fracture is formed by pumping a fracturing fluid into the wellbore at a rate sufficient to increase the pressure downhole to a value exceeding the fracture gradient of the formation rock. The fracture fluid can be any number of fluids, with chemical additives, ranging from water to gels, foams, nitrogen, carbon dioxide, acid or air in some cases. The pressure causes the formation to crack, allowing the fracturing fluid to enter and extend the crack further into the formation. To maintain the fractures open, propping agents are introduced into the fracturing fluid and pumped into the fractures to extend the breaks and pack them with proppants, or small spheres generally composed of special round quartz sand grains, ceramic spheres, or aluminum oxide spheres. The propped hydraulic fracture provides a high permeability conduit through which the hydrocarbon formation fluids can flow to the well.
At the surface, hydraulic fracturing equipment for oil and natural gas fields usually includes frac tanks holding fracturing fluids and proppants which are coupled through supply lines to a slurry blender, one or more high-pressure fracturing pumps to pump the fracturing fluid to the frac head of the well, and a monitoring unit. Fracturing equipment operates over a range of high pressures and injection rates. Many frac pumps are typically used at any given time to maintain the very high, required flow rates into the frac head and into the well.
The high pressure fracturing fluid flows to the inlet of shared fracturing manifold trunk lines (also known as zipper manifolds), through a single large diameter high-pressure line or multiple smaller diameter high-pressure lines. The inlet block of the shared fracturing manifold trunk line is fluidly connected to one of the fracturing manifold modules (also known as manifold leg or zipper module), or between two fracturing manifold modules, and additional fracturing manifold modules are connected together with a single shared manifold trunk line. The shared fracturing manifold trunk line may include joints, which may or may not be adjustable. Each fracturing manifold module typically corresponds to a single well for stimulation. The flow control unit components of the fracturing manifold module typically include an inlet (for example an inlet tee, cross or block) to align and connect to the shared manifold trunk line, one or more control valves (typically two, for example gate valves or plug valves) and an outlet (for example an outlet tee, cross or block) to align to the well. The outlet connects to the fracturing tree on the wellhead through one or more high-pressure conduit lines or multiple high-pressure lines that may include connection blocks, pipe sections and possibly pivot or swivel joints.
The fracturing manifold modules may be pre-assembled prior to transporting to the well pad and may be skid mounted. The skid may include one or multiple fracturing manifold modules, wherein each module includes the flow control unit components of an inlet, one or more control valves and an outlet. Each of these manifold modules is attached together at the inlet with the shared manifold trunk line, commonly with flanged connections and metal sealing gaskets. When making up this flanged connection, the flange faces must be aligned, that is parallel and coaxial with the axis of the shared manifold trunk line for integrity of the metal seal.
Due to the high-pressure rating required for the fracturing manifold equipment, each manifold module and skid commonly exceeds 20,000 lbs. A high capacity crane at the well pad is typically used to support and align each manifold module and skid when making up this connection to the shared fracturing manifold trunk line. Supporting the skid by crane, while aligning the connection at the inlet, is tedious, time consuming, and costly. As well, the crane supported skid connection to the shared manifold trunk line creates additional risks for workers.
In some embodiments, the subject invention reduces or eliminates the need for a high capacity crane in building the high pressure portions of a fracturing manifold system. A high capacity crane, if used at all, approximately locates each fracturing manifold module proximate to one of the plurality of wellheads or to the shared manifold trunk line, and then is not involved in aligning and making the connections of each fracturing manifold module to the shared fracturing manifold trunk line and to the plurality of wellheads.
In some embodiments, the fracturing manifold module of this invention is pre-assembled prior to transport and landing, and provides for adjusting such that one or both of the inlet and the outlet of the manifold module can be axially aligned for connection to the fracturing manifold system using rotation, and preferably also translational movement, between a flow control unit that includes the inlet and the outlet, and a transport skid with supports the flow control unit.
In some embodiments, the flow control unit and the transport skid are connected together with a plurality of independently controlled, actuated cylinders, to provide for rotation of the flow control unit relative to the transport skid in a generally horizontal x-y plane relative to the ground, the rotation being about a z-axis perpendicular to the x-y plane to provide for adjustable connection to the fracturing manifold system at one or both of the inlet and the outlet.
In some embodiments the transport skid and the flow control unit are also connected together for translational movement of the flow control unit relative to the transport skid for movement in the x-y plane, for example in the direction of both a y-axis and an x-axis of the fracturing manifold module.
In some embodiments, the fracturing manifold module also provides for height adjustment to level the flow control unit relative to the ground.
By providing both translational and rotational movement between the flow control unit and the transport skid, preferably also with height adjustment, the fracturing manifold module achieves adjustable connection in each of the x, y and z directions to connect the inlet in alignment with the axis of the shared manifold trunk line, herein termed the y-axis of the shared manifold trunk line. This allows the connection at the inlet to be made up in a safe and time effective manner. This also allows the high capacity crane, if needed at all, to quickly and approximately locate each fracturing manifold module, and then move on to assist in other stimulation services set-up rather than remaining for further connections in the fracturing manifold system.
Broadly stated, the present disclosure provides a fracturing manifold module of a fracturing manifold system for controlling the flow of fracturing fluid from a shared manifold trunk line to a plurality of wellheads each adapted for fracturing a well. The fracturing manifold module includes a transport skid adapted to be ground supported and a flow control unit supported on the transport skid. The flow control unit includes an inlet adapted for connection along an axis of the shared manifold trunk line, an outlet adapted for connection to one of the plurality of wellheads via one or more fluid conduits, and one or more flow control valves between the inlet and the outlet. The transport skid and the flow control unit are connected together to provide for rotation of the flow control unit relative to the transport skid in a generally horizontal x-y plane relative to the ground, the rotation being about a z-axis perpendicular to the x-y plane to provide for adjustable connection to the fracturing manifold system at one or both of the inlet and the outlet.
In some embodiments of the fracturing manifold module, the transport skid and the flow control unit are connected together to provide for translational movement of the flow control unit relative to the transport skid in the x-y plane, for example in the direction of a y-axis of the fracturing manifold module which is adapted to extend parallel to the y-axis of the shared manifold trunk line, and an x-axis of the fracturing manifold module extending perpendicularly to the y-axis of the fracturing manifold module in the x-y plane, to provide for adjustable connection to the fracturing manifold system at one or both of the inlet and the outlet.
In some embodiments of the fracturing manifold module, the rotation about the z-axis and the translational movement of the flow control unit in the x-y plane relative to the transport skid are provided by a plurality of independently controlled, actuated cylinders, for example three or more cylinders, at least one cylinder being oriented to provide the translational movement in the direction of either the x-axis or the y-axis, and at least two cylinders oriented to provide the translational movement in the direction of the other of the x-axis or the y-axis, such that movement of both an x-axis directional cylinder and a y-axis directional cylinder provides the rotation about the z-axis.
In some embodiments of the fracturing manifold module, the transport skid and the flow control unit are further adapted to provide for height adjustment along the z-axis to level the flow control unit relative to the ground and to provide for adjustable connection to the fracturing manifold trunk line at one or both of the inlet and the outlet.
In some embodiments, the flow control unit is connected to a flow control frame for fixed movement therewith, while the transport skid remains ground supported and stationary. The flow control unit frame is supported on the transport skid and is connected to the transport skid through the plurality of cylinders to provide the rotation and the translational movement relative to the transport skid. The flow control unit components of the inlet, outlet and flow control valves may be pedestal mounted to the flow control frame and aligned along an x-axis of the flow control unit frame. In other embodiments, the flow control unit components may be aligned along a z-axis.
In another broad aspect, the present disclosure provides a fracturing system for controlling the flow of fracturing fluid to a plurality of wellheads, each adapted for fracturing a well. The fracturing system includes a fracturing manifold system connected to the plurality of wellheads for delivering fracturing fluid to the plurality of wellheads. The fracturing manifold system includes a shared manifold trunk line and a plurality of fracturing manifold modules connected to the shared manifold trunk line for controlling the flow of the fracturing fluid from the shared manifold trunk line to one of the plurality of wellheads. Each of the fracturing manifold modules includes a transport skid adapted to be ground supported, and a flow control unit supported on the transport skid and including an inlet adapted for connection along an axis of the shared manifold trunk line, an outlet adapted for connection to one of the plurality of wellheads via one or more fluid conduits, and one or more flow control valves between the inlet and the outlet. The transport skid and the flow control unit are connected together for rotation of the flow control unit relative to the transport skid in a generally horizontal x-y plane relative to the ground, said rotation being about a z-axis perpendicular to the x-y plane to provide for adjustable connection to the fracturing manifold system at one or both of the inlet and the outlet.
In yet another broad aspect, the present disclosure provides a method of aligning a fracturing manifold module for connection to a shared manifold trunk line of a fracturing manifold system. The method includes:
providing a flow control unit, the flow control unit including an inlet adapted for connection along an axis of the shared manifold trunk line, an outlet adapted for connection to one of a plurality of wellheads via one or more fluid conduits, and one or more flow control valves between the inlet and the outlet;
supporting the flow control unit on a transport skid adapted to be ground supported, the flow control unit and the transport skid being connected together to provide for rotation of the flow control unit relative to the transport skid in a generally horizontal x-y plane relative to the ground, said rotation being about a z-axis perpendicular to the x-y plane;
landing the transport skid and flow control unit for proximity to the shared manifold trunk line and to one of the plurality of wellheads; and
adjusting the position of the flow control unit by rotating the flow control unit relative to the transport skid in the x-y plane about the z-axis to align one or both of the inlet and the outlet for connection to the fracturing manifold system.
In some embodiments of the method, the transport skid and the flow control unit are connected together to provide for translational movement of the flow control unit relative to the transport skid in the x-y plane. In such embodiments, the adjusting step further includes translating the flow control unit relative to the transport skid in the x-y plane to align one or both of the inlet and the outlet for connection to the fracturing manifold system.
In some embodiments, the method includes landing the transport skid and the flow control unit such that the transport skid is ground supported, and leveling the flow control unit in the x-y plane relative to the ground by adjusting the height of the flow control unit.
Certain embodiments of the above features, aspects and advantages of the invention are described in greater detail with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, in which:
Fracturing System
One embodiment of a fracturing system is shown generally at 10 in
Each of the fracturing manifold modules 22a-22e may include similar components or different components. In
As described more fully below, each of the fracturing manifold modules 22a-22e (shown in greater detail as 22 in
The transport skid 40 is adapted to be ground supported, and may include one or more height adjustable legs 42 for leveling purposes. Alternatively, in some embodiments, the height adjustment may be provided by a support frame for the flow control unit 30. The transport skid 40 and the flow control unit 30 are connected together to provide for rotation of the flow control unit relative to the transport skid in a generally horizontal x-y plane relative to the ground. For ease of explanation herein, the x, y, z cartesian co-ordinates as applied to the fracturing manifold module 22 and the shared manifold trunk line 24 are shown as an inset in
In the embodiments shown herein and described below, the transport skid 40 and the flow control unit 30 are also connected together to provide for translational movement of the flow control unit 30 relative to the transport skid 40 in the x-y plane. In
Fracturing Manifold Module
One exemplary embodiment of a fracturing manifold module 22 is shown in
In
The transport skid 40 includes a pair of parallel spaced skid frame members 60 such as I-beams (also known as runners), extending in the direction of the x-axis of the module 22, and parallel spaced cross members 62, such as I-beams extending transversely (i.e., in the direction of the y-axis of the module) between the skid frame members 60 to provide the generally rigid rectangular transport skid 40. Parallel spaced support plates 64 extend transversely between the upper edge portions of the skid frame members 60 above the transverse cross members 62. In
Also shown are a plurality (such as three or four) height adjustable legs 42 connected at the four corners of the transport skid 40, connected to the skid frame members 60. The legs 42 may be manual jacks, but due to the weight of the module, the legs 42 are more preferably independently controlled, actuated cylinders, such as hydraulic cylinders. Each leg 42 is preferably provided with a leg locking mechanism 68, such as a threaded ring lock, which can be threaded onto mating threads of the legs 42 once each leg 42 is height adjusted in order to lock the leg in position.
During pre-assembly of the fracturing manifold module 22, the flow control unit frame 44 is supported on the transport skid 40, with the lower edges of the parallel spaced frame members 54 supported on the support plates 64 of the transport skid 40. To reduce friction between the frame members, a friction reducing member 70 is provided at the one or more points of contact between the frame members 54, 64. In
In some embodiments, to provide the above-described relative rotational movement, and preferably also translational movement, between the transport skid 40 and the components of the flow control unit 30, to align the inlet 32 for connection to the shared manifold trunk line 24, the flow control unit frame 44 and the transport skid 40 are connected together by a plurality of independently controlled, actuated cylinders, such as pneumatic or hydraulic cylinders. In other embodiments, the plurality of cylinders might be replaced by manual actuators such as crank systems. As best seen in the cut away figures,
A hydraulic control system 80 is shown schematically in
In the event of settling of the transport skid 40, or if other minor adjustments are needed, one or more of the locking systems for the adjustable legs 42 and cylinders 72, 74 can be unlocked (with unlocking of the leg locking mechanism 68), to allow for further adjustments to the position of the inlet 32 or outlet 34 with cylinders 42, 72 and/or 74, and then the adjustable legs 42, leg locking mechanism 68, and hydraulic cylinders 72, 74 are re-locked.
Operation
Operation of the fracturing system 10 according to one or more embodiments will now be described. A plurality of fracturing manifold modules 22 are pre-assembled as needed for a particular configuration of a fracturing system 10, the pre-assembly being repeated for each manifold module 22. The flow control unit 30, is pre-assembled prior to connecting to the pedestal frame 46 of the flow control unit frame 44. As above, each flow control unit 30 generally includes an inlet 32, two flow control valves 36, 38 and an outlet 34. The inlet 32 is commonly a 4-way cross. The flow control valves 36, 38 are commonly gate valves, one remote operation, one manual operation. The outlet 34 has connections for one or more fluid conduits 35, with the figures showing a 6-way cross. In general, a 6-way cross outlet 34 provides for a total of five fluid conduit connections. Two 6-way cross outlets 34 provide for nine fluid conduit connections. Still alternatively, the outlet may provide for more or fewer fluid conduit connections, such as a single fluid conduit. This varies with the particular fracturing operation, required fracturing rates, and the inlet block 26 configuration to the shared manifold trunk line 24. As above, the components of the flow control unit 30, the inlet block 26, the components of the shared manifold trunk line 24 and the connections throughout the fracturing manifold system 20 may be varied as appropriate for a particular fracturing operation and in view of the layout of a particular well pad fracturing operation.
The shared manifold trunk line 24 typically has a uniform bore size, such as a 7 1/16″ bore, although a different bore size may be specified, such as a 5⅛″ bore. This 7 1/16″ bore is generally consistent through the shared manifold trunk line 24, and through each component (32, 34, 36, 38) of the flow control unit 30.
The outlet 34, as shown, with multiple fluid conduit connections 35, is generally prepared for common frac iron being 3″ (2.75″ or other bore size) or 4″ (3.50, 3.75″ or other bore size). Alternatively, an outlet with a single fluid conduit connection may match the 7 1/16″ bore in the flow control unit 30 or a reduced bore such as 5⅛″. Other inlet and outlet configurations and connections may be provided as appropriate.
The shared manifold trunk line 24 has a single inlet block or multiple inlet blocks 26 adapted to receive high pressure fracturing fluids through one or more fluid conduits 27 from the high-pressure stimulation services S.
The flow control unit 30 is pedestal mounted in the pockets provided by the horizontal pedestal support plates 50. The pockets provide recesses for the control valves 36, 38. The inlet 32 and control valves 36, 38 are bolted and/or welded in place. For retaining the flow control unit 30 to the pedestal frame 46, the clamp connection 52 is fastened on the flange of the outlet 34, and inlet fasteners 53 secure the inlet 32 to the horizontal plate 50 of the pedestal frame 46.
The flow control unit 30 is mounted for fixed movement with the flow control unit frame 44, which in turn is supported on the transport skid 40, with the friction reducing members 70 in place, and the hydraulic cylinders 72 and 74 pivotally connected between the flow control unit frame 44 and the transport skid 40 as described above. This pre-assembled fracturing manifold module 22 is then ready for road transport to the well pad.
In the transport (home) position of the fracturing manifold module 22 shown in
The flow control unit frame 44 is adjusted relative to the transport skid 40 with the three hydraulic cylinders 72, 74 to place the flow control unit frame 44 in the transport position. In this position the releasable locking devices 69 are installed and mechanically lock the flow control unit frame 44 to the transport skid 40. The releasable locking mechanism of the hydraulic control system locks the hydraulic cylinders 72, 74 against relative movement, and also locks adjustable legs 42 against movement. In the transport position, the hydraulic cylinders 72, 74 are generally in the midpoint position for the extension and retraction of the three hydraulic cylinders, i.e. there is equal translational movement in the x direction of the one cylinder, and equal translational movement in the y direction for the other cylinders, in the transport position.
The four skid roll ends 66 are used for lifting the fracturing control module 22 by a high capacity crane, or two of the skid roll ends 66 are used with a winch-tractor or bed-truck for transporting and/or initial landing placement of the fracturing manifold module 22, i.e, in the direction of the x-axis of the fracturing module 22.
On location, rough measurements are made for initial placement of the fracturing manifold module(s) 22. There is consideration to the grade for movement in the z direction for each fracturing manifold module 22.
The number of fracturing manifold modules 22 generally corresponds to the number of wells being stimulated through fracturing wellheads W. The inlet block(s) 26 of the shared manifold trunk line 24 receive the high pressure fracturing fluid through one or more fluid conduits 27 from the stimulation services S and distribute to the shared manifold trunk line 24 for all modules 22. Placement of the inlet block(s) 26 can be at either end of the outermost modules (ex. 22a, 22e), or between any two modules (ex. between 22b and 22c as in
The shared manifold trunk line 24 includes spacer spools 28 of frac iron between inlets 32 of the fracturing manifold modules 22. Spacer spools 28 are standard length, in foot increment lengths, from approximately 2 feet to 12 feet. Spacer spools 28 may be provided in non-standard lengths. Connections of the spacer spools 28 are typically industry standard flanges with pressure-energized metal seal ring gaskets. These connections are also standard for the components of the flow control units 30. Spacer spools 28, flow control unit inlets 32, and inlet blocks 26 may be provided with other industry standard connections, for example clamp-end hub connections with pressure energized metal seals.
Outrigger pads may be provided for the adjustable legs 42 on the transport skid 40, reducing the need for additional specifications to the end user to prepare the grade and surface on location. The allotted footprint on location and proximity to wellheads determines the placement of the fracturing manifold modules 22, the inlet block 26 and number of spacer spools 28 required between subsequent modules 22. Distances are known from one fracturing manifold module 22 to the next (i.e., adjacent fracturing manifold modules 22) depending on the length of spacer spools 28 on each section of the shared manifold trunk line 24. The location of the first fracturing manifold module 22 is determined with consideration to the corresponding well and the allotted footprint for all modules 22. Due to the adjustability provided in each of the fracturing manifold modules 22, only minor consideration is needed for the x-y plane of the first module 22. The high capacity crane lifts and lands the fracturing module 22 by the four roll ends 66 such that inlet is proximate to the location for connecting along the y-axis of the shared manifold trunk line 24. As above, this initial placement may be set for the outlet connections, but the inlet connections more commonly set the position for the first module 22. Alternatively, if space permits, the module 22 may be landed with a bed truck or winch tractor or other equipment, using two skid roll ends 66 on the transport skid 40 and moving the module 22 in the general x-direction (relative to the y-axis of the shared manifold trunk line 24), with the skid frame members 60 sliding on location for proximate placement.
From the known distances each remaining fracturing manifold module 22 is placed with previous consideration to the y-axis of the shared manifold trunk line 24 (or the outlet position in some cases). The high capacity crane is not further needed for making up the connections at the inlet 32 along the shared manifold trunk line 24 or at the outlet 34.
Once all fracturing manifold modules 22 are located, outrigger pads may be placed under each adjustable leg 42 of the first module 22. The adjustable legs 42 are raised in the direction of the z-axis to level the flow control unit 30 (and the flow control unit frame 44 and inlet 32), such that the x-y plane of the inlet 32 of the flow control unit 30 (in general this is parallel to the x-y plane of the flow control unit frame 44) is generally horizontal and parallel to the ground. The hydraulic system locks all adjustable legs 42 during leveling and then the leg locking mechanisms 68 are placed on all four adjustable legs 42.
The releasable locking devices 69 are removed between the transport skid 40 and the flow control unit frame 44. As required, the three hydraulic cylinders 72, 74 are operated to adjust the position of the inlet and the outlet in x-y plane of the frame 44 by rotating the flow control unit frame 44 relative to the stationary transport skid 40. This adjusts the position of the inlet 32 and the outlet 34 in the x-y plane about the z-axis (Rz in
On the second (next adjacent) fracturing manifold module 22, the outrigger pads are placed beneath the adjustable legs 42 and the releasable locking devices 69 are removed between the transport skid 40 and the flow control unit frame 44. The adjustable legs 42 are operated to level the frame 44 relative to the ground and to provide for proximity at the inlet 32 to the y-axis of shared manifold trunk line. The three cylinders 72, 74 are operated to establish the x-y plane rotated on the z-axis to have the inlet y-axis coaxial with the shared manifold trunk line 24 (as above). The two hydraulic cylinders in the y-direction 74 may be adjusted to assist making up the spacer spools 28. After spacer spools 28 connections are made-up, the four leg locking mechanisms 68 are placed on the adjustable legs 42, and the hydraulic controls lock the cylinders 72, 74 and adjustable legs 42 against further movement. Alternatively, as noted above, this second fracturing manifold module 22 may be aligned for connections at the outlet 34.
This process is repeated for the remaining fracturing manifold modules.
During stimulation, the leg locking mechanisms 68 are inspected. If required, for example due to settling, the hydraulic locks for adjustable legs 42 and the leg locking mechanisms 68 are unlocked, the adjustable legs 42 are operated to level at the inlet 32 and/or at the outlet 34, and the hydraulic controls and the leg locking mechanisms 68 are reset. If needed, the hydraulic cylinders 72, 74 may be unlocked for fine adjustments at the inlet 32 and/or the outlet 34. After any adjustment, the hydraulic controls are re-locked and the leg locking mechanism 68 are reset.
As used herein and in the claims, the word “comprising” is used in its non-limiting sense to mean that items following the word in the sentence are included and that items not specifically mentioned are not excluded. The use of the indefinite article “a” in the claims before an element means that one of the elements is specified, but does not specifically exclude others of the elements being present, unless the context clearly requires that there be one and only one of the elements.
All references mentioned in this specification are indicative of the level of skill in the art of this invention. All references are herein incorporated by reference in their entirety to the same extent as if each reference was specifically and individually indicated to be incorporated by reference. However, if any inconsistency arises between a cited reference and the present disclosure, the present disclosure takes precedence. Some references provided herein are incorporated by reference herein to provide details concerning the state of the art prior to the filing of this application, other references may be cited to provide additional or alternative device elements, additional or alternative materials, additional or alternative methods of analysis or application of the invention.
The terms and expressions used are, unless otherwise defined herein, used as terms of description and not limitation. There is no intention, in using such terms and expressions, of excluding equivalents of the features illustrated and described, it being recognized that the scope of the invention is defined and limited only by the claims which follow. Although the description herein contains many specifics, these should not be construed as limiting the scope of the invention, but as merely providing illustrations of some of the embodiments of the invention.
One of ordinary skill in the art will appreciate that elements and materials other than those specifically exemplified can be employed in the practice of the invention without resort to undue experimentation. All art-known functional equivalents, of any such elements and materials are intended to be included in this invention. The invention illustratively described herein suitably may be practised in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein.
Number | Name | Date | Kind |
---|---|---|---|
8469108 | Kajaria et al. | Jun 2013 | B2 |
8474521 | Kajaria et al. | Jul 2013 | B2 |
8813836 | Kajaria et al. | Aug 2014 | B2 |
8839867 | Conrad | Sep 2014 | B2 |
8899268 | Garner et al. | Dec 2014 | B2 |
8978763 | Guidry | Mar 2015 | B2 |
9004104 | Ungchusri et al. | Apr 2015 | B2 |
9068450 | Guidry | Jun 2015 | B2 |
9127545 | Kajaria et al. | Sep 2015 | B2 |
9222345 | Conrad | Dec 2015 | B2 |
9239125 | Ungchusri et al. | Jan 2016 | B2 |
9255469 | Conrad | Feb 2016 | B2 |
9416637 | Allouche | Aug 2016 | B2 |
9518430 | Guidry | Dec 2016 | B2 |
9534604 | Lopez et al. | Jan 2017 | B2 |
9568138 | Arizpe et al. | Feb 2017 | B2 |
9605525 | Kajaria et al. | Mar 2017 | B2 |
9631469 | Guidry et al. | Apr 2017 | B2 |
9759054 | Gay et al. | Sep 2017 | B2 |
9903190 | Conrad et al. | Feb 2018 | B2 |
9915132 | Conrad | Mar 2018 | B2 |
9932800 | Guidry | Apr 2018 | B2 |
10132146 | Guidry | Nov 2018 | B2 |
20160376864 | Roesner et al. | Dec 2016 | A1 |
20170159654 | Kendrick | Jun 2017 | A1 |
20170268306 | Kajaria et al. | Sep 2017 | A1 |
20170275980 | Kajaria | Sep 2017 | A1 |
20170306987 | Theodossiou | Oct 2017 | A1 |
20170314379 | Guidry | Nov 2017 | A1 |
20170350223 | Guidry et al. | Dec 2017 | A1 |
20170370172 | Tran et al. | Dec 2017 | A1 |
20170370199 | Witkowski et al. | Dec 2017 | A1 |
20180058171 | Roesner et al. | Mar 2018 | A1 |
20180073308 | Tran et al. | Mar 2018 | A1 |
20180187507 | Hill et al. | Jul 2018 | A1 |
20180187537 | Hill et al. | Jul 2018 | A1 |
20180347286 | Scott | Dec 2018 | A1 |
20200103078 | Scott et al. | Apr 2020 | A1 |
Entry |
---|
Cameron, Frac manifold systems, [Brochure]. Retrieved from https://www.slb.com/fracmanifolds (copyright 2016, Schlumberger). |
E&P, Roesner, T., et al. Solving Inefficiencies of Fracturing Fluid Delivery, [Brochure]. (Retrieved Dec. 19, 2017 from https://www.epmag.com/solving-inefficiencies-fracturing-fluid-delivery-825386. |
Performance Wellhead & Frac Components, Frac Manifold Solutions, “[Brochure[.” Retrieved from https://www.pwfrac.com/products/frac-manifold-solutions (n.d.). |
Weir Oil & Gas, Seaboard™ zip pac manifold systems, “[Brochure].” Retrieved from https://www.global.weir.com (copyright 2014, Seaboard). |
Number | Date | Country | |
---|---|---|---|
20200048980 A1 | Feb 2020 | US |