This invention relates generally to a wellhead and method for use in the drilling and completion of subsea wells and, more particularly, to improvements in a wellhead wherein a tubular, such as a well casing or a liner, may be connected at its lower end to a mud line hanger, with the casing extending into the drilled borehole, wherein the casing is tied back to a hanger adjustably supported within the surface wellhead.
In conventional surface wellheads, the surface casing hanger has a shoulder adapted to be landed on a seat in the bore of the surface wellhead, and is then sealed to close the annulus about casing string. For shallow wells, many casing strings are not tensioned, and the casing hanger is simply hung off this shoulder. To provide the desired length of the casing relative to the shoulder, an adjustment mechanism may be provided which allows for adjusting axially several inches the spacing between the engaging surface on the hanger and the shoulder on the wellhead for space-out.
As long as the depth of the water is not too great, the desired space-out of the casing hanger and the wellhead shoulder may be predicted with reasonable accuracy. However, as wells are drilled to considerably greater depths, the operator is faced with the problem of applying too little tension to the casing string once the hanger and thus the casing supported on the hanger is landed on the casing shoulder within the wellhead.
As a related problem, the operator preferably desires a certain tension on the casing once hung off from the shoulder on the wellhead. As water depths increase, it becomes more difficult to calculate the correct space-out, and even if properly calculated, that space-out requires for a deep well a long adjustment mechanism in the casing hanger for engagement with the shoulder. When the casing is hung off and the adjustment member is “fully stroked, ” the operator still may not have the desired tension in the casing hanger. Since the adjustment mechanism cannot pass below the shoulder on the wellhead, the operator is forced to either (a) accept the limited tension in the casing that is obtained, or (b) provide a different space-out along the length of the casing, or (c) select a wellhead and an adjustment mechanism for the casing hanger which allows for an even longer stroke length.
In systems where vertical adjustment of the casing relative to the wellhead are made, extremely long wellheads or hanger systems are required to accept the length of adjustment. Systems of this design result in substantially increased stack up height, which then requires more space between deck levels on offshore facilities.
Providing a plurality of vertically spaced seats of varying diameters on which the casing hanger shoulder may be landed, depending on the desired casing stretch, is not a satisfactory solution. Varying diameter seats would increase the radius of the bore through the wellhead housing in which the hanger is landed, thus increasing the I.D. of the wellhead equipment thereabove, which would greatly add to the expense of overall equipment. Also, seals would then have to be provided for sealing with varying diameter bores in the wellhead, and hangers with different diameter shoulders would have to be kept in inventory for landing on the different sized seats.
Some prior art systems contain a seal between two tubular members, so that the seal slides for the length of the desired adjustment. Split latch rings or threads may be used to mechanically interconnect the two tubular members. This sliding seal provides a substantial leak path in the casing hanger system, and the latch rings or threads reduce fatigue life due to dynamic loading.
The disadvantage of the prior art is overcome by the present invention, in an improved wellhead for supporting a hanger is hereinafter disclosed, wherein the tubular, such as casing or liner, supported on the wellhead may be selectively positioned with respect to the wellhead so that the operator may apply a proper tension to the string. An improved wellhead and hanger system accordingly is hereinafter disclosed for reliably supporting a tubular string with a desired stretch in the string.
In a preferred embodiment, the wellhead of the present invention is provided with a plurality of axially spaced landing or support grooves which are used for securing the tubular hanger to the wellhead. A support ring on the casing hanger may be moved radially outward for engagement with one of the grooves in response to increased fluid pressure. Lowering of the tubular hanger on the wellhead then prevents the support ring from moving radially inward and reliably supports the casing hanger from the wellhead. A lock ring when engaged in one of the lock grooves prevents the tubular hanger from moving axially upward relative to the wellhead.
It is therefore the primary object of this invention to provide improved wellhead which enables the hanger, such as a casing hanger, to be landed and sealed within the casing head, with a desired tension in the casing, by allowing substantial variations in the space-out length and thus the desired stretch of the casing supported on the casing hanger secured to the wellhead. More particularly, the hanger may pass below the landing or support grooves, and below a lockout groove as discussed below, then the hanger pulled upward to put tension in the tubular string. When at or slightly above a desired tubular tension, the hanger may then be reliably secured to the wellhead.
It is a feature of the present invention to provide a wellhead and hanger wherein the tubular may be continuous between the member which fixes the lower end of the tubular in a well, such as the tie back tool at the mud line, and the hanger at the upper end of the tubular string, without the use of sliding seals used in prior art systems.
It is a further feature of the invention to intersperse a primary and a backup seal above and below one of the grooves on the wellhead to minimize the stack up length required in the wellhead, while still providing the necessary adjustment to obtain the desired stretch of the tubular string. Also, some of the grooves may serve as either a support groove or a lock-out groove.
It is an advantage of the present invention that the casing hanger may be run into the wellhead using a clutch-type running tool.
These and further objects, features, and advantages of the present invention will become apparent from the following detailed description, wherein reference is made to the figures in the accompanying drawings.
As illustrated, each of the support grooves 23 has three annular groove segments, 23A, 23B, 23C, each extending radially outwardly from the bore. The topmost lockdown groove 24 has only two groove segments 24A and 24B, thus permitting it to receive only the lockdown ring on the tubing hanger, and not a support ring. Depending on the level at which the hanger is to be supported, the lockdown ring may be received in one of the axially spaced support grooves other than the lowermost support groove, as discussed below.
As shown in
As will be described below, an annular seal mechanism may be lowered onto the landed casing hanger for sealably engaging the seal surface both beneath and above the lockdown ring so as to close the annulus between the casing hanger and the bore of the wellhead housing.
As shown in
Once the hanger 30 is positioned above the groove 23 in which the support ring 32 is to be engaged, one or more circumferentially spaced pistons 48 are urged outwardly to urge the support ring to an outer position for engaging the intended support groove 32. To energize the pistons 48, a ball 49 may be dropped through the drill pipe 41 to land on the seat 46, as shown in
In many applications, three or more support grooves are provided, with each support groove being spaced axially from other support grooves by a cylindrical sealing surface 25. For many applications, adjacent support grooves will be spaced axially three inches or more apart, since the operator can accommodate a final position of the casing hanger relative to the wellhead housing within a spacing of several inches or more.
Both the support ring 32 and a lockdown ring 34 are preferably split or C-shaped rings, with an outer surface configured for mating with corresponding grooves in the wellhead housing 20. Various mating configurations between the C-rings and the grooves in the wellhead housing are thus possible.
As shown in
Once the running tool has been removed, a seal element and locking tool 70 as shown in
It should be noted that the gate valve 84 as shown in
The seal element 76 is thus moved axially into position for performing its function after the casing hanger 30 has been supported in a selected one of the various possible vertical positions with respect to the wellhead. Once the seal element 76 is positioned as shown in
The wellhead of the present invention thus provides a high degree of flexibility to adjust the casing hanger relative to the wellhead, thereby allowing for a desired stretch in the casing. This increased flexibility is a significant feature of the present invention, since the support surfaces and the lockdown surfaces on the wellhead may be provided radially inward of the central bore in the wellhead. The casing hanger may thus be lowered below and, if desired, a substantial distance below, the support surfaces. When in its desired position, the casing hanger and the casing secured thereto may be pulled upward into the bore of the wellhead and, when a desired tension is obtained in the casing, the hanger may then be supported on the support surfaces of the wellhead, as discussed above. If the casing hanger is not at a desired position relative to the wellhead when desired tension is applied in the casing string, the operator need not hang off the casing string from the wellhead, but instead may elect to reposition the casing hanger at either a higher or lower position relative to the casing string such that, when the casing hanger is subsequently raised to its desired position within the wellhead, the desired tension will be applied to the casing string and the hanger may thus be hung off from the wellhead assembly with the desired tension in the string.
The operator may thus apply tension to the casing hanger to cause the casing to stretch, then increase fluid pressure within the work string by dropping a ball, so that when the operator slacks off slightly, the support ring snaps into the next lowest groove. The application of fluid pressure through the work string along with the downward motion of the casing hanger activates the support ring to support the casing string from the wellhead. A lockdown ring subsequently insures that the casing string cannot move upward relative to the wellhead. A support groove may also serve as a lockdown groove. The seal surfaces are preferably spaced between the grooves to minimize the stack up height of the wellhead assembly.
The wellhead as shown in the enclosed drawings is a “two step” wellhead with a lower bore 22 for receiving a casing hanger, and an upper bore 26 for receiving a tubing hanger. The present invention may be used in a wellhead which only supports a casing hanger, and a separate upper wellhead may support the tubing hanger, or tubing may not yet be provided within the well.
While hydraulic fluid pressure is preferably used for biasing the pistons and thus the support ring radially outward, other techniques may be used for biasing a support ring in the radially outward position so that, once the support ring engages its intended groove in the wellhead housing, the hanger may be lowered to effectively lock the support ring in its radially outward position, thereby supporting the hanger and the tubular supported on the hanger from the wellhead housing. Also, while a C shaped support ring and lock ring are preferred to obtain high reliability with very little vertical spacing, other mechanisms may be used for interconnecting the hanger and the housing in a selected axial position once the desired stretch in the tubular has been obtained. A significant feature of this invention is the ability of the hanger to pass through the wellhead unhindered to allow the tie back to the subsea structure.
The techniques of the present invention are particularly well suited for obtaining the desired stretch in a casing string fixed to a subsea wellhead near the mud line. The present invention provides a wellhead with an interior surface adapted to lock with the casing string at one of a selected plurality of elevations. Various types of oilfield tubulars, including a production casing or a riser, may be supported from the hanger secured to the wellhead by the techniques disclosed herein.
It will be understood by those skilled in the art that the embodiment shown and described is exemplary and various other modifications may be made in the practice of the invention. Accordingly, the scope of the invention should be understood to include such modifications which are within the spirit of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3468559 | Ahlstone | Sep 1969 | A |
3543847 | Haeber | Dec 1970 | A |
4019579 | Thuse | Apr 1977 | A |
4460042 | Galle, Jr. | Jul 1984 | A |
4540053 | Baugh et al. | Sep 1985 | A |
4550782 | Lawson | Nov 1985 | A |
4691780 | Galle et al. | Sep 1987 | A |
4757860 | Reimert | Jul 1988 | A |
4836579 | Wester et al. | Jun 1989 | A |
4886121 | Demny et al. | Dec 1989 | A |
4903776 | Nobileau et al. | Feb 1990 | A |
4928769 | Milberger et al. | May 1990 | A |
4995464 | Watkins et al. | Feb 1991 | A |
5020593 | Milberger | Jun 1991 | A |
5076356 | Reimert | Dec 1991 | A |
5082060 | Johnson et al. | Jan 1992 | A |
5226493 | Watkins et al. | Jul 1993 | A |
5255746 | Bridges | Oct 1993 | A |
5524710 | Shinn | Jun 1996 | A |
5671812 | Bridges | Sep 1997 | A |
6234252 | Pallini, Jr. et al. | May 2001 | B1 |
Number | Date | Country |
---|---|---|
2 270 531 | Mar 1994 | GB |
2 356 208 | Mar 2000 | GB |
WO 02075098 | Sep 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20040188087 A1 | Sep 2004 | US |