1. Field of the Invention
The invention relates to adjustable head restraints for vehicle seats.
2. Background Art
The prior art has provided adjustable head restraints for vehicle seats. One such example is U.S. Pat. No. 6,899,395 B2, which issued on May 31, 2005 to Yetukuri et al. Adjustable head restraints permit the user to adjust the head restraint to a desired position.
The prior art has also provided active head restraint systems that translate a head restraint towards an occupant in response to an impact condition to minimize whiplash conditions during an impact. Some active head restraint systems employ expandable head restraints. An example of an active head restraint system is disclosed in U.S. Pat. No. 6,767,064 B2, which issued on Jul. 27, 2004 to Veine et al.
One embodiment of the present invention discloses a vehicle seat having a seat back for supporting a back of an occupant. A rod is mounted to and extending from the seat back. A frame is mounted to the rod to slide along the rod. A linkage is mounted to the rod to extend and retract relative to the frame in a forward and rearward direction. A head restraint is mounted to the linkage for supporting a head of an occupant and for extending and retracting relative to the frame. A locking mechanism cooperates with the head restraint and cooperates with the locking mechanism for releasing the locking mechanism and to retract the head restraint relative to the rod.
Another embodiment of the invention discloses a vehicle seat having a seat back for supporting the back of an occupant. A rod is mounted to and extends from the seat back and the rod has a series of notches. A frame is mounted to the rod to slide along the rod. The head restraint is mounted to the frame for supporting a head of an occupant. An eccentric mechanism is pivotally connected to the frame. A wire spring is mounted to the frame for engaging one of the notches of the rod and the wire spring cooperates with the eccentric mechanism such that rotation of the eccentric mechanism to a released position retracts the wire spring from the notch. An actuator for rotating the eccentric mechanism from a locked position to the release position is provided to slide the head restraint and frame along the rod.
Yet another embodiment of the present invention discloses a vehicle seat having a seat back for supporting a back of an occupant. A rod is mounted to and extends from the seat back and the rod has a series of notches. A frame is mounted to the rod to slide along the rod. A head restraint is mounted to the rod for supporting a head of an occupant and for extending and retracting relative to the frame in a fore and aft direction. A first locking mechanism cooperates with the head restraint and the frame for permitting incremental locking positions of the head restraint relative to the frame. A second locking mechanism cooperates with the notches for maintaining a height position of the head restraint relative to the rod. A manual release is provided cooperating with the first and second locking mechanisms for releasing the first locking mechanism to extend and retract the head restraint relative to the rod and for releasing the second locking mechanism for permitting height adjustment of the head restraint.
The above embodiments and other embodiments, features, benefits and advantages of the present invention are readily apparent from the following detailed description of embodiments of the invention and the accompanying drawings.
a is an enlarged partial section view of the locking shaft of
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for the claims and/or as a representative basis for teaching one skilled in the art to variously employ the present invention.
With reference now to
The seat cushion and the seat back 22 are both fabricated from suitable and known materials and manufacturing methods. For example, the seat back 22 utilizes a structural frame, foam for cushioning and a cover.
The seat 20 also includes a head restraint 24 that is mounted to the frame of the seat back 22 and extends above the seat back 22 for supporting a head of the occupant. The head restraint 24 has a release button 26 mounted on a lateral side of the head restraint 24 for permitting an occupant to depress the button 26 and adjust a height of the head restraint 24 relative to the seat back 22 as illustrated by an upright arrow in
The head restraint 24 is illustrated with a cover and foam padding removed to reveal a head restraint position adjustment mechanism 28. The position adjustment mechanism 28 includes a pair of rods 30, 32 that are mounted to a frame of a seat back 22 and extend above the seat back 22 for supporting the head restraint 24. The rods 30, 32 are connected at their distal ends by an upper transverse bar 34. Likewise, a lower transverse frame 36 is mounted to the rods 30, 32 to translate along the rods 30, 32 to perform the height adjustment of the head restraint 24. Additionally, the frame 36 supports the padding and cover of the head restraint 24 to translate along the rods 30, 32 with the height adjustment of the frame 36.
A linkage 38 is mounted to the frame 36 for extending and retracting relative to the frame 36 in the longitudinal direction. The head restraint 24, in one embodiment, is an expandable head restraint 24. For example, the head restraint 24 includes a forward shell 40 that is mounted to the linkage 38 for providing a head support surface of the head restraint 24 and for extending and retracting relative to the frame 36. The head restraint 24 also includes a rear shell 42 that cooperates within the forward shell 40 for enclosing the position adjustment mechanism 28 and for permitting a longitudinal dimension of the head restraint 24 to vary due to the translation of the forward shell 40 relative to the rear shell 42.
The position adjustment mechanism 28 includes a locking device 44 for locking the location of the forward shell 40 relative to the frame 36. The locking device 44 includes a locking shaft 46 that is pivotally connected to the forward shell 40. The locking shaft 46 extends centrally between the rods 30, 32 and is generally perpendicular to the regions of the rods 30, 32 upon which the frame 36 translates for height adjustment of head restraint 24. The locking shaft 46 extends through a bore 48 in the frame 36 and cooperates within the bore 48 for locking a longitudinal position of the locking shaft 46 relative to the frame 36.
The locking shaft 46 is illustrated in a locked position in
The linkage 38 includes a pair of primary links 56 pivotally connected to the frame 36, generally coaxial with the rod 30. The linkage 38 also includes another pair of primary links 58 pivotally connected to the frame 36 generally coaxial with the rod 32. The linkage 38 further includes a secondary link 60 that is pivotally connected to the pair of primary links 56 and pivotally connected to the forward shell 40 at an inner surface of the shell 40. Likewise, the linkage 38 includes another link 62 pivotally connected to the pair of primary links 58 and pivotally connected to the forward shell 40 at an inner surface of the shell 40. Thus, the links 56, 58, 60, 62 of the linkage 38 provide stability and a controlled path of linear motion for translation of the shell 40 in the longitudinal direction.
When the locking device 44 is released, the user can translate the forward shell 40 to an extended position as illustrated in
Referring now to
Referring again to
Referring now to
Referring now to
Referring again to
With reference now to
The locking device 44 is illustrated in the locked position in
The position adjustment mechanism 28 also permits height adjustment of the head restraint 24 relative to the seat back 22. As illustrated in
The adjustable head restraint 24 permits the occupant to adjust a longitudinal position and height of the head restraint 24 relative to the seat back 22 by depression of one release button 26. Thus, various head supporting positions can be obtained with ease and one handed adjustment.
Typical head restraints tend to be too far away from the head of the occupant to give adequate support to the occupant, or to be comfortable while traveling. The various adjustment positions of the head restraint 24 provide comfort to the occupant and increase safety by permitting the head restraint 24 to be located closer to the head of the occupant. Additionally, such adjustment is confined within the head restraint 24 for simplifying the components and mechanisms housed within the seat back 22. Additionally, by providing the head restraint 24 in a right and near or suitable adjusted position relative to the occupant, safety conditions are achieved that are comparable to utilization of active head restraint systems that translate the head restraint towards the occupant in response to an impact condition.
Additionally, the head restraint 24 is generally compact by translating the head restraint 24 and expanding the forward shell 40 relative to the rear shell 42 such that the translation of the forward shell 40 is more than an overall expansion of the head restraint 24 thereby minimizing the volume occupied by the head restraint 24 in the fully expanded position.
Another embodiment head restraint is illustrated in
The linkage 112 includes a first pair of primary links 116 and a second pair of primary links 118 pivotally connected to the frame 110. Each pair of primary links 116, 118 drives a shaft 120, 122 that revolves about the corresponding rod 102, 104. The shafts 120, 122 are each pivotally connected to secondary links 124, 126. The secondary links 124, 126 are each pivotally connected to the forward shell 114. The shafts 120, 122 which provide the pivotal connection between the primary links 116, 118 and the secondary links 124, 126 each extend through an arcuate guide 128, 130, which enhances stability of the linkage 112 and promotes uniform extension of the secondary links 124, 126 for linear translation of the forward shell 114.
The position adjustment mechanism 106 includes a locking device 132 for locking the head restraint 100 in the fore and aft direction. The locking device 132 includes a release button 134 mounted on the forward shell 114. The release button 134 actuates an actuation bar 136 that is also mounted for translation in the forward shell 114. Similar to the prior embodiment, the actuation bar 136 includes a gear rack (not shown) that is engaged with a pinion gear 138 of a locking shaft 140.
The locking shaft 140 is rotatably connected to the forward shell 114 and extends into the frame 110. Referring now to
The compression spring 142 also assists in adjustment of the head restraint 100, whereby an occupant may press the release button 134 while reaching behind the head of the occupant. The compression spring 142 extends the forward shell 114 forward and the occupant may urge the forward shell 114 rearward by resting his or her head against the forward shell 114 until a desired adjustment position is obtained. Then, the occupant may release his or her finger from the release button 134 thereby returning the locking device 132 to the locked position and locking the head restraint 100 in the selected longitudinal position.
Referring now to
The ratchet plate 144 has a follower 154 extending from its underside into a slot 156 in the frame 110. The slot 156 intersects a bore 158 through which the locking shaft 140 extends into the frame 110. The locking shaft 140 includes an eccentric member, such as a cam 160 that engages the follower 154. Rotation of the shaft 140 causes the cam 160 to raise the follower 154 thereby raising the ratchet plate 144 and disengaging the ratchet teeth 146, 148 of the plate 144 and the ratchet teeth 150, 152 of the primary links 116, 118.
Adjustment of the head restraint 100 in the fore and aft direction is provided by depression of the release button 134, which translates the actuation bar 136 inboard thereby rotating the locking shaft 140 clockwise. Rotation of the locking shaft 140 causes the cam 160 to raise the follower 154 and consequently the ratchet plate 144. Disengagement of the ratchet plate 144 from the top primary links 116, 118 permits longitudinal adjustment of the forward shell 114 to various positions between the fully retracted position of
In another embodiment of the invention, the ratchet teeth 146, 148, 150, 152 of the ratchet plate 144 and the top primary links 116, 118 are all inclined in a rearward direction to resist retraction of the top primary links 116, 118 in a locked position, to thereby support the head of the occupant. This ratchet configuration, however, permits the user to extend the forward shell 114 forward without unlocking the locking device 132. This inclined ratchet configuration also omits the compression spring 142 to avoid inadvertent extension of the forward shell 114. Accordingly, the occupant may urge the forward shell 114 forward thereby extending the forward shell 114. However, in order to actuate the forward shell 114 rearward, the user must depress the release button 134 in order to release the locking device 132.
Similar to the prior embodiment, the head restraint 100 includes a rear shell 162 mounted to a bracket 164 on a yoke 166 that is mounted to the frame 110 to translate in the fore and aft direction. The yoke 166 includes slots 168 that receive the shafts 120, 122. Thus, as the linkage 112 expands from the collapsed position of
Similar to the prior embodiment, the head restraint 100 includes a wire spring 169 (
The rods 102, 104 include notches 180 for receiving the spring ends 177, 178 of the wire spring 169. As the locking shaft 140 is rotated to the released position, the ratchet plate 144 is lifted by the cam 160, and the eccentric drive 179 urges the spring ends 177, 178 inboard within the cam slots 174, 176 of the brackets 170, 172. By urging the spring ends 177, 178 inboard, spring ends 177, 178 become disengaged from the notches 180 within the rods 102, 104. Therefore, actuation of the release button 134 also permits height adjustment of the head restraint 100 relative to the associated seat back. Additionally, the cooperation of the spring ends 177, 178 within the cam slots 174, 176 helps to lift the ratchet plate 144 as the spring ends 177, 178 are retracted inboard by the eccentric drive 179.
While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2007 048 151 | Oct 2007 | DE | national |
This application claims the benefit of U.S. provisional application Ser. No. 60/969,823, filed on Sep. 4, 2007 and claims priority to German Application No. 10 2007 048 151.0, filed on Oct. 8, 2007, the disclosures of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4265482 | Nishimura et al. | May 1981 | A |
4304439 | Terada et al. | Dec 1981 | A |
4540217 | Suzuki | Sep 1985 | A |
4568123 | Yasui et al. | Feb 1986 | A |
4657304 | Heesch et al. | Apr 1987 | A |
4674797 | Tateyama | Jun 1987 | A |
4685737 | Deley et al. | Aug 1987 | A |
4762367 | Denton | Aug 1988 | A |
5020855 | Lindberg et al. | Jun 1991 | A |
6082817 | Muller | Jul 2000 | A |
6390558 | Fischer et al. | May 2002 | B2 |
6688697 | Baumann et al. | Feb 2004 | B2 |
6715829 | Svantesson et al. | Apr 2004 | B2 |
6767064 | Veine et al. | Jul 2004 | B2 |
6805411 | Gramss et al. | Oct 2004 | B2 |
6899395 | Yetukuri et al. | May 2005 | B2 |
6983995 | Veine et al. | Jan 2006 | B1 |
7048336 | Mawbey et al. | May 2006 | B2 |
7070235 | Schilling et al. | Jul 2006 | B2 |
7073863 | Low et al. | Jul 2006 | B1 |
7111901 | Schlierf et al. | Sep 2006 | B2 |
7137668 | Kreitler | Nov 2006 | B2 |
7144083 | List et al. | Dec 2006 | B2 |
7195313 | Hippel et al. | Mar 2007 | B2 |
7210734 | Yetukuri et al. | May 2007 | B1 |
7232187 | Sundararajan et al. | Jun 2007 | B1 |
7306287 | Linardi et al. | Dec 2007 | B2 |
7871129 | Boes et al. | Jan 2011 | B2 |
7878597 | Bokelmann et al. | Feb 2011 | B2 |
20010028191 | Lance | Oct 2001 | A1 |
20010040396 | Kreuels et al. | Nov 2001 | A1 |
20040195894 | Pal et al. | Oct 2004 | A1 |
20050077762 | Kraemer et al. | Apr 2005 | A1 |
20060226688 | Terada et al. | Oct 2006 | A1 |
20070216211 | Mori | Sep 2007 | A1 |
20070246989 | Brockman | Oct 2007 | A1 |
20080001456 | Muller et al. | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
10035972 | Feb 2001 | DE |
102004005695 | Aug 2004 | DE |
102004055986 | Jun 2006 | DE |
102005020276 | Sep 2006 | DE |
102006015785 | Oct 2006 | DE |
1717099 | Nov 2006 | EP |
2852066 | Sep 2004 | FR |
2340744 | Mar 2000 | GB |
2004089688 | Oct 2004 | WO |
2007073034 | Jun 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20090058162 A1 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
60969823 | Sep 2007 | US |