Adjustable headpiece with anatomical markers

Information

  • Patent Grant
  • D759803
  • Patent Number
    D759,803
  • Date Filed
    Tuesday, October 28, 2014
    10 years ago
  • Date Issued
    Tuesday, June 21, 2016
    8 years ago
  • US Classifications
    Field of Search
    • US
    • D24 107
    • D24 108
    • D24 140
    • D24 144
    • D24 170
    • D24 187
    • D24 191
    • D24 200
    • D24 231
    • CPC
    • A61N1/375
    • A61N2005/0647
    • A61B5/6803
    • A61M16/0683
  • International Classifications
    • 2401
    • Term of Grant
      14Years
Abstract
Description

This invention was made with government support under 5R44NS080632 awarded by the National Institute of Neurological Disorders and Stroke (NINDS) of the National Institute of Health (NIH). The government has certain rights in the invention.



FIG. 1 illustrates a front side perspective view of an adjustable headpiece with anatomical markers in accordance with the present invention;



FIG. 2 illustrates a back side perspective view of the adjustable headpiece with anatomical markers of FIG. 1;



FIG. 3 illustrates a front side view of the adjustable headpiece with anatomical markers of FIG. 1;



FIG. 4 illustrates a back side view of the adjustable headpiece with anatomical markers of FIG. 1;



FIG. 5 illustrates a left side view of the adjustable headpiece with anatomical markers of FIG. 1;



FIG. 6 illustrates a right side view of the adjustable headpiece with anatomical markers of FIG. 1;



FIG. 7 illustrates a top side view of the adjustable headpiece with anatomical markers of FIG. 1; and,



FIG. 8 illustrates a bottom side view of the adjustable headpiece with anatomical markers of FIG. 1.


The broken lines in the drawings illustrate portions of the adjustable headpiece with anatomical markers that form no part of the claimed design.


Claims
  • The ornamental design for an adjustable headpiece with anatomical markers, as shown and described.
US Referenced Citations (151)
Number Name Date Kind
2830578 Degroff et al. Apr 1958 A
2838672 Leah et al. Jun 1958 A
3285242 Wallace Nov 1966 A
D209116 Treutelaar Oct 1967 S
3464416 Williams Sep 1969 A
3735756 Richards et al. May 1973 A
3822708 Zilber Jul 1974 A
4305402 Katims Dec 1981 A
4503863 Katims Mar 1985 A
4535785 van den Honert et al. Aug 1985 A
4611596 Wasserman Sep 1986 A
4641633 Delgado Feb 1987 A
4672951 Welch Jun 1987 A
4709700 Hyrman Dec 1987 A
4723536 Rauscher et al. Feb 1988 A
4759377 Dykstra Jul 1988 A
4805636 Barry et al. Feb 1989 A
4889526 Rauscher et al. Dec 1989 A
4923437 Gordon May 1990 A
4989605 Rossen Feb 1991 A
5014699 Pollack et al. May 1991 A
5061234 Chaney Oct 1991 A
5113859 Funke May 1992 A
5277694 Leysieffer et al. Jan 1994 A
5300093 Koestner et al. Apr 1994 A
5476438 Edrich et al. Dec 1995 A
5479934 Imran Jan 1996 A
5545124 Krause et al. Aug 1996 A
5551953 Lattin et al. Sep 1996 A
5569591 Kell et al. Oct 1996 A
5575761 Hajianpour Nov 1996 A
5582586 Tachibana et al. Dec 1996 A
5713922 King Feb 1998 A
5738625 Gluck Apr 1998 A
5776170 MacDonald et al. Jul 1998 A
5776171 Peckham et al. Jul 1998 A
D398403 Bishop Sep 1998 S
5893883 Torgerson et al. Apr 1999 A
5895416 Barreras, Sr. et al. Apr 1999 A
5925070 King et al. Jul 1999 A
5975085 Rise Nov 1999 A
6021348 James Feb 2000 A
6035236 Jarding et al. Mar 2000 A
6066084 Edrich et al. May 2000 A
6066163 John May 2000 A
6081744 Loos Jun 2000 A
6091992 Bourgeois et al. Jul 2000 A
6094598 Elsberry et al. Jul 2000 A
6102875 Jones Aug 2000 A
6110080 Niv Aug 2000 A
6128537 Rise Oct 2000 A
6161030 Levendowski Dec 2000 A
6161048 Sluijter et al. Dec 2000 A
6169403 Hebrank et al. Jan 2001 B1
6205356 Holcomb Mar 2001 B1
D441111 Van Der Bel Apr 2001 S
6221908 Kilgard et al. Apr 2001 B1
D441886 Beck May 2001 S
6231527 Sol May 2001 B1
6231604 von Ilberg May 2001 B1
6234953 Thomas et al. May 2001 B1
6275735 Jarding et al. Aug 2001 B1
6275737 Mann Aug 2001 B1
6330476 Ben-Haim et al. Dec 2001 B1
6375666 Mische Apr 2002 B1
6390995 Ogden et al. May 2002 B1
6393325 Mann et al. May 2002 B1
6408211 Powell Jun 2002 B1
6432070 Talish et al. Aug 2002 B1
6463328 John Oct 2002 B1
6468274 Alleyne et al. Oct 2002 B1
6491039 Dobak, III Dec 2002 B1
6520903 Yamashiro Feb 2003 B1
6520911 Wen Feb 2003 B1
6535767 Kronberg Mar 2003 B1
6536440 Dawson Mar 2003 B1
6546290 Shloznikov Apr 2003 B1
6567702 Nekhendzy et al. May 2003 B1
6584357 Dawson Jun 2003 B1
6591138 Fischell et al. Jul 2003 B1
6615080 Unsworth et al. Sep 2003 B1
6645144 Wen et al. Nov 2003 B1
6654642 North et al. Nov 2003 B2
6681131 Kandori et al. Jan 2004 B2
6685729 Gonzalez Feb 2004 B2
6692490 Edwards Feb 2004 B1
6721603 Zabara et al. Apr 2004 B2
6729337 Dawson May 2004 B2
6764498 Mische Jul 2004 B2
6824515 Suorsa et al. Nov 2004 B2
6836685 Fitz Dec 2004 B1
6858000 Schukin et al. Feb 2005 B1
6866678 Shenderova et al. Mar 2005 B2
6871099 Whitehurst et al. Mar 2005 B1
6887239 Elstrom et al. May 2005 B2
6889085 Dawson May 2005 B2
6921413 Mahadevan-Jansen et al. Jul 2005 B2
6934580 Osorio et al. Aug 2005 B1
6937906 Terry et al. Aug 2005 B2
6941171 Mann et al. Sep 2005 B2
6964643 Hovland et al. Nov 2005 B2
6970744 Shelchuk Nov 2005 B1
6976998 Rizzo et al. Dec 2005 B2
7002790 Hossick-Schott et al. Feb 2006 B2
7003352 Whitehurst Feb 2006 B1
7013177 Whitehurst et al. Mar 2006 B1
7058447 Hill et al. Jun 2006 B2
7104947 Riehl Sep 2006 B2
7120497 Ben-Haim et al. Oct 2006 B2
7146210 Palti Dec 2006 B2
7173130 Tsien et al. Feb 2007 B2
7283861 Bystritsky Oct 2007 B2
D630766 Harbin Jan 2011 S
7894903 John Feb 2011 B2
8197409 Foley et al. Jun 2012 B2
8718758 Wagner et al. May 2014 B2
8929979 Wagner et al. Jan 2015 B2
D750264 Guarraia Feb 2016 S
D750794 Guarraia Mar 2016 S
20010051774 Littrup et al. Dec 2001 A1
20040131998 Marom et al. Jul 2004 A1
20050003380 Cohen et al. Jan 2005 A1
20050043726 McHale et al. Feb 2005 A1
20050043762 Echt et al. Feb 2005 A1
20050202489 Cho et al. Sep 2005 A1
20060004422 De Ridder Jan 2006 A1
20060017749 McIntyre et al. Jan 2006 A1
20060247104 Grabiner et al. Nov 2006 A1
20060257893 Takahashi et al. Nov 2006 A1
20070060974 Lozano Mar 2007 A1
20070156180 Jaax et al. Jul 2007 A1
20070299370 Bystritsky Dec 2007 A1
20080039895 Fowler et al. Feb 2008 A1
20080046053 Wagner et al. Feb 2008 A1
20080077199 Shefi Mar 2008 A1
20080124726 Monforte May 2008 A1
20080228110 Berme Sep 2008 A1
20090018599 Hastings et al. Jan 2009 A1
20090240170 Rowley et al. Sep 2009 A1
20100070006 Wagner et al. Mar 2010 A1
20100125190 Fadem May 2010 A1
20100268287 Celnik Oct 2010 A1
20110245734 Wagner et al. Oct 2011 A1
20110275927 Wagner et al. Nov 2011 A1
20120143020 Bordoley Jun 2012 A1
20120289869 Tyler Nov 2012 A1
20140249385 Wada Sep 2014 A1
20150112153 Nahum Apr 2015 A1
20150133718 Schneider May 2015 A1
20150257674 Jordan Sep 2015 A1
20150282760 Badower Oct 2015 A1
Foreign Referenced Citations (6)
Number Date Country
2006027757 Mar 2006 WO
2007149811 Dec 2007 WO
2010009141 Jan 2010 WO
2010017392 Feb 2010 WO
2012101093 Aug 2012 WO
2013054257 Apr 2013 WO
Non-Patent Literature Citations (171)
Entry
Advanced Development for Defense Science and Technology, Apr. 5, 2010, 93 pages.
Allen, E.A., et al., Transcranial magnetic stimulation elicits coupled neural and hemodynamic consequences. Science, 2007. 317(5846): p. 1918-21.
Aydin-Abidin, S., et al., Effects of repetitive TMS on visually evoked potentials and EEG in the anesthetized cat: dependence on stimulus frequency and train duration. J Physiol, 2006:443-455.
Benabid, A.L., et al., Deep brain stimulation of the corpus luysi (subthalamic nucleus) and other targets in Parkinson's disease. Extension to new indications such as dystonia and epilepsy. J Neurol, 2001. 248 Suppl 3: p. III37-47.
Bindman LJ, L.O., Redfearn JW. , Long-lasting changes in the level of the electrical activity of the cerebral cortex produced by polarizing currents. Nature 1962. 196:584-85.
Bindman, L.J., O.C. Lippold, and J.W. Redfearn, The Action of Brief Polarizing Currents on the Cerebral Cortex of the Rat (1) During Current Flow and (2) in the Production of Long-Lasting after-Effects. J Physiol, 1964. 172:369-82.
Bostock, H., The strength-duration relationship for excitation of myelinated nerve: computed dependence on membrane parameters. J Physiol, 1983. 341: p. 59-74.
Boyden, E.S., et al., Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci, 2005. 8(9):1263-8.
Brice, J. and L. McLellan, Suppression of intention tremor by contingent deep-brain stimulation. Lancet, 1980. 1(8180):1221-2.
Britten, K.H. and R.J. van Wezel, Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nat Neurosci, 1998. 1(1):59-63.
Brown, J.A., et al., Motor cortex stimulation for the enhancement of recovery from stroke: a prospective, multicenter safety study. Neurosurgery, 2006. 58(3): p. 464-73.
Butovas, S. and C. Schwarz, Spatiotemporal effects of microstimulation in rat neocortex: a parametric study using multielectrode recordings. J Neurophysiol, 2003. 90(5):3024-39.
Butson CR, McIntyre CC (2005) Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation. Clin Neurophysiol 116:2490-2500.
Butson, C.R. and C.C. McIntyre, Role of electrode design on the volume of tissue activated during deep brain stimulation. J Neural Eng, 2006. 3(1): p. 1-8.
Butson, C.R. And C.C. McIntyre. Deep brain Stimulation of the the subthalamic nucleus: model-based analysis of the effects of electrode capacitance on the volume of activation. in 2nd International IEEE EMBS Conference on Neural Engineerin. 2005. Arlington, VA: IEEE.
Carbunaru, R. and D.M. Durand, Toroidal coil models for transcutaneous magnetic stimulation of nerves. IEEE Trans Biomed Eng, 2001. 48(4):434-41.
Chew, W.C. and P.N. Sen, Dielectric enhancement due to an electrochemical double layer: thin double layer approximation. J. Chem. Phys., 1982. 77:4683.
Chew, W.C., 1983, Dielectric enhancement and electrophoresis due to electrochmical double layer: A uniform approximation. J Chem Phys. 80(9):4541-4552.
Clement, G.T. and K. Hynynen, A non-invasive method for focusing ultrasound through the human skull. Phys Med Biol, 2002. 47(8):1219-36.
Clement, G.T., et al., A magnetic resonance imaging-compatible, large-scale array for trans-skull ultrasound surgery and therapy. J Ultrasound Med, 2005. 24(8):1117-25.
Clement, G.T., Perspectives in clinical uses of high-intensity focused ultrasound. Ultrasonics, 2004. 42(10):1087-93.
Cohen, D. and B.N. Cuffin, Developing a more focal magnetic stimulator. Part 1: some basic principles. Journal of Clinical Neurophysiology, 1991. 8:102-111.
Cohen, L.G., et al., Effects of coil design on delivery of focal magnetic stimulation. Technical considerations. Electroencephalogr Clin Neurophysiol, 1990. 75(4):350-7.
Cohen, M.R. and W.T. Newsome, What electrical microstimulation has revealed about the neural basis of cognition. Curr Opin Neurobiol, 2004. 14(2):169-77.
Connor, C.W. and K. Hynynen, Patterns of Thermal Deposition in the Skull During Transcranial Focused Ultrasound Surgery. IEEE Trans Biomed Eng, 2004. 51(10):1693-1706.
Connor, C.W., G.T. Clement, and K. Hynynen, A unified model for the speed of sound in cranial bone based on genetic algorithm optimization. Phys Med Biol, 2002. 47(22):3925-44.
Cramer, S.C., et al., Use of functional MRI to guide decisions in a clinical stroke trial. Stroke, 2005. 36(5):e50-2.
Deuschl, G., et al., Deep brain stimulation: postoperative issues. Mov Disord, 2006. 21 Suppl 14:S219-37.
Di Lazzaro, V., et al., The physiological basis of transcranial motor cortex stimulation in conscious humans. Clin Neurophysiol, 2004. 115(2):255-66.
Diamond, A. and J. Jankovic, The effect of deep brain stimulation on quality of life in movement disorders. J Neurol Neurosurg Psychiatry, 2005. 76(9):1188-93.
Diokno, A.C., P.B. Leu, and D.B. Konstandt, A simplified method of implanting a neuromodulator device. J Urol, 2003. 169(4):1466-9.
Dissado, L.A., A fractal interpertation of the dielectric response of animal tissues. Phys. Med. Biol., 1990. 35(11):1487-1503.
Ditterich, J., M.E. Mazurek, and M.N. Shadlen, Microstimulation of visual cortex affects the speed of perceptual decisions. Nat Neurosci, 2003. 6(8):891-8.
Donald I. McRee, Howard Wachtel, Pulse Microwave Effects on Nerve Vitality, Radiation Research, vol. 91, No. 1, (1982):212-218.
Duck, F.A., Medical and non-medical protection standards for ultrasound and infrasound. Prog Biophys Mol Biol, 2007. 93(1-3):176-91.
Durand, D. and M. Bikson, Suppression and control of epileptiform activity by electrical stimulation: a review. Proceedings of the IEEE, 2001. 89(7):1065-1082.
Eaton, H., Electric field induced in a spherical volume conductor from arbitrary coils: applications to magnetic stimulation and MEG. Medic Biol Eng Comput, 1992:433-440.
Esselle, K. and M. Stuchly, Neural stimulation with magnetic fields: analysis of induced electrical fields. IEEE Transactions on Biomedical Engineering, 1992. 39:693-700.
Extended European Search Report for Application No. 12826175.7 dated Mar. 9, 2015 (6 pages).
Extended Supplementary European Search Report for Application No./Patent No. 12752660.6 dated Jul. 9, 2014 (6 pages).
Fields, J.A., et al., Neuropsychological and quality of life outcomes 12 months after unilateral thalamic stimulation for essential tremor. J Neurol Neurosurg Psychiatry, 2003. 74(3):305-11.
Fixman, M., Charged macromolecules in external fields. I. The sphere. J Chem Phys, 1980. 72(9):5177-5186.
Fixman, M., Thin double layer approximation for electrophoresis and dielectric respons. J Chem Phys, 1982. 78(3):1483-1492.
FralexTherapeutics, Fralex Provides Update on Relief Trial. 2008: Toronto, (Downloaded from the Internet May 25 , 2013).
Fregni, F. and A. Pascual-Leone, Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol, 2007. 3(7):383-93.
Fry WJ, W.V., Tucker D, Fry FJ, Physical factors involved in ultrasonically induced changes in living systems: I. Identification of non-temperature effects. J Acoust Soc Am 1950. 22:867-876.
Fry, E.J., An ultrasonic projector design for a wide range of research applications. Rev Sci Instrum, 1950. 21(11):940-1.
Fry, W. J., Electrical Stimulation of Brain Localized Without Probes—Theoretical Analysis of a Proposed Method, J Acoust Soc AM 44(4):919-31 (1968).
Fry, W.J., Use of intense ultrasound in neurological research. Am J Phys Med, 1958. 37(3):143-7.
Gabriel, C., S. Gabriel, and E. Corthout, The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol, 1996. 41(11):2231-49.
Thomas, A.W., D.J. Drost, and F.S. Prato, Human subjects exposed to a specific pulsed (200 microT) magnetic field: effects on normal standing balance. Neurosci Lett, 2001. 297(2):121-4.
Tofts, P.S., The distribution of induced currents in magnetic stimulation of the nervous system. Physical Medicine and Biology, 1990. 35:1119-1128.
Tranchina, D. and C. Nicholson, A model for the polarization of neurons by extrinsically applied electric fields. Biophys J, 1986. 50(6):1139-56.
Traub RD, (1977), Motorneurons of different geometry and the size principle. Biol Cybern 25:163-176.
Troster, A.I., et al., Neuropsychological deficits in essential tremor: an expression of cerebello-thalamo-cortical pathophysiology? Eur J Neurol, 2002. 9(2):143-51.
Tyler, W.J., et al., Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. PLoS One, 2008. 3(10):e3511.
Ueno, S., T. Tashiro, and K. Harada, Localised stimulation of neural tissues in the brain by means of a paired configuration of time-varying magnetic fields. J. Appl. Phys., 1988. 64:5862-5864.
Wagner T, Valero-Cabre A, Pascual-Leone A, (2007), Noninvasive Human Brain Stimulation. Annu Rev Biomed Eng., 7.1:19.1-19.39.
Wagner TA, Zahn M, Grodzinsky AJ, Pascual-Leone A, (2004), Three-dimensional head model simulation of transcranial magnetic stimulation. IEEE Trans Biomed Eng 51:1586-1598.
Wagner, T., et al., Biophysical foundations underlying TMS: Setting the stage for an effective use of neurostimulation in the cognitive neurosciences. Cortex 45, 2008:1025-1034.
Wagner, T., et al., Transcranial direct current stimulation: a computer-based human model study. Neuroimage, 2007. 35(3):1113-24.
Wagner, T., et al., Transcranial magnetic stimulation and brain atrophy: a computer-based human brain model study. Exp Brain Res 189, 2008:539-550.
Wagner, T., et al., Transcranial magnetic stimulation and stroke: a computer-based human model study. Neuroimage, 2006. 30(3):857-70.
Wagner, T., Field distributions within the human cortex induced by transcranial magnetic stimulation, in EECS. 2001, Massachusetts Institute of Technology: Cambridge., Chapters 1 and 2, (126 pages).
Warman, E.N., W.M. Grill, and D. Durand, Modeling the effects of electric fields on nerve fibers: determination of excitation thresholds. IEEE Trans Biomed Eng, 1992. 39(12):1244-54.
Wichmann, T. and M.R. Delong, Deep brain stimulation for neurologic and neuropsychiatric disorders. Neuron, 2006. 52(1):197-204.
Wininger, F.A., J.L. Schei, and D.M. Rector, Complete optical neurophysiology: toward optical stimulation and recording of neural tissue. Appl Opt, 2009. 48(10):D218-24.
Wobschall, D., Bilayer Membrane Elasticity and Dynamic Response. Journal of Colloid and Interface Science, 1971. 36(3):385-396.
Wobschall, D., Voltage Dependence of Bi!ayer Membrane Capacitance. Journal of Colloid and Interface Science, 1972. 40(3):417-423.
Wongsarnpigoon, A. and W.M. Grill, Computational modeling of epidural cortical stimulation. J Neural Eng, 2008. 5(4):443-54
Zangen, A., et al., Transcranial magnetic stimulation of deep brain regions: evidence for efficacy of the H-coil. Clin Neurophysiol, 2005. 116(4):775-9.
Gabriel, S., R.W. Lau, and C. Gabriel, The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol, 1996. 41(11):2251-69.
Gabriel, S., R.W. Lau, and C. Gabriel, The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol, 1996. 41(11):2271-93
Gielen, F. Deep Brain Stimulation: Current Practice and Challenges for the Future. in 1st International IEEE EMBS Conference on Neural Engineering. 2003. Capri Island, Italy: IEEE.
Graziano, M.S., C.S. Taylor, and T. Moore, Complex movements evoked by microstimulation of precentral cortex. Neuron, 2002. 34(5):841-51.
Grill, W.M., et al., Temporal excitation properties of paresthesias evoked by thalamic microstimulation. Clin Neurophysiol, 2005. 116(5):1227-34.
Grill, W.M., S.E. Norman, and R.V. Bellamkonda, Implanted neural interfaces: biochallenges and engineered solutions. Annu Rev Biomed Eng, 2009. 11:1-24.
Grosse, C., Permitivity of suspension of charged particles in electolyte solution. J. Chem. Phys., 1987. 91:3073.
Gusev, V., et al., Imaging With the Ultrasonic Vibration Potential: A Theory for Current Generation. Ultrasound in Med. & Biol., 2005. vol. 31, No. 2:273-278.
Haar, G.t., Accoustic Surgery: Bursts of focused ultrasound energy three orders of magnitude more intense than diagnostic ultrasound are emerging as a noninvasive option for treating cancer and other medical procedures., Physics Today, 2001:29-34.
Hart FX, Toll RB, Berner NJ, Bennett NH, (1996), The low frequency dielectric properties of octopus arm muscle measured in vivo. Phys Med Biol 41:2043-2052.
Hart, F.X. and W.R. Dunfree, In vivo measurements of low frequency dielectric spectra of a frog skeletal muscle. Phys. Med. Biol., 1993, 38:1099-1112.
Hatanaka, N., et al., Input-output organization of jaw movement-related areas in monkey frontal cortex. J Comp Neurol, 2005. 492(4):401-25.
Heller L, Hulsteyn DBv, (1992), Brain stimulation using electromagnetic sources: theoretical aspects. Biophysical Journal 63:129-138.
Hinch, E.J., et al., Dielectric response of a dilute suspension of spheres with thin double layers in an asymmetric electrolyte. J Chem Soc, Farady Tans., 1983. 80:535-551.
Holdefer, R.N., R. Sadleir, and M.J. Russell, Predicted current densities in the brain during transcranial electrical stimulation. Clin Neurophysiol, 2006. 117(6):1388-97.
Hole, S. and T. Ditchi, Non-destructive Methods for Space Charge Distribution Measurements: What are the Differences? IEEE EMBS, 2003. 10(4):670-677.
Hsiao, I. and V. Lin, Improved coil design for functional magnetic stimulation of expiratory muscles. IEEE Trans Biomed Eng, 2001. 48(6):684-694.
Hsu KH and D. DM., A 3-D differential coil design for localized magnetic stimulation. IEEE Trans Biomed Eng, 2001. 48(10):1162-8.
Jones KE, Bawa P, (1997), Computer simulation of the responses of human motoneurons to composite 1A EPSPS: effects of background firing rate. J Neurophysiol 77:405-420.
Kanai, R., et al., Frequency-dependent electrical stimulation of the visual cortex. Curr Biol, 2008. 18(23):1839-43.
Kanner, A.M., Deep brain stimulation for intractable epilepsy: which target and for which seizures? Epilepsy Curr, 2004. 4(6):231-2.
Kaufman, E.F. and A.C. Rosenquist, Efferent projections of the thalamic intralaminar nuclei in the cat. Brain Res, 1985. 335(2):257-79.
Khachaturian, M.H., et al., Focal reversible deactivation of cerebral metabolism affects water diffusion. Magn Reson Med, 2008. 60(5):1178-89.
Khraiche, M.L., et al., Ultrasound induced increase in excitability of single neurons. Conf Proc IEEE Eng Med Biol Soc, 2008. 2008: p. 4246-9.
Kleim, J.A., T.A. Jones, and T. Schallert, Motor enrichment and the induction of plasticity before or after brain injury. Neurochem Res, 2003. 28(11):1757-69.
Komissarow, L., et al., Triple stimulation technique (TST) in amyotrophic lateral sclerosis. Clin Neurophysiol, 2004. 115(2):356-60.
Kraus, K.H., et al., The use of a cap-shaped coil for transcranial magnetic stimulation of the motor cortex. J Clin Neurophysiol, 1993. 10(3):353-62.
Kumar, K., C. Toth, and R.K. Nath, Deep brain stimulation for intractable pain: a 15-year experience. Neurosurgery, 1997. 40(4):736-46; Discussion 746-7.
Larkin, J., et al., Combined electric field and ultrasound therapy as a novel anti-tumour treatment. European Journal of Cancer 41 (2005):1339-1348.
Lemay, M.A., et al., Endpoint forces obtained during intraspinal microstimulation of the cat lumbar spinal cord—experimental and biomechanical model results. in IEEE 28th Annual Northeast Bioengineering Conference, 2002, IEEE.
Li, D.L., et al. Finite element analysis of transcranial electrical stimulation for intraoperative monitoring. in Bioengineering Conference, Proceedings of the IEEE 31st Annual Northeast 2005, IEEE.
Lin, V., I. Hsiao, and V. Dhaka, Magnetic coil design considerations for functional magnetic stimulation. IEEE Trans Biomed Eng, 2000. 47(5):600-610.
Lomber, S.G., The advantages and limitations of permanent or reversible deactivation techniques in the assessment of neural function. J Neurosci Methods, 1999. 86(2):109-17.
Lozano, A.M., et al., Deep brain stimulation for Parkinson's disease: disrupting the disruption. Lancet Neurol, 2002. 1(4):225-31.
Luber, B., et al., Remediation of sleep-deprivation-induced working memory impairment with fMRI-guided transcranial magnetic stimulation. Cereb Cortex, 2008. 18(9):2077-85.
McCreery D, Agnew W, (1990), Neuronal and axonal injury during functional electrical stimulation; a review of the possible mechanisms. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, p. 1489:IEEE.
McCreery, D., et al., Accessing the Tonotopic Organization of the Ventral Cochlear Nucleus by Intranuclear Microstimulation. IEEE Trans Rehabil Eng, 1998. 6(4):391-399.
McCreery, D., et al., Charge Density and Charge Per Phase as Cofactors in Neural Injury Induced by Electrical Stimulation. IEEE Trans Biomed Eng, 1990. 37(10):996-1001.
McIntyre, C.C. and W.M. Grill, Excitation of central nervous system neurons by nonuniform electric fields. Biophys J, 1999. 76(2):878-88.
McIntyre, C.C. and W.M. Grill, Extracellular stimulation of central neurons: influence of stimulus waveform and frequency on neuronal output. J Neurophysiol, 2002. 88(4):1592-604.
McIntyre, C.C., et al., Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J Neurophysiol, 2004. 91(4):1457-69.
McIntyre, C.C., et al., Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin Neurophysiol, 2004. 115(3):589-95.
McNeal DR, (1976), Analysis of a model for excitation of myelinated nerve. IEEE Trans Biomed Eng 23:329-337.
McRee, D.I. and H. Wachtel, Elimination of microwave effects on the vitality of nerves after blockage of active transport Radiat Res, 1986. 108(3):260-8.
McRee, D.I. and H. Wachtel, Pulse microwave effects on nerve vitality. Radiat Res, 1982. 91(1):212-8.
McRee, D.I. and H. Wachtel, The effects of microwave radiation on the vitality of isolated frog sciatic nerves. Radiat Res, 1980. 82(3):536-46.
Medtronic, Activa® PC Implant Manual, Medtronic, Editor. 2007, Medtronic: Minneapolis.
Mihran, R.T., et al., Temporally-Specific Modification of Myelinated Axon Excitability In Vitro Following a Single Ultrasound Pulse. Ultrasound in Med. & Biol., 1990, vol. 16, No. 3:297-309.
Miocinovic, S. and W.M. Grill, Sensitivity of temporal excitation properties to the neuronal element activated by extracellular stimulation. J Neurosci Methods, 2004. 132(1):91-9.
Miranda, P.C., M. Hallett, and P.J. Basser, The electric field induced in the brain by magnetic stimulation: a 3-D finite-element analysis of the effect of tissue heterogeneity and anisotropy. IEEE Trans Biomed Eng, 2003. 50(9):1074-85.
Miranda, P.C., M. Lomarev, and M. Hallett, Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol, 2006. 117(7):1623-9.
Montalibet, A., et al., Electric current generated by ultrasonically induced Lorentz force in biological media. Med. Biol. Eng. Comput., 2001, vol. 39:15-20.
Mouchawar, G., et al., Magnetic Stimulation of excitable tissue: calculation of induced eddy currents with a three-dimensional finite-element model. IEEE Transactions on Magnetics, 1993. 29(6):3355-3357.
Murasugi, C.M., C.D. Salzman, and W.T. Newsome, Microstimulation in visual area MT: effects of varying pulse amplitude and frequency. J Neurosci, 1993. 13(4):1719-29.
Mushahwar, V.K. and K.W. Horch, Selective activation of muscle groups in the feline hindlimb through electrical microstimulation of the ventral lumbo-sacral spinal cord. IEEE Trans Rehabil Eng, 2000. 8(1):11-21.
Nadeem, M., et al., Computation of electric and magnetic stimulation in human head using the 3-D impedance method. IEEE Transactions on Biomedical Engineering, 2003. 50(7):900-907.
Nagarajan, S. and D.M. Durand, Analysis of magnetic stimulation of a concentric axon in a nerve bundle. IEEE Transactions on Biomedical Engineering, 1995. 42(9):926-933.
Nagarajan, S., D.M. Durand, and E.N. Warman, Effects of induced electric fields on finite neuronal structures: a simulation study. IEEE Transactions on Biomedical Engineering, 1993. 40(11):1175-1188.
Nagarajan, S., et al. Magnetic stimulation of finite neuronal structures. in Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 1991: IEEE.
Nathan, S.S., et al., Determination of current density distributions generated by electrical stimulation of the human cerebral cortex. Electroencephalogr Clin Neurophysiol, 1993. 86(3):183-92.
Neri Accornero et al., ‘Visual evoked potentials modulation during direct current cortical polarization’, Experimental Brain Research, Oct. 19, 2006, vol. 178, No. 2, pp. 261-266.
Nichols, M.J. and W.T. Newsome, Middle temporal visual area microstimulation influences veridical judgments of motion direction. J Neurosci, 2002. 22(21):9530-40.
Northstar Neuorsciences, Northstar Neuroscience Announces Primary Endpoint Results of Everest Clinical Trial. 2008: Seattle, (Downloaded from the Internet May 25, 2013).
Norton, 2003, Can ultrasound be used to stimulate nerve tissue, BioMedical Engineering OnLine 2(6):1-9.
O'Brien, W.D., Jr., Ultrasound-biophysics mechanisms. Prog Biophys Mol Biol, 2007. 93(1-3):212-55.
Pascual-Leone, A., D. Bartres-Faz, and J.P. Keenan, Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of ‘virtual lesions’. Philos Trans R Soc Lond B Biol Sci, 1999. 354(1387):1229-38.
Perlmutter, J.S. and J.W. Mink, Deep Brain Stimulation. Annu Rev Neurosci, 2006:229-257.
Pernot, M., et al., In vivo transcranial brain surgery with an ultrasonic time reversal mirror. J Neurosurg, 2007. 106(6):1061-6.
Plonsey R, Heppner DD, (1967), Considerations of quasi-stationarity in electrophysiological systems. Bull Math Biophys 29:657-664.
Priori, A., Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin Neurophysiol, 2003. 114(4):589-95.
Prochazka, A., V.K. Mushahwar, and D.B. McCreery, Neural prostheses. J Physiol, 2001. 533(Pt 1):99-109.
Purpura, D.P. and J.G. McMurtry, Intracellular Activities and Evoked Potential Changes During Polarization of Motor Cortex. J Neurophysiol, 1965. 28:166-85.
Ramos-Estebanez, C. et al., Visual phosphene perception modulated by subthreshold crossmodal sensory stimulation J Neurosci, 2007. 27(15):4178-81.
Ranck, J.B., Jr., Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res, 1975. 98(3):417-40.
Rattay, F., et al., Mechanisms of Electrical Stimulation with Neural Prostheses. Neuromodulation, 2003. 6(1):42-56.
Rezai, A.R., et al., Deep brain stimulation for Parkinson's disease: surgical issues. Mov Disord, 2006. 21 Suppl 14:S197-218.
Romo, R., et al., Somatosensory discrimination based on cortical microstimulation. Nature, 1998. 392(6674):387-90.
Rousche, P. and R. Normann, Chronic Intracortical Microstimulation (ICMS) of Cat Sensory Cortex Using the Utah Intracortical Electrode Array. IEEE Trans Rehabil Eng, 1999. 7(1):56-68.
Rush, S. and D.A. Driscoll, Current distribution in the brain from surface electrodes. Anesth Analg, 1968. 47(6):717-23.
Rutten, W.L.C., et al., The influence of ultrasound and ultrasonic focusing on magnetic and electric peripheral nerve stimulation., in Advances in Magnetic Stimulation: Mathematical modeling and clinical applications, J. Nilsson, M. Panizza, and F. Grandori, Editors. 1996: Pavia, Italy, (p. 152).
Salzman, C.D., et al., Microstimulation in visual area MT: effects on direction discrimination performance. J Neurosci, 1992. 12(6):2331-55.
Salzman, C.D., K.H. Britten, and W.T. Newsome, Cortical microstimulation influences perceptual judgements of motion direction. Nature, 1990. 346(6280):174-7.
Saypol, J.M., et al., A theoretical comparison of electric and magnetic stimulation of the brain. Annals of Biomedical Engineering, 1991. 19(3):317-28.
Schmidt, E.M., et al., Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain, 1996. 119 ( Pt 2):507-22.
Schwartzbaum, J.S., Electrophysiology of taste, feeding and reward in lateral hypothalamus of rabbit. Physiol Behav, 1988. 44(4-5):507-26.
Schwarz, G.J., A Theory of the Low Fequency Dielectric Dispersion of Colloidal Particles in Electrolyte Solutions, J Phys Chem, 1962. 66:2636.
Scivill, I., A.T. Barker, and I.L. Freeston, Finite element modelling of magnetic stimulation of the spine. Proceedings 18th annual international conference of the IEEE engineering in medicine and biology society, 1996:393-394.
Seidemann, E. and W.T. Newsome, Effect of spatial attention on the responses of area MT neurons. J Neurophysiol, 1999. 81(4):1783-94.
Seidemann, E., et al., Color signals in area MT of the macaque monkey. Neuron, 1999. 24(4):911-7.
Shupak, N.M., et al., Exposure to a specific pulsed low-frequency magnetic field: a double-blind placebo-controlled study of effects on pain ratings in rheumatoid arthritis and fibromyalgia patients. Pain Res Manag, 2006. 11(2):85-90.
Spiegel, R.J., et al., Measurement of small mechanical vibrations of brain tissue exposed to extremely-low-frequency electric fields. Bioelectromagnetics, 1986. 7(3):295-306.
Stecker, M.M., T. Patterson, and B.L. Netherton, Mechanisms of electrode induced injury. Part 1: theory. Am J Electroneurodiagnostic Technol, 2006. 46(4):315-42.
Stojanovic, M.P. and S. Abdi, Spinal cord stimulation. Pain Physician, 2002. 5(2):156-66.
Stoney, S.D., Jr., W.D. Thompson, and H. Asanuma, Excitation of pyramidal tract cells by intracortical microstimulation: effective extent of stimulating current. J Neurophysiol, 1968. 31(5):659-69.
Tehovnik, E.J. and W.M. Slocum, Microstimulation of V1 affects the detection of visual targets: manipulation of target contrast. Exp Brain Res, 2005. 165(3):305-14.
Tehovnik, E.J., Electrical stimulation of neural tissue to evoke behavioral responses. J Neurosci Methods, 1996. 65(1):1-17.
Terzuolo, C.A. and T.H. Bullock, Measurment of Imposed Voltage Gradient Adequate to Modulate Neuronal Firing. Proc Natl Acad Sci U S A, 1956. 42(9):687-694.
Thickbroom, G.W., Transcranial magnetic stimulation and synaptic plasticity: experimental framework and human models. Exp Brain Res, 2007. 180(4):583-93.
International Search Report for PCT/US2009/053006 dated Mar. 18, 2010 (3 pages).
Roth, B.J., Mechanisms for electrical stimulation of excitable tissue. Critical Reviews in Biomedical Engineering, 1994. 22(3-4):253-305.