The present invention relates generally to components and elements of infusion sets, including a retraction dial for an infusion set, which ensures proper positioning of needle insertion by removably coupling with an infusion set and allowing a user to adjust a final needle depth by turning the dial.
A large number of people, including those suffering from conditions such as diabetes use some form of infusion therapy, such as daily insulin infusions to maintain close control of their glucose levels. There are two principal modes of daily insulin. therapy. The first mode includes syringes and insulin pens. These devices are simple to use and are relatively low in cost, but they require a needle stick at each injection, typically three to four times per day. The second mode includes infusion pump therapy, which entails the purchase of an insulin pump that lasts for about three years. The initial cost of the pump can be significant, but from a user perspective, the overwhelming majority of patients Who have used pumps prefer to remain with pumps for the rest of their lives. This is because infusion pumps, although more complex than syringes and pens, offer the advantages of continuous infusion of insulin, precision dosing and programmable delivery schedules. This results in closer blood glucose control and an improved feeling of wellness.
The use of an infusion pump requires the use of a disposable component, typically referred to as an infusion set or pump set, which conveys the insulin from a reservoir within the pump into the skin of the user. An infusion set typically consists of a pump connector, a length of tubing, and a hub or base from which an infusion needle or cannula extends. The hub or base has an adhesive which retains the base on the skin surface during use, and may be applied to the skin manually or with the aid of a manual or automatic insertion device.
Currently, most insulin infusion sets deliver insulin to the sub-cutaneous layers of skin using either fixed metal needles or flexible plastic cannulas. Such infusion sets typically deliver insulin 4-10 mm below the skin surface. However, the upper 3 mm of skin surface, the intradermal space, facilitates better drug absorption. Unfortunately, due to the, relative, thinness of the intradermal layer, inserting a needle at such depth and maintaining an infusion site over an extended period of time within this narrow band is difficult.
Further, most insulin infusion sets typically do not provide any features to isolate the inserted needle from shock or other external forces. Since these infusion sets typically deliver insulin 4-10 mm below the skin surface, shock or other external forces to the set have less effect on the deeper inserted needle. However, where an attempt is made to target the upper 3 mm of skin surface, any shock or movement of the set can adversely affect needle insertion and infusion performance.
Still further, most insulin sets have inserters that can result in skin surface “tenting” during needle insertion, where the skin surface is deflected somewhat prior to or during needle insertion, which makes precisely targeting the upper 3 mm of skin surface difficult.
Accordingly, a need exists for advanced, improved, and novel components and elements of current and future infusion sets that can deliver content to the upper 3 mm of skin surface, the intradermal space, to facilitate better drug absorption, while maintaining a degree of comfort to the user.
An object of the present invention is to provide an infusion set which can deliver insulin or other medicament to the upper 3 mm of skin surface, the intradermal space, to facilitate better drug absorption, while maintaining a degree of comfort to the user.
Another object of the present invention is to provide an infusion set having an inserter that can insert a needle which can be removed from the infusion set after insertion.
Another object of the present invention is to provide an infusion set with a removable retraction dial on its upper surface, wherein the retraction dial can be used to precisely retract an inserted needle to reach a desired depth to deliver insulin or other medicament to the upper 3 mm of skin surface, or retract an inserter needle some distance into a soft cannula after insertion.
Another object of the present invention is to provide an infusion set that includes a needle hub in a threaded engagement with a main base, such that rotation of the needle hub relative to the main base results in retraction or advancement of a needle of the needle hub.
Another object of the present invention is to provide an infusion set with the removable retraction dial to rotate the needle hub relative to the main base to precisely retract an inserted needle to reach a desired depth to deliver insulin or other medicament to the upper 3 mm of skin surface.
Another object of the present invention is to provide an infusion set that can isolate an inserted needle from external forces such that the needle can he maintained at a depth to deliver insulin or other medicament to the upper 3 mm of skin surface during normal use.
These and other objects are substantially achieved by providing an infusion set having a retraction dial that can be removably assembled with the infusion set and access a threaded needle hub contained therein such that the dial can be used to advance or retract an inserted needle to a depth to deliver insulin or other medicament to the upper 3 mm of skin surface, or retract an inserter needle some distance into a soft cannula after insertion. Position of the inserted needle can be maintained by providing a needle hub, main base and main hub of the infusion set that can isolate the inserted needle from external forces such that the needle can be maintained at a depth to deliver insulin or other medicament to the upper 3 mm of skin surface during normal use.
The various objects, advantages and novel features of the exemplary embodiments of the present invention will be more readily appreciated from the following detailed description when read in conjunction with the appended drawings, in which:
Throughout the drawings, like reference numerals will be understood to refer to like parts, components and structures.
The exemplary embodiments of the present invention described below provide a novel means of delivering insulin to the intradermal layers of skin via a standard insulin pump. In particular, the exemplary embodiments of the present invention provide an infusion set with a retraction dial to advance or retract an inserted needle to deliver insulin to the upper 3 mm of skin surface, the intradermal space, to facilitate better drug absorption, while maintaining a degree of comfort to the user.
As will be appreciated by one skilled in the art, there are numerous ways of carrying out the examples, improvements and arrangements of insulin-associated devices disclosed herein. Although reference will be made to the exemplary embodiments depicted in the drawings and the following description, the embodiments disclosed herein are not meant to he exhaustive of the various alternative designs and embodiments that are encompassed by the disclosed invention.
As noted, the exemplary embodiments of the present invention deliver insulin to the intradermal layers of the skin via a standard insulin pump or other similar device. By utilizing a refraction dial, and an isolated needle hub, proper insertion and maintenance of the inserted needle in the intradermal space is ensured. Position of the inserted needle can be maintained by providing a needle hub, main base and main hub of the infusion set, and tube attachment, that can isolate the inserted needle from external forces such that the desired needle depth can be maintained.
Proper needle insertion stands as a primary obstacle to infusing insulin via a pump into the intradermal layer. In the exemplary embodiments of the present invention, the initial insertion of the needle is substantially the same as performed using any standard infusion set, but a removable retraction dial is provided to advance or retract the inserted needle, or retract an inserter needle some distance into a soft cannula after insertion. By retracting the inserted needle a slight distance, medicament can be delivered into the thin intradermal layer. Utilizing precision parts, this process can be reliable when compared to a standard manual intradermal injection procedure, such as the Mantoux technique.
However, maintaining the position of the needle within the intradermal layers of the skin over the course of a typical three-day period poses significant technical challenges. Accordingly, the exemplary embodiments of the present invention further provide at least two methods of anchoring the needle in place. First, the main base of the device creates and maintains a preload on the skin surface, which locks the needle in place vertically. Second, an adhesive may be applied to the main base in the area of the needle, locking the skin surface to the needle location.
As shown in greater detail in
The needle hub 18 is held within an opening of the main base 16 via a helical threaded engagement between the needle hub 18 and the main base 16. A female thread groove 17 in the wall of opening 38 receives a male thread 19 on the needle hub 18. In doing so, rotation of the needle hub 18 within the opening 38 of the main base 16 serves to advance or retract the needle hub 18 via the threaded engagement, within the opening 38 of the main base 16, thereby advancing or retracting the needle 24 relative to the main base 16 adhered to the skin surface.
The main hub 14 rotatably covers the main base 16 and provides a fluid communication channel 52 between an inner septum 32 and a valve connection septum 34. The main hub 14 is held in place by the flexible tube connection 48 between the main hub 14 and the outer ring 22, as shown in
The example shown in
The retraction dial 20 is configured to cover the main hub 14 and main base 16 to permit user adjustment of the needle 24 depth. To do so, the retraction dial 20 comprises the least one member 40 extending through the opening 56 of the main hub 14 and terminating in the opening 58 of the needle hub 18. Accordingly, when the retraction dial 20 and member 40 are turned, the main hub 14 and needle hub 18 are turned with the retraction dial 20. However, the main base 16 remains stationary, in adhesive contact with the skin surface. Accordingly, as the needle hub 18 is rotated by the member 40, the threaded engagement with the stationary main base 16 results in an upward or downward movement of the needle hub 18 and the attached needle 24 (or, in the case of a soft cannula and internal introducer needle, results in the introducer needle being retracted or advanced inside the soft cannula).
Accordingly, by turning the retraction dial 20, a user can retract (i.e., move upward) the needle 24. In doing so, a desired depth of needle penetration can be achieved more precisely. Further, the passageway initially created by the fully inserted needle, results in an opening or unfilled passageway as the needle 24 is slightly retracted. The benefits associated with infusion to this additional unfilled passageway are described below. Still further, as the needle 24 is retracted, the second end of the needle 24 contacts and pierces the inner septum 32, such that the needle 24 is in fluid communication with the channel 52 of the main hub 14.
The retraction dial 20 is further configured to simply pull free from the main hub 14 and main base 16 after the desired retraction, as the member 40 is simply held in place by friction engagement with the through-openings 56 and 58, and the opening 60 between the main hub 14 and outer ring 22. Accordingly, upon reaching the desired retraction depth, which can be denoted by a positive stop or some other user-detectable feature, the retraction dial 20 can be removed, thereby leaving the device as shown in
In yet another exemplary embodiment of the present invention shown in
At this time, the infusion pump tube attachment 42 and tubing 44 to the infusion pump (not shown) can be attached to the top of the infusion set as shown in
In addition, the infusion pump tube attachment 42 is free to rotate 360 degrees, allowing the tubing 44 to the pump to be arranged in a comfortable orientation. To do so, the outer ring 22 to which the tube attachment 42 is secured, is rotatable between the outer hub 12 and the main hub 14. Specifically, the outer ring 22 of the device is configured to be rotatable along track-like features 62 in the outer hub 12, which is fixed to the user's skin surface. By connecting the outer hub 12 and the outer ring 22 via the track features 62, and connecting the outer ring 22 to the main hub 14 via the thin flexible length of tubing 48, the outer ring 22 and valve connection septum 34 can rotate as permitted by the flexible tubing 48, In doing so, the infusion pump tube attachment 42 is permitted to rotate. In the exemplary embodiment shown, the flexible tubing 48 at least partially encircles the main hub 14 and main base 16, which permits a shorter or flatter device profile.
Vibrational and shock isolation of the main hub 14 and main base 16, from the outer hub 12, outer ring 22 and valve connection septum 34, is achieved in a number of ways, including the provision of the track features 62 between the outer hub 12 and the outer ring 22, and the flexible tubing 48 between the fluid channel 52 of the main hub 14 and connection valve 50 of the outer ring 22. Further, once the retraction dial 20 is removed, the main hub 14 and main base 16 are separated from the outer hub 12 and outer ring 22. That is, first, the main hub 14 and the outer ring 22 are physically separated and are connected only by the flexible tubing 48, and second, the main hub 14 and main base 16 are secured to the skin surface via adhesive layers 26 and 28, and the outer hub 12 is secured to the skin surface via adhesive layer 30, wherein the layers 26, 28 and 30 are physically separated. In doing so, the only connection between the main hub 14 and main base 16, and the outer hub 12 and outer ring 22 (and the attached infusion pump tube attachment 42), is the flexible tubing 48. Further, once covered by the tube attachment described in greater detail below, external contact with the main hub 14 and main base 16 is prevented.
The exemplary embodiments of the present invention provide a novel means of delivering insulin to the intradermal layers of skin via standard insulin pumps, but are not limited thereto. The invention can also be applied to patch pumps or other infusion devices.
Further, the exemplary embodiments comprise a straight microneedle, needle, or other cannula, that can be inserted by the user into the deeper dermis or the subcutaneous layers of the skin, and can then be withdrawn with a great deal of precision into the dermal layer, where it is held by adhesive and/or mechanical preload.
Initial insertion of the infusion set with a user controllable needle depth is similar to the operation of fixed steel cannula devices currently on the market. The user first peels off a flexible backing, removes a needle cover, and then inserts the needle into the infusion site. After ensuring good skin adhesion, the user then turns the retraction dial. The retraction dial can be marked to denote needle depth, reach a positive stop, or can be configured to release from the infusion set when the needle reaches a desired depth (i.e. about one rotation or 360 degrees). In an exemplary embodiment, the retraction dial is configured to turn a quarter turn (i.e., 90 degrees) to reach the desired depth. The user can then remove the retraction dial and attach the pump tube attachment, in the case of an infusion set, from the top of the device. The device is then ready to prime and deliver insulin. In addition, the valve connection is free to rotate up to 360 degrees, allowing the tubing to the pump to be arranged in a comfortable orientation.
As the retraction dial 20 turns, the needle 24 and needle -hub 18 of the device move up the threaded engagement 17 and 19 located in the main base 16. The needle 24 protrudes from both sides of the needle hub 18 and, on the side opposite the side that pierces the skin, the needle 24 pierces through the inner septum 32 as it moves upward, establishing fluid communication with the valve connection interface. As the needle 24 pierces the inner septum 32 in such a manner, it can be locked in place with respect to the main base 16. To do so, a detent or projection not shown) can be provided on an outer surface of the needle hub 18 that is configured to mate with a similar detent or projection (not shown) provided on an inner surface of the main base 16 when the needle hub 18 reaches the desired position. Once engaged, the detents can lock the needle hub 18 in place with the main base 16. The fluid path 30 is open through the main hub 14 and the flexible piece of tubing 48 which leads to the valve connection septum 34 located in the outer ring 22, which is able to rotate about the main hub 14 and main base 16 as permitted by the track in the outer hub 12 and tubing 48.
As shown in
The outer ring 22 of the device is configured to be rotatable along the track-like features 62 in the outer hub 12, which is fixed to the user's skin surface. By connecting the outer hub 12 and the outer ring 22, to the main hub 14 and main base 16, via the thin flexible length of tubing 48, external forces and vibrations are absorbed by the outer hub 12 and the outer ring 22, but not by the main hub 14, main base 16, needle hub 18 and the needle 24. Finally, the infusion pump tube attachment 42 can be attached to the outer ring 22, covering the assembly and providing further isolation of the needle, and the self-centering features of slots 46 ensure that the valve connection needle (not shown) pierces the valve connection septum 34.
As noted above, the passageway initially created by the fully inserted needle, results in an opening or unfilled passageway as the needle 24 is slightly retracted. As known in the art, high pumping pressure (i.e., 20-50 or more psi), can occur during intradermal infusion. However, by first providing the deeper insertion tunnel established by the initial insertion depth as recited above, and the subsequent withdrawal to the infradermal layer, embodiments of the present invention can relieve such pressures by increasing the surface area of the deposition area.
Further, by infusing into the intradermal layer of the skin, the exemplary embodiments of the present invention offer the potential for better absorption of insulin when compared to subcutaneous delivery systems. In doing so, it may be possible for the typical user to both consume less insulin and maintain a better medicament regime.
Other intradermal infusion set concepts are at risk of “tenting”, which is the undesired effect where skin is deflected at needle insertion before or during insertion, creating a shape similar to a tent. In doing so, the skin surface tents during needle insertion rather than needle penetration into the skin. However, since a longer needle can be used, and then slightly retracted in the exemplary embodiments of the present invention, the risk of tenting or skin deflection otherwise affecting final insertion depth is reduced. Still further, a small intradermal needle placed perpendicular to the skin and isolated from outside forces causes less pain to the user during use.
In current steel cannula, infusion sets which deliver to the subcutaneous layer, the needle is not isolated from any undesired outside forces which may cause pain when translated to the needle and the needle moves within the skin. Also, other intradermal devices face problems of premature or otherwise undesired needle removal when the device is bumped, if the needle is not isolated from the outside forces.
In the exemplary embodiments of the present invention, the intradermal needle is isolated from outside forces by a cover design, a double ring feature, and the provision of flexible tubing. Such features help to effectively isolate the needle from the outside forces and other interferences.
By infusing into the intradermal layer of the skin, the exemplary embodiments of the present invention offer the potential for better absorption of the insulin when compared to subcutaneous delivery systems. It may be possible for the user to maintain a better medicament regimen while using less insulin. Further, the provision of a small intradermal needle placed perpendicular to the skin and isolated from outside forces causes less pain and discomfort to the user during use.
Although only a few exemplary embodiments of the present invention have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the appended claims and their equivalents.
This application is a division of a U.S. patent application of Ryan Schoonmaker et al. entitled “Adjustable Height Needle Infusion Device”, Ser. No. 13/303,055, filed Nov. 22, 2011, which issued Aug. 5, 2014 as U.S. Pat. No. 8,795,230, and which claims the benefit under 35 U.S.C. §119(e) of a U.S. provisional patent application of Ryan Schoonmaker et al. entitled “Adjustable Height Needle Infusion Device”, Ser. No. 61/344,971, filed on Nov. 30, 2010, the entire content of both of said prior applications being incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3572336 | Hershberg | Mar 1971 | A |
3857382 | Williams, Jr. et al. | Dec 1974 | A |
3918355 | Weber | Nov 1975 | A |
3963380 | Thomas, Jr. et al. | Jun 1976 | A |
4204538 | Cannon | May 1980 | A |
4231368 | Becker | Nov 1980 | A |
4490141 | Lacko et al. | Dec 1984 | A |
4685902 | Edwards et al. | Aug 1987 | A |
4723947 | Konopka | Feb 1988 | A |
4734092 | Millerd | Mar 1988 | A |
4755173 | Konopka et al. | Jul 1988 | A |
5176662 | Bartholomew | Jan 1993 | A |
5226899 | Lee et al. | Jul 1993 | A |
5242406 | Gross et al. | Sep 1993 | A |
5257980 | Van Antwerp et al. | Nov 1993 | A |
5453099 | Lee et al. | Sep 1995 | A |
5522803 | Teissen-Simony | Jun 1996 | A |
5536249 | Castellano et al. | Jul 1996 | A |
5545143 | Fischell | Aug 1996 | A |
5545152 | Funderburk et al. | Aug 1996 | A |
5593390 | Castellano et al. | Jan 1997 | A |
5728074 | Castellano et al. | Mar 1998 | A |
5800420 | Gross et al. | Sep 1998 | A |
5820602 | Kovelman et al. | Oct 1998 | A |
5851197 | Marano et al. | Dec 1998 | A |
5858001 | Tsals et al. | Jan 1999 | A |
5858005 | Kriesel | Jan 1999 | A |
5925021 | Castellano et al. | Jul 1999 | A |
5957895 | Sage et al. | Sep 1999 | A |
5968011 | Larsen et al. | Oct 1999 | A |
5980506 | Mathiasen | Nov 1999 | A |
6017328 | Fischell et al. | Jan 2000 | A |
6056718 | Funderburk et al. | May 2000 | A |
6068615 | Brown et al. | May 2000 | A |
6074369 | Sage et al. | Jun 2000 | A |
6086575 | Mejslov | Jul 2000 | A |
6093172 | Funderburk et al. | Jul 2000 | A |
6110148 | Brown et al. | Aug 2000 | A |
6123690 | Mejslov | Sep 2000 | A |
6132400 | Waldenburg | Oct 2000 | A |
6175752 | Say et al. | Jan 2001 | B1 |
6206134 | Stark et al. | Mar 2001 | B1 |
6254586 | Mann et al. | Jul 2001 | B1 |
6272364 | Kurnik | Aug 2001 | B1 |
6275717 | Gross et al. | Aug 2001 | B1 |
6277627 | Helllnga | Aug 2001 | B1 |
6293925 | Safabash et al. | Sep 2001 | B1 |
6302866 | Marggi | Oct 2001 | B1 |
6352523 | Brown et al. | Mar 2002 | B1 |
6355021 | Nielsen et al. | Mar 2002 | B1 |
6391005 | Lum et al. | May 2002 | B1 |
6485461 | Mason et al. | Nov 2002 | B1 |
6520938 | Funderburk et al. | Feb 2003 | B1 |
6521446 | Hellinga | Feb 2003 | B2 |
6544212 | Galley et al. | Apr 2003 | B2 |
6546269 | Kurnik | Apr 2003 | B1 |
6551276 | Mann et al. | Apr 2003 | B1 |
6558351 | Steil et al. | May 2003 | B1 |
6565509 | Say et al. | May 2003 | B1 |
6576430 | Hsieh et al. | Jun 2003 | B1 |
6579267 | Lynch et al. | Jun 2003 | B2 |
6589229 | Connelly et al. | Jul 2003 | B1 |
6607509 | Bobroff et al. | Aug 2003 | B2 |
6613017 | Mickley | Sep 2003 | B1 |
6656158 | Mahoney et al. | Dec 2003 | B2 |
6656159 | Flaherty | Dec 2003 | B2 |
6669669 | Flaherty et al. | Dec 2003 | B2 |
6692457 | Flaherty | Feb 2004 | B2 |
6699218 | Flaherty et al. | Mar 2004 | B2 |
6706159 | Moerman et al. | Mar 2004 | B2 |
6723072 | Flaherty et al. | Apr 2004 | B2 |
6740059 | Flaherty | May 2004 | B2 |
6749560 | Konstrorum et al. | Jun 2004 | B1 |
6749587 | Flaherty | Jun 2004 | B2 |
6768425 | Flaherty et al. | Jul 2004 | B2 |
6830558 | Flaherty et al. | Dec 2004 | B2 |
6830562 | Mogensen et al. | Dec 2004 | B2 |
6840922 | Nielsen et al. | Jan 2005 | B2 |
6852104 | Blomquist | Feb 2005 | B2 |
6949084 | Marggi et al. | Sep 2005 | B2 |
6960162 | Saadat et al. | Nov 2005 | B2 |
6960192 | Flaherty et al. | Nov 2005 | B1 |
6977180 | Hellinga et al. | Dec 2005 | B2 |
6997907 | Safabash et al. | Feb 2006 | B2 |
7004928 | Aceti et al. | Feb 2006 | B2 |
7018360 | Flaherty et al. | Mar 2006 | B2 |
7029455 | Flaherty | Apr 2006 | B2 |
7052251 | Nason et al. | May 2006 | B2 |
7064103 | Pitner et al. | Jun 2006 | B2 |
7070580 | Nielsen | Jul 2006 | B2 |
7083597 | Lynch et al. | Aug 2006 | B2 |
7109878 | Mann et al. | Sep 2006 | B2 |
7128727 | Flaherty et al. | Oct 2006 | B2 |
7137964 | Flaherty | Nov 2006 | B2 |
7144384 | Gorman et al. | Dec 2006 | B2 |
7207974 | Safabash et al. | Apr 2007 | B2 |
7214207 | Lynch et al. | May 2007 | B2 |
7226278 | Nason et al. | Jun 2007 | B2 |
7303543 | Maule et al. | Dec 2007 | B1 |
7303549 | Flaherty et al. | Dec 2007 | B2 |
7310544 | Brister et al. | Dec 2007 | B2 |
7318816 | Bobroff et al. | Jan 2008 | B2 |
7329239 | Safabash et al. | Feb 2008 | B2 |
7354420 | Steil et al. | Apr 2008 | B2 |
7496392 | Alarcon et al. | Feb 2009 | B2 |
7713258 | Adams et al. | May 2010 | B2 |
7722595 | Pettis et al. | May 2010 | B2 |
8172803 | Morrissey et al. | May 2012 | B2 |
8221359 | Kristensen et al. | Jul 2012 | B2 |
8262618 | Scheurer | Sep 2012 | B2 |
8277415 | Mounce et al. | Oct 2012 | B2 |
8285328 | Caffey et al. | Oct 2012 | B2 |
8287467 | List et al. | Oct 2012 | B2 |
8287516 | Kornerup et al. | Oct 2012 | B2 |
8306596 | Schurman et al. | Nov 2012 | B2 |
8310415 | McLaughlin et al. | Nov 2012 | B2 |
8313468 | Geipel et al. | Nov 2012 | B2 |
20020040208 | Flaherty et al. | Apr 2002 | A1 |
20030055380 | Flaherty | Mar 2003 | A1 |
20030109829 | Mogensen et al. | Jun 2003 | A1 |
20030176852 | Lynch et al. | Sep 2003 | A1 |
20030199823 | Bobroff et al. | Oct 2003 | A1 |
20040002682 | Kovelman et al. | Jan 2004 | A1 |
20040010207 | Flaherty et al. | Jan 2004 | A1 |
20040044306 | Lynch et al. | Mar 2004 | A1 |
20040059316 | Smedegaard | Mar 2004 | A1 |
20040078028 | Flaherty et al. | Apr 2004 | A1 |
20040092865 | Flaherty et al. | May 2004 | A1 |
20040092878 | Flaherty | May 2004 | A1 |
20040116866 | Gorman et al. | Jun 2004 | A1 |
20040127844 | Flaherty | Jul 2004 | A1 |
20040153032 | Garribotto et al. | Aug 2004 | A1 |
20040162521 | Bengtsson | Aug 2004 | A1 |
20040204673 | Flaherty | Oct 2004 | A1 |
20040204687 | Mogensen et al. | Oct 2004 | A1 |
20040220551 | Flaherty et al. | Nov 2004 | A1 |
20040235446 | Flaherty et al. | Nov 2004 | A1 |
20040260233 | Garibotte et al. | Dec 2004 | A1 |
20050021005 | Flaherty et al. | Jan 2005 | A1 |
20050022274 | Campbell et al. | Jan 2005 | A1 |
20050043687 | Mogensen et al. | Feb 2005 | A1 |
20050065760 | Murtfeldt et al. | Mar 2005 | A1 |
20050090784 | Nielsen et al. | Apr 2005 | A1 |
20050101912 | Faust et al. | May 2005 | A1 |
20050101932 | Cote et al. | May 2005 | A1 |
20050101933 | Marrs et al. | May 2005 | A1 |
20050113761 | Faust et al. | May 2005 | A1 |
20050124936 | Mogensen et al. | Jun 2005 | A1 |
20050131345 | Miller | Jun 2005 | A1 |
20050171512 | Flaherty | Aug 2005 | A1 |
20050182366 | Vogt et al. | Aug 2005 | A1 |
20050203461 | Flaherty et al. | Sep 2005 | A1 |
20050215982 | Malave et al. | Sep 2005 | A1 |
20050222645 | Malave et al. | Oct 2005 | A1 |
20050238507 | Dilanni et al. | Oct 2005 | A1 |
20050245799 | Brauker et al. | Nov 2005 | A1 |
20050273076 | Beasley et al. | Dec 2005 | A1 |
20050283144 | Shiono et al. | Dec 2005 | A1 |
20060001551 | Kraft et al. | Jan 2006 | A1 |
20060041229 | Garibotto et al. | Feb 2006 | A1 |
20060074381 | Malave et al. | Apr 2006 | A1 |
20060122577 | Poulsen et al. | Jun 2006 | A1 |
20060129090 | Moberg et al. | Jun 2006 | A1 |
20060135913 | Ethelfeld | Jun 2006 | A1 |
20060142698 | Ethelfeld | Jun 2006 | A1 |
20060173410 | Moberg et al. | Aug 2006 | A1 |
20060178633 | Garibotto et al. | Aug 2006 | A1 |
20060200073 | Radmer et al. | Sep 2006 | A1 |
20060263839 | Ward et al. | Nov 2006 | A1 |
20060264835 | Nielsen et al. | Nov 2006 | A1 |
20060282290 | Flaherty | Dec 2006 | A1 |
20070016149 | Hunn et al. | Jan 2007 | A1 |
20070021733 | Hansen et al. | Jan 2007 | A1 |
20070049865 | Radmer et al. | Mar 2007 | A1 |
20070073229 | Gorman et al. | Mar 2007 | A1 |
20070073559 | Stangel | Mar 2007 | A1 |
20070088244 | Miller et al. | Apr 2007 | A1 |
20070088271 | Richards | Apr 2007 | A1 |
20070093754 | Mogensen et al. | Apr 2007 | A1 |
20070118405 | Campbell et al. | May 2007 | A1 |
20070149925 | Edwards et al. | Jun 2007 | A1 |
20070191702 | Yodfat et al. | Aug 2007 | A1 |
20070219496 | Kamen et al. | Sep 2007 | A1 |
20080004515 | Jennewine | Jan 2008 | A1 |
20080021395 | Yodfat et al. | Jan 2008 | A1 |
20080051697 | Mounce et al. | Feb 2008 | A1 |
20080051698 | Mounce et al. | Feb 2008 | A1 |
20080051709 | Mounce et al. | Feb 2008 | A1 |
20080051710 | Moberg et al. | Feb 2008 | A1 |
20080051711 | Mounce et al. | Feb 2008 | A1 |
20080051714 | Moberg et al. | Feb 2008 | A1 |
20080051716 | Stutz | Feb 2008 | A1 |
20080051718 | Kavazov et al. | Feb 2008 | A1 |
20080051727 | Moberg et al. | Feb 2008 | A1 |
20080051730 | Bikovsky | Feb 2008 | A1 |
20080051738 | Griffin | Feb 2008 | A1 |
20080051765 | Mounce | Feb 2008 | A1 |
20080097321 | Mounce et al. | Apr 2008 | A1 |
20080097326 | Moberg et al. | Apr 2008 | A1 |
20080097327 | Bente et al. | Apr 2008 | A1 |
20080097328 | Moberg et al. | Apr 2008 | A1 |
20080097375 | Bikovsky | Apr 2008 | A1 |
20080097381 | Moberg et al. | Apr 2008 | A1 |
20080103483 | Johnson et al. | May 2008 | A1 |
20080116647 | Anderson et al. | May 2008 | A1 |
20080119707 | Stafford | May 2008 | A1 |
20080132842 | Flaherty | Jun 2008 | A1 |
20080147041 | Kristensen | Jun 2008 | A1 |
20080160492 | Campbell et al. | Jul 2008 | A1 |
20080194924 | Valk et al. | Aug 2008 | A1 |
20080204077 | Huang | Aug 2008 | A1 |
20080215006 | Thorkild | Sep 2008 | A1 |
20080243051 | Destefano | Oct 2008 | A1 |
20080261255 | Tolosa et al. | Oct 2008 | A1 |
20080264261 | Kavazov et al. | Oct 2008 | A1 |
20080269680 | Ibranyan et al. | Oct 2008 | A1 |
20080269713 | Kavazov | Oct 2008 | A1 |
20080281297 | Pesach et al. | Nov 2008 | A1 |
20080294028 | Brown | Nov 2008 | A1 |
20080306434 | Dobbles et al. | Dec 2008 | A1 |
20080312608 | Christoffersen et al. | Dec 2008 | A1 |
20080319414 | Yodfat et al. | Dec 2008 | A1 |
20090005724 | Regittnig et al. | Jan 2009 | A1 |
20090005728 | Weinert et al. | Jan 2009 | A1 |
20090012472 | Ahm et al. | Jan 2009 | A1 |
20090062767 | Van Antwerp et al. | Mar 2009 | A1 |
20090076453 | Mejlhede et al. | Mar 2009 | A1 |
20090198191 | Chong et al. | Aug 2009 | A1 |
20090198215 | Chong et al. | Aug 2009 | A1 |
20090221971 | Mejlhede et al. | Sep 2009 | A1 |
20090240240 | Hines et al. | Sep 2009 | A1 |
20090254041 | Krag et al. | Oct 2009 | A1 |
20090281497 | Kamen et al. | Nov 2009 | A1 |
20090326457 | O'Connor | Dec 2009 | A1 |
20100049129 | Yokoi et al. | Feb 2010 | A1 |
20100137799 | Imai | Jun 2010 | A1 |
20100160902 | Aeschilimann et al. | Jun 2010 | A1 |
20100286714 | Gyrn et al. | Nov 2010 | A1 |
20100291588 | McDevitt et al. | Nov 2010 | A1 |
20100298830 | Browne et al. | Nov 2010 | A1 |
20110313357 | Skutnik | Dec 2011 | A1 |
20120136300 | Schoonmaker et al. | May 2012 | A1 |
20120253282 | Nagel et al. | Oct 2012 | A1 |
20120259185 | Yodfat et al. | Oct 2012 | A1 |
20120265034 | Wisniewski et al. | Oct 2012 | A1 |
20120277554 | Schurman et al. | Nov 2012 | A1 |
20120277667 | Yodat et al. | Nov 2012 | A1 |
20120277724 | Larsen et al. | Nov 2012 | A1 |
20120283540 | Brüggemann | Nov 2012 | A1 |
20120291778 | Nagel et al. | Nov 2012 | A1 |
20120293328 | Blomquist | Nov 2012 | A1 |
20120296269 | Blomquist | Nov 2012 | A1 |
20120296310 | Blomquist | Nov 2012 | A1 |
20120296311 | Brauker et al. | Nov 2012 | A1 |
Number | Date | Country |
---|---|---|
0 980 687 | Feb 2000 | EP |
2004537339 | Dec 2004 | JP |
2006341095 | Dec 2006 | JP |
2007511325 | May 2007 | JP |
2010501281 | Jan 2010 | JP |
2010533525 | Oct 2010 | JP |
WO 99-34212 | Jul 1999 | WO |
WO 2005000382 | Jan 2005 | WO |
WO 2007-051139 | May 2007 | WO |
WO 2008024810 | Feb 2008 | WO |
2008086552 | Jul 2008 | WO |
WO 2008086552 | Jul 2008 | WO |
WO 2009010399 | Jan 2009 | WO |
WO 2009010399 | Jan 2009 | WO |
WO 2009-021039 | Feb 2009 | WO |
WO 2009-021052 | Feb 2009 | WO |
WO 2010080715 | Jul 2010 | WO |
WO 2011051940 | May 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20140324017 A1 | Oct 2014 | US |
Number | Date | Country | |
---|---|---|---|
61344971 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13303055 | Nov 2011 | US |
Child | 14323791 | US |