The present invention relates to an adjustable Helmholtz resonator configured for use with an internal combustion engine.
Various methods may be employed to reduce the intake noise of an internal combustion engine. One method is to use a Helmholtz resonator on an intake air pipe configured to communicate intake air to the internal combustion engine. The intake air pipe is typically disposed upstream from an intake manifold and is configured to communicate intake air to the intake manifold of the internal combustion engine. A Helmholtz resonator includes a resonance volume or chamber having a small opening, typically referred to as a neck. The neck is operable to enable communication between the resonance chamber and the intake air pipe. Sound waves generated by components within the internal combustion engine travel along the intake air pipe where their acoustic pressure impinges on the neck and excites a mass of air within the neck. The acoustic pressure within the resonance chamber reacts against the air mass within the neck and produces an out-of-phase acoustic pressure at the intake air pipe to cause cancellation of intake noise at the resonant frequency. In this way, some of the engine noise is eliminated as the out-of-phase acoustic pressures in the intake air pipe cancel each other.
A Helmholtz resonator assembly is provided having a housing partially defining at least one volume and a first generally cylindrical sleeve member disposed within the housing and further defining the at least one volume. A second generally cylindrical sleeve member is generally coaxially disposed within the generally cylindrical first sleeve member and defines a passage through which a gas may pass. The second generally cylindrical sleeve member is selectively and variably movable between a first position and a second position with respect to the first generally cylindrical sleeve member. At least one orifice is defined by the first generally cylindrical sleeve member and at least one other orifice is defined by the second generally cylindrical sleeve member. The second generally cylindrical sleeve member is operable to substantially block the at least one orifice to prevent communication between the at least one volume and the passage when the second generally cylindrical sleeve member is in the first position. The at least one other orifice of the second generally cylindrical sleeve member is operable to unblock the at least one orifice to allow communication between the at least one volume and the passage when the second generally cylindrical sleeve member is in the second position. The at least one orifice, the at least one other orifice, and the at least one volume cooperate to form at least one Helmholtz resonator when the at least one orifice is unblocked by the second generally cylindrical sleeve member. An actuator responsive to signals from a controller may be provided. The actuator is preferably configured to selectively and variably move the second sleeve member between the first position and the second position.
The above features and advantages and other features and advantages of the present invention are readily apparent from the following detailed description of the best modes for carrying out the invention when taken in connection with the accompanying drawings.
Referring to the drawings wherein like reference numbers correspond to like or similar components throughout the several figures there is schematically depicted in
The intake system 12 includes an air box 24 configured to hold a filter element 26 operable to filter or remove particulate matter from the intake air 14 prior to introduction to a Helmholtz resonator assembly 28. The Helmholtz resonator assembly 28 is configured to mount to a supercharger assembly 29. The supercharger assembly 29 operates to increase the volume of intake air 14 communicated to an intake manifold 30 thereby increasing the volumetric efficiency of the internal combustion engine 10. The intake manifold 30 is operable to distribute or communicate intake air 14 to the cylinders 16.
The Helmholtz resonator assembly 28 is adjustable, that is, can be switched from an active state, wherein noise producing pressure pulsations within the intake air 14 are substantially attenuated, to an inactive state, wherein the noise producing pressure pulsations within the intake air 14 are not attenuated. This is especially beneficial in instances where the internal combustion engine 10 is supercharged. The supercharger 29 may produce a high pitched “whine” which may be objectionable to some individuals, but not others. The Helmholtz resonator assembly 28 allows the flexibility to selectively attenuate this whine should the vehicle operator find it objectionable. An actuator 32 is configured to adjust the Helmholtz resonator assembly 28 in response to signals received from a controller 34. The construction and operation of the Helmholtz resonator 28 will be described in greater detail hereinbelow with reference to
Referring now to
The first sleeve member 50 defines a first, second, third, fourth, fifth, and sixth plurality of orifices 58, 60, 62, 64, 66, and 68, respectively, while the second sleeve member 52 defines a first, second, third, fourth, fifth, and sixth plurality of orifices 70, 72, 74, 76, 78, and 80, respectively. The second sleeve member 52 is movable between a first position, as shown in
With the second sleeve member 52 in the second position the first, second, third, fourth, fifth, and sixth plurality of orifices 58, 60, 62, 64, 66, and 68 of the first sleeve member 50 are aligned with the first, second, third, fourth, fifth, and sixth plurality of orifices 70, 72, 74, 76, 78, and 80 of the second sleeve member 52. Therefore, the second sleeve member 52 allows the communication between the first, second, third, fourth, fifth, and sixth volumes 38, 40, 42, 44, 46, and 48 and the passage 56. As such, respective first, second, third, fourth, fifth, and sixth plurality of orifices 58, 60, 62, 64, 66, and 68; first, second, third, fourth, fifth, and sixth plurality of orifices 70, 72, 74, 76, 78, and 80; and first, second, third, fourth, fifth, and sixth volumes 38, 40, 42, 44, 46, and 48 cooperate to form first, second, third, fourth, fifth, and sixth Helmholtz resonators 82, 84, 86, 88, 90, and 92, respectively, as shown in
The first, second, third, fourth, fifth, and sixth plurality of orifices 70, 72, 74, 76, 78, and 80, defined by the second sleeve member 52, may include slot-like orifices to permit the second sleeve member 52 to unblock the first, second, third, fourth, fifth, and sixth plurality of orifices 58, 60, 62, 64, 66, and 68 in a staggered or step-like fashion as the second sleeve moves from the first position to the second position thereby enabling variable tuning of the Helmholtz resonator assembly 28. This is illustrated in
While the best modes for carrying out the invention have been described in detail, those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for practicing the invention within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3141519 | Bottum | Jul 1964 | A |
3253676 | Bottum | May 1966 | A |
5468923 | Kleyn | Nov 1995 | A |
5892186 | Flugger | Apr 1999 | A |
5979598 | Wolf et al. | Nov 1999 | A |
6752240 | Schlagenhaft | Jun 2004 | B1 |
20030085071 | Boast et al. | May 2003 | A1 |
20050150718 | Knight et al. | Jul 2005 | A1 |
20050252716 | Moenssen et al. | Nov 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20080173271 A1 | Jul 2008 | US |