This invention is directed to a jarring device typically used in conjunction with the drilling or operation of an oil/gas well. A jarring device is used to impart a force to a tubular string within a well when the string has become lodged in the well during well drilling or treating to free the tubular string from its captive state.
Jarring tools commonly referred to as jars are known in the oil/gas well industry as a means to free tubulars from being lodged in the well during drilling or well treating operations. An upward or downward jarring force is applied by the jar to the tubular string thereby freeing it. Mechanical, hydraulic, and hybrid mechanical-hydraulic jars have been used. Hydraulic jars have an advantage over mechanical jars because the jarring load can be easily adjusted down hole simply by varying the pull from the surface. The trigger means usually incorporates a piston area to hydraulically resist the pull from the surface long enough for the desired load to be applied and a valve means to allow the jar to trigger after a defined travel and time delay has occurred. One of the disadvantages of a hydraulic jar is the jar will inadvertently trigger when running the pipe in the well due to the weight hanging below the jar. For this reason jars are ordinarily triggered at the surface by allowing the weight below the jar to cause the jar to fall open before running any additional pipe in the well. A safer method is to incorporate a lock means in the jar that will not release the jar to trigger until a preset lock load is pulled. Since bottom hole assemblies vary and the weight hanging below the jar will vary, it is desirable to have a lock means that can be adjusted at the location prior to running in the hole.
Consequently there is a need for an adjustable mechanical-hydraulic jarring device that can be easily adjusted to accommodate varying conditions.
A jarring device according to an embodiment of the invention includes a spring, a floating hydraulic piston, a dog clutch coupled to a mandrel and a trigger sleeve adapted to be adjustably positioned within the jar so that the amount of force required to release the mandrel and thus initiate the jarring action is variable.
For a detailed description of the preferred embodiments of the invention, reference will now be made to the accompanying drawings in which:
Referring to
The mandrel includes a middle portion 11 which is connected to a downhole portion 65. The mandrel once released is axially movable in the housing.
The jar housing includes the closure member 2 which is connected to an uphole housing portion 3 which in turn to is connected to a sub 8 which includes a lubricant fitting 9. Sub 8 is connected to a middle portion 21 of the housing which in turn is connected to a second sub 61 which includes a lubricating fitting 66. Sub 61 is connected to a downhole portion 62 which in turn is connected to a coupling 64 which is adapted to be connected to a lower portion of a tubular string. A balancing piston 63 is located within housing portion 62. A seal 7 is positioned between mandrel 13 and closure member 7.
Middle portion 11 of the mandrel is surrounding by a dog clutch 25 and a trigger sleeve 22 as shown in
Dog clutch 25 is annular in shape and surrounds mandrel middle portion 11.
Dog clutch 25 may be of the type disclosed in U.S. patent application Ser. No. 14/621,577 filed Feb. 13, 2015, the entire contents of which is hereby incorporated herein by reference thereto.
Dog clutch 25 may have a plurality of segments each of which has annular tabs 30, 31, and 32 which are adapted to fit within grooves 26, 27, 28 of the mandrel 11 in a locking position as described in the above identified patent application.
The outer surface of the segments of the dog clutch has axially spaced grooves 71, 72 that are adapted to receive tabs 73 and 74 on the inner surface of the trigger sleeve 22 when the dog clutch is in the release position.
The axial position of trigger sleeve 22 and thus the distanced d between a stop shoulder 78 formed on the inner surface of middle housing portion 21 and end face 79 of the trigger sleeve 22 as shown in
In operation, an upward force on the mandrel will cause the mandrel to move in an upward direction. Movement of the mandrel will be resisted by a bellville spring assembly 12 and by hydraulic fluid in the tool which must pass through a cylindrical piston 24 which includes one or more restricted orifices 19 and one or more check valves 18. Annular piston 24 surrounds middle mandrel portion 11. An annular spacer sleeve 81 is positioned between piston 24 and dog clutch 25.
Mandrel portion 11 will be held by dog clutch 25 until such time as the tabs 73, 74 of the trigger sleeve come into registry with grooves 71, 72 of the dog clutch. At this point tabs 30, 31, and 32 of the dog clutch will be forced out of grooves 26, 27, and 28 in the mandrel middle portion by the upward force on the mandrel. This will release the mandrel from the dog clutch 25 whereupon the mandrel hammer surface 6 will strike anvil 5 on the housing. The movement of the mandrels from the closed position to the release position is resisted by the force of the springs 12 and by the hydraulic pressure generated by the piston 24 compressing the fluid in the hydraulic chamber as the mandrel is pulled upward. As the load is initially applied from the surface it is resisted by the pressure generated in the hydraulic chamber due to the area between the piston 24 OD and the OD of mandrel 13 at seal 7. As fluid leaves the hydraulic chamber by flowing through the orifice 19 in the piston 24 the mandrels move upward slowly and some of the load is transferred to the springs 12. It should be appreciated that if the load is not strong enough to compress the springs 12 far enough to cause the dog clutch 25 to come into registration with the trigger sleeve 22 the jar will not release. Therefore, if the spring force is stronger than the weight of the tools hanging below the jar it will not release.
The release load can be varied by moving the trigger sleeve in an uphole direction. This will cause tabs 73 and 74 to move uphole and thus increasing the distance that the dog clutch needs to travel before grooves 71 and 72 of the dog clutch register with the tabs 73, 74 of the trigger sleeve as shown in
The adjustable force mechanism discussed also could be used in combination with the trigger sleeve spring arrangement disclosed in U.S. patent application Ser. No. 14/621,577, filed Feb. 13, 2015, referenced above.
As shown in
Adjustment of the axial position of the trigger sleeve including portions 23 and 92 would be in the same manner as the trigger sleeve of
This application is a continuation of U.S. application Ser. No. 17/462,251, filed Aug. 31, 2021, which is a continuation of U.S. application Ser. No. 16/194,650, filed Nov. 19, 2018, which is a continuation of U.S. application Ser. No. 15/054,394, filed Feb. 26, 2016, the entire contents of which are incorporated herein by reference thereto.
Number | Date | Country | |
---|---|---|---|
Parent | 17462251 | Aug 2021 | US |
Child | 18223259 | US | |
Parent | 16194650 | Nov 2018 | US |
Child | 17462251 | US | |
Parent | 15054394 | Feb 2016 | US |
Child | 16194650 | US |