The present invention relates generally to a packaging machine. More specifically to a highly adjustable inline packaging machine for filling and sealing pre-made pouches of varying sizes and configurations, where the rapid changeover between different sized pouches is performed automatically by a control system to reduce changeover time and thereby improve operating efficiency of the machine.
There are various types of packaging machines which can fill various types of containers such as pouches, cartons, boxes, bottles, jar, and other types of containers. For example, a conventional packaging machine for filling pouches with content such as, but not limited to, nuts, chips, granola, powders, trail mixes, other food products, medication, and other products utilizes a carousel to advance the pouches to the various stations. These carousel packaging machines are typically large machines with a large footprint in a workspace. While generally effective, most carousels of conventional packaging machines are not adjustable to accommodate different sized containers to be filled or packaged. For those carousels that are adjustable, the configuration and structure of the carousel causes operators to spend excessive time adjusting the carousel to process and handle different sized containers. This means that the packaging machine is off-line and inoperative for a long period of time while the operators spend valuable time adjusting the carousel from being configured to handle a first sized container to handle a second sized container that is larger or smaller than the first sized container. These changeovers are labor intensive and cause the machine to be off-line for an extend period of time, for example 30-40 minutes, which reduces the throughput and operating efficiency of the packaging machine.
Accordingly, there is a need to overcome certain of these limitations and other drawbacks of conventional packaging machines, and to provide new features not heretofor available.
This disclosure provides a unique inline packaging machine for automatically accommodating and filling different sized containers, such as pouches with contents and then sealing the filled pouches is provided. The inline machine comprises a number of stations for the processing and handling of different sized containers to reduce changeover time and thereby improve operating efficiency of the inline packaging machine. A loading or in-feed station for receiving and then feeding the pouches in a flat closed pouch state is disposed longitudinally along a center line of the machine. A processing system is disposed longitudinally along the center line and disposed adjacent the loading station, wherein the processing system interacts with additional stations of the machine. The processing system includes a first carrier track opposing a second carrier track with respect to the center line. At least a first clamp is disposed on the first carrier track and at least a second clamp is disposed on the second carrier track wherein the first clamp and the second clamp are configured to releasably and securely receive the pouches from the loading station in the flat closed pouch state at a setup station of the processing system. Next, the pouches, in the flat closed pouch state, are advanced inline from the setup station to an opening station of the processing station for opening the pouches into an open pouch state. In the open pouch state, the pouches are advanced inline from the opening station to a filling station for filling the pouches with contents. The filled pouches are then advanced inline from the filling station to a sealing and discharging station of the processing system for sealing the filled pouches and discharging the sealed pouches.
According to another aspect of the invention, the inline packaging machine is configured such that a first carrier track and an opposing second carrier track are adjustably arranged with respect to the center line of the machine. The first carrier track and the second carrier track are laterally adjustable with respect to each other and the center line to accommodate securing a first pouch and a second pouch, the pouches having different dimensions. For example, the first pouch includes a first uppermost width in a flat closed pouch state and the second pouch includes a second uppermost width in the flat closed pouch state that is different from the first uppermost width. In this instance, the first carrier track is laterally adjusted relative to the center line and the second carrier track is laterally adjusted with respect to the center line to allow for changeover and handling of the different sized first and second pouches.
According to yet another aspect of the invention, the inline packaging machine is configured such that a first carrier track and an opposing second carrier track are adjustably arranged with respect to a center line of the machine. One of the first carrier track and the second carrier track is laterally adjustable with respect to the center line (and the other carrier track) to accommodate securing a first pouch and a second pouch, the pouches having different dimensions. For example, the first carrier track remains fixed while the second carrier track is laterally adjusted with respect to the center line and the first carrier track to allow for changeover and handling of the different sized first and second pouches.
According to a further aspect of the invention, a sample sequence of steps which can be performed to operate the inline packaging machine for filling and sealing pouches of varying sizes and configurations is disclosed. The sample sequence entails: loading a first pouch and a second pouch into a first magazine receptacle and a second magazine receptacle, respectively, of a loading station of the inline machine, wherein the first pouch is a different size and configuration than the second pouch; transferring the first pouch inline from the loading station to a setup station of the inline machine; securing the first pouch between corresponding clamps; advancing the first pouch inline from the setup station to an opening station of the inline machine, inline from the opening station to a filling station of the inline machine, and inline from the filling station to a sealing and discharging station; sealing and discharging the first pouch at the sealing and discharging station; using a control system to automatically adjust a distance between the corresponding clamps to accommodate a width of the second pouch; and transferring the second pouch inline from the loading station to the setup station for further processing according to the above steps. The packaging machine can also accommodate and then process a third-sized pouch that is loaded into the loading station.
Additional features, advantages, and embodiments of the present disclosure may be set forth or apparent from consideration of the following attached detailed description and drawings. Moreover, it is to be understood that both the foregoing summary of the present disclosure and the following detailed description of figures are exemplary and intended to provide further explanation without limiting the scope of the present disclosure as claimed.
To understand the present invention, it will now be described by way of example, with reference to the accompanying drawings in which:
In one or more implementations, not all of the depicted components in each figure may be required, and one or more implementations may include additional components not shown in a figure. It should be noted that the features illustrated in the drawings are not necessarily drawn to scale, and features of one embodiment may be employed with other embodiments as the skilled artisan would recognize, even if not explicitly stated herein. Variations in the arrangement and type of the components may be made without departing from the scope of the subject disclosure. Additional components, different components, or fewer components may be used within the scope of the subject disclosure. Moreover, it is noted that like reference numerals represent similar parts throughout the several views of the drawings.
This patent application contains at least one drawing executed in color. Copies of this patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
The detailed description set forth below is intended as a description of various implementations and is not intended to represent the only implementations in which the subject technology may be practiced. As those skilled in the art would realize, the described implementations may be modified in various different ways, all without departing from the scope of the present disclosure. Accordingly, the drawings and description are to be regarded as illustrative in nature and not restrictive.
The inline machine 10 includes a number of stations where various packaging functions are performed on the containers, such as pouches 12. For purposes of explaining the operation of the machine 10, the pouches 12 described below are of the “pre-made” variety and have an openable upper mouth that can be sealed shut after filling, a closed gusseted bottom and sealed side edges extending upward from the bottom to the sealable mouth. Specifically, the machine 10 includes a loading or in-feed station 100 for receiving pouches 12 having different dimensions, including heights, widths and opening widths (see
With the hood 18 and other enclosures or paneling 19 removed from the inline machine 10 in
With particular reference to
With reference to
A first plurality of clamps 46 is coupled to the first carrier track 30 such that each clamp 46 is disposed equally spaced apart from adjacent clamps 46 along the first carrier track 30. In one embodiment of the machine 10, the first plurality of clamps 46 includes twelve clamps, for example, although it should be understood that any number of clamps 46 are within the scope of this disclosure. Similarly, a second plurality of clamps 48 is coupled to the second carrier track 32 such that each clamp 48 is disposed equally spaced apart from adjacent clamps 48 along the second carrier track 32. The second plurality of clamps 48 includes twelve clamps, for example, although it should be understood that any number of clamps 48 are within the scope of this disclosure. Each clamp 46 of the first plurality of clamps 46 corresponds to a clamp 48 of the second plurality of clamps 48 so that the corresponding clamps 46,48 align with each other across the longitudinal center line C at each of the setup station 200, the opening station 300, the filling station 400, and the sealing and discharging station 500. The first plurality of clamps 46 and the second plurality of clamps 48 are configured to releasably secure a peripheral extent of the pouches 12 such that they hang between corresponding clamps 46, 48. In this way, the corresponding clamps 46, 48 remain aligned as they are advanced, via driven actuation of the first and the second carrier tracks 30, 32, to each of the setup station 200, the opening station 300, the filling station 400, and the sealing and discharging station 500 such that the pouches 12 are received at each of the stations 200-500 for particular processing, as described in more detail below.
The first carrier track 30 and the second carrier track 32 are supported by a first frame 50 and a second frame 52, respectively. An adjusting mechanism 54 (shown in
As shown in
The filling station 400 includes a funnel 402 terminating at a feeding claw 404. An extent of the feeding claw 404 is designed to be received by the pouch 12 in the opened pouched state for filling the pouch 12 with content, such as a powder, liquid, gel or other similar substance. In particular, with the content loaded into the funnel 402 and the feeding claw 404 inserted into the pouch 12, the feeding claw 404 is actuated to release the content into the pouch 12 in order to sufficiently fill it. The sealing and discharge station 500 includes a sealer 502 designed to seal the pouch 12 after the content is contained in the pouch 12. The sealer 502 includes a hot bar 504 and a brace bar 506. When the pouch 12 is positioned at the sealing and discharge station 500, the sealer 502 is actuated to be lowered downwardly such that the pouch 12, filled with content, is arranged between the hot bar 504 and the brace bar 506. With the pouch 12 arranged in this manner, the hot bar 504 and the brace bar 506 are actuated to compress the top of the pouch P1, thereby sealing it.
At the filling station 400, the opened state pouch P1 is filled with contents such as, but not limited to, nuts, chips, granola, powder, trail mix, other food products, medication, and other products. As shown in
After the pouch P1 is filled with product at the filling station 400, the pouch P1 is advanced inline to the sealing and discharging station 500. The sealing and discharging station 500 seals the pouch P1. At the sealing and discharging station 500, the pouch P1 is hot sealed with the sealer 502. Either before or after hot sealing the pouch P1, the sealing and discharging station 500 can optionally perform other functions, as shown in
As the last pouch of the first-sized pouches P1 are transferred from the loading station 100 to the setup station 200, the plurality of second-sized pouches P2 of the second plurality of pouches 58 are advanced into position on the loading station 100 for transfer to the setup station 200. With the sized pouches P2 in position for transfer to the setup station 200 and after the last of the first-sized pouches P1 discharges from the sealing and discharging station 500, the adjusting mechanism 54 of the processing system 14 independently actuates the first frame 50 and the second frame 52, and thus actuates the first carrier track 30 and the second carrier track 32. This actuation adjusts the distance 56 between the corresponding pair of clamps of the first plurality of clamps 46 and the second plurality of clamps 48 to accommodate the width W2 of the second-sized pouch P2 of the second plurality of pouches 58. In this scenario, the complete adjustment to accommodate the pouch P2 is completed in 30 seconds or less, and preferably within 15 seconds. After the corresponding clamp of the first plurality of clamps 46 and the second plurality of clamp 48 are properly positioned, the transfer mechanism 110 transfers the pouch P2 of the second plurality of pouches 58 inline to the setup station 200 so that the corresponding clamps of the first plurality of clamps 46 and the second plurality of clamps 48 simultaneously releasably secure or clamp the pouch P2. From here, the pouch P2 is advanced through the processing system 14 in a similar manner as described above in regards to the pouch P1, as well as the rest of the pouches of the second plurality of pouches 58.
The inline functionality of the inline machine provides fast throughput and can reach maxim speeds of processing of up to 40 pouches 12, 58 per minute. While the adjusting mechanism 54 is actuated in this scenario because the second plurality of pouches 58 differ in size and configuration from the first plurality of pouches 12, it should be understood that if the second plurality of pouches 58 is the same size and configuration as the first plurality of pouches 12, then no adjustment is required and the pouch P2 can be immediately transferred, without any lag time, from the loading station 100 to the setup station 200 after the last pouch of the first plurality of pouches 12 is advanced from the setup station 200 to the opening station 300.
It should be understood that the inline functionality of the inline machine 10 provides a compact footprint that takes up less space on the work floor compared to conventional packaging machines. In addition, the inline machine 10 is also contrasted from conventional packaging machines in that the changeover time between different pouch sizes is greatly reduced, which increases the efficiency and effectiveness of machine throughput.
Block 1312 depicts the step of using the transfer mechanism 110 to transfer the pouch P1 inline from the loading station 100 onto a conveyor to arrive at a home position within the setup station 200, where the openable end of the pouch P1 is leading and the closed, lower end of the pouch P1 is trailing. At the setup station 200, an engaging arm grasps the pouch P1 and pivots it such that the openable end of the pouch P1 is upwardly oriented. The pouch P1 is secured between one of the first plurality of clamps 46 and one of the second plurality of clamps 48, as depicted in block 1314. In other words, the first and second clamps 46, 48 engage and secure the pouch P1, preferably at opposite upper ends of the openable portion of the pouch P1. Block 1316 depicts the inline advancing of the pouch P1 from the setup station 200 to the opening station 300. The opening of the pouch P1 at the opening station 300 is depicted in block 1318. The spreader mechanism, as detailed above, can be utilized to maintain the pouch P1 in the open position. With the pouch P1 opened, the pouch P1 is advanced inline to filling station 400, as depicted in block 1320. Filling the pouch P1 with content(s) at the filling station 400 is depicted in block 1322. Block 1324 depicts the inline advancing of the pouch P1 from the filling station 400 to the sealing and discharging station 500. As depicted in block 1326, at the sealing and discharging station 500, the hot bar 502 seals the pouch P1 whereupon the pouch P1 is then discharged after sealing.
As mentioned above, magazine receptacle M1 includes a large number of stacked pouches P1 in receptacles 102, and magazine receptacle M2 includes a large number of stacked pouches P2 in receptacles 102. When the inline processing of the first-sized pouches P1 is completed, the transfer mechanism 110 transfers the second-sized pouches P2 from the loading station 100 onto the conveyor to arrive at a home position (which can be different than the home position for the different sized pouch P1) within the setup station 200, where the openable end of the pouch P2 is leading. The control system 16 is constantly monitoring operation of the machine 10, and when it detects the larger pouches P2 with the sensor assembly, the control system 16 initiates a preset program(s) that automatically adjusts the separation distance 56 between corresponding clamps 46, 48 of the first plurality of clamps 46 and the second plurality of clamps 48 to accommodate the width W2 of the pouch P2, as depicted in block 1328. Alternatively, an operator of the machine 10 manually activates the preset program(s) loaded into the control system 16 to allow for adjustment between the separation distance 56 and enable inline processing of the second-sized pouches P2. In some embodiments, adjusting the separation distance 56 involves the adjusting mechanism 54 independently actuating the first frame 50 supporting the first carrier track 30 and the second frame 52 supporting the second carrier track 32, whereby the separation distance 56 between the first and second frames 50, 52 is altered. In other embodiments, adjusting the separation distance 56 involves the adjusting mechanism 54 only actuating the first frame 50 supporting the first carrier track 30. In yet other embodiments, adjusting the separation distance 56 involves the adjusting mechanism 54 only actuating the second frame 52 supporting the second carrier track 32.
After the separation distance 56 is properly adjusted to accommodate the width W2 of the second-sized pouches P2, the inline transferring of second-sized pouches P2 from the loading station 100 to the setup station 200 is depicted in block 1330. As mentioned above, the control system 16 is utilized to adjust the separation distance 56 and permit handling of the different-sized pouch P2. This adjustment process is referred to as a “changeover” and the inventive machine 10, including the control system 16, rapidly accomplishes the changeover in 30 seconds or less, preferably less than 20 seconds, most preferably less than 15 seconds. The rapid changeover minimizes the downtime of the machine 10 while maintaining its operating efficiency as compared to conventional packaging machines that suffer from lengthy downtime and reduced operating efficiency as a result of time consuming changeovers. At the setup station 200, the engaging arm grasps the second-sized pouch P2 and pivots it such that the openable end of the pouch P2 is upwardly oriented and then places the second-sized pouch P2 between corresponding clamps 46, 48 of the first plurality of clamps 46 and the second plurality of clamps 48 for securement there between, as depicted in block 1332. Block 1334 depicts the inline advancing of the pouch P2 from the setup station 200 to the opening station 300. The opening of the pouch P2 at the opening station 300 is depicted in block 1336. With the pouch P2 opened, the pouch P2 is advanced inline to filling station 400, as depicted in block 1338. Filling the pouch P2 with content at the filling station 400 is depicted in block 1340. Block 1342 depicts the inline advancing of the pouch P2 from the filling station 400 to the sealing and discharging station 500. As depicted in block 1344, at the sealing and discharging station 500, the hot bar 502 seals the pouch P2 and the pouch P2 is then discharged after sealing.
In the event first-sized pouches P1 are loaded into the magazine receptacle M1 while second-sized pouches P2 are being handled and filled, the machine 10 processes and handles first-sized pouches P1 in the manner discussed in the foregoing paragraphs. If third-sized pouches P3 (not shown), having different dimensions than the first and second pouches P1, P2 are loaded into the loading station 100, then the control system 16 alone, or with input provided by an operator, detects the differing third pouches and automatically adjusts the separation distance 56 between corresponding clamps 46, 48 to allow for inline processing of the third pouches consistent with the foregoing paragraphs.
In a first alternative embodiment, the structure and operation of the inline machine 10 is substantially the same as the commercial embodiment described above except that the adjusting mechanism 54 of the processing system 14 is configured to operate in a slightly different manner. For instance, the first frame 50 supporting the first carrier track 30 is fixed in position so that the adjusting mechanism 54 is configured to laterally actuate the second frame 52 supporting the second carrier track 32 with respect to the longitudinal center line C to moveably adjust the separation distance 56 between corresponding clamps of the first plurality of clamps 46 and the second plurality of clamps 48. In a similar embodiment, the second frame 52 supporting the second carrier track 32 is fixed in position, instead, so that the adjusting mechanism 54 is configured to laterally actuate the first frame 50 supporting the first carrier track 30 with respect to the longitudinal center line C to movably adjust the separation distance 56 between corresponding clamps of the first plurality of clamps 46 and the second plurality of clamps 48.
In any of the previously described embodiments, the processing system 14 of the inline machine 10 optionally or additionally includes a printing station 600 (see
Additionally, with any of the previously described embodiments, as shown in
Furthermore, in any of the previously described embodiments, the inline machine 10 also optionally includes a bottom pouch support 714 for providing additional support for pouches with heavier product. The bottom pouch support 714 is a conveyer system disposed between the first frame 50 and the second frame 52 below the first carrier track 30 and the second carrier track 32. The enclosures or panels 19 of the inline machine 10 are optionally NEMA 4× enclosures or panels for providing efficient and safe cleaning without concern of rust or damaging electrical components.
While the present disclosure has been described in terms of exemplary embodiments, those skilled in the art will recognize that the present disclosure can be practiced with modifications in the spirit and scope of the appended claims. Further, a person of ordinary skill in the art would appreciate the features of the individual embodiments, and the possible combinations and variations of the components. A person of ordinary skill in the art would further appreciate that any of the examples could be provided in any combination with the other examples disclosed herein. Additionally, the terms “first,” “second,” “third,” etc. as may be used herein are intended for illustrative purposes only and do not limit the embodiments in any way. The term “plurality” as used herein indicates any number greater than one, either disjunctively or conjunctively, as necessary, up to an infinite number. The word “including” as used herein is utilized in an open-ended manner.
While the foregoing has described what are considered to be the best mode and/or other examples, it is understood that various modifications may be made therein and that the subject matter disclosed herein may be implemented in various forms and examples, and that the teachings may be applied in numerous applications, only some of which have been described herein. It is intended by the following claims to claim any and all applications, modifications, and variations that fall within the true scope of the present teachings.
This application is a continuation of U.S. application Ser. No. 16/170,950 filed on Oct. 25, 2018, the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3566578 | Thorne et al. | Mar 1971 | A |
3673759 | Ayres | Jul 1972 | A |
3812649 | Clancy | May 1974 | A |
3955334 | Wild | May 1976 | A |
4108300 | Hayase | Aug 1978 | A |
4174599 | Callet | Nov 1979 | A |
4211053 | Niccolls | Jul 1980 | A |
4263768 | Russell | Apr 1981 | A |
4330288 | Russell | May 1982 | A |
4432186 | McGregor | Feb 1984 | A |
4510736 | Muller | Apr 1985 | A |
4580473 | Seiden | Apr 1986 | A |
4608803 | Araki | Sep 1986 | A |
4674266 | Araki | Jun 1987 | A |
4823538 | Takamura | Apr 1989 | A |
5058364 | Seiden | Oct 1991 | A |
5862653 | Solano | Jan 1999 | A |
6050061 | Todd | Apr 2000 | A |
6073424 | Kraft | Jun 2000 | A |
6276117 | Wiles | Aug 2001 | B1 |
6701697 | Savigny | Mar 2004 | B2 |
6862866 | Jacobsen | Mar 2005 | B2 |
7882685 | Koga | Feb 2011 | B2 |
8122684 | Kurz | Feb 2012 | B2 |
8151543 | Veix | Apr 2012 | B2 |
8468783 | Uebler | Jun 2013 | B2 |
9022719 | Yoshikane | May 2015 | B2 |
10351281 | Garriga Jimenez | Jul 2019 | B2 |
10781059 | Morino | Sep 2020 | B2 |
11053039 | Sander | Jul 2021 | B2 |
20030154692 | Parsons | Aug 2003 | A1 |
20040011008 | Hiramoto | Jan 2004 | A1 |
20040020170 | LaRocca | Feb 2004 | A1 |
20050229547 | Koke | Oct 2005 | A1 |
20050271306 | Murray | Dec 2005 | A1 |
20060162291 | Gates | Jul 2006 | A1 |
20090308031 | Koga | Dec 2009 | A1 |
20090320958 | Matheyka | Dec 2009 | A1 |
20100037561 | Matheyka | Feb 2010 | A1 |
20130343857 | Yoshikane | Dec 2013 | A1 |
20140083061 | Ibaraki | Mar 2014 | A1 |
20140331603 | Takahashi | Nov 2014 | A1 |
20140334909 | Ishikawa | Nov 2014 | A1 |
20150068166 | Setozaki | Mar 2015 | A1 |
20150217889 | Nakamoto | Aug 2015 | A1 |
20150284122 | Murray | Oct 2015 | A1 |
20150328855 | Honda | Nov 2015 | A1 |
20160059976 | Nakagawa | Mar 2016 | A1 |
20160059978 | Nakagawa | Mar 2016 | A1 |
20160122057 | Takahashi | May 2016 | A1 |
20170137155 | Pape | May 2017 | A1 |
20170205530 | Fujitomi | Jul 2017 | A1 |
20170217608 | Giro Amigo | Aug 2017 | A1 |
20180016045 | Nakamoto | Jan 2018 | A1 |
20180118393 | Yoshikane | May 2018 | A1 |
20180215489 | Gallaun | Aug 2018 | A1 |
20180257800 | Hulleman | Sep 2018 | A1 |
20190016491 | Wang | Jan 2019 | A1 |
20200130878 | Jovanovic | Apr 2020 | A1 |
Number | Date | Country | |
---|---|---|---|
20220073226 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16170950 | Oct 2018 | US |
Child | 17403398 | US |