1. Field of the Invention
The invention relates to a circuit and a method for an integrating amplifier which increases the input range of the charge that can be measured, and more particularly to an integrating amplifier on an IC where an internal feedback loop is added thereby eliminating the need for a another external capacitor and pad.
2. Description of the Related Art
To measure charge and thus capacitance, an amplifier wired as an integrator could be used. The charge to be measured is injected into the input of the amplifier and from there is fed, via an integrating capacitance, to the output of the amplifier. The measurement is initiated by a current pulse on the input of the integrator. The integrating capacitance, connected between the negative input and the output of the amplifier, collects the charge transferred by the input pulse. Because of the limited output swing of the amplifier the amount of the charge that can be measured is limited. In current designs the range for the charge to be measured is changed by changing the integration capacitance. In integrated circuits, where an external device is used as integration capacitor, this method requires not only an additional capacitor but an additional pad. This is a disadvantage for designs which need to be placed inside small packages and where pads are either at a premium or not at all available.
Referring now to
In an ordinary integrator, charge is transferred to the capacitance to be measured by a voltage pulse causing an integration current to flow. The amplifier delivers this current by adjusting its output voltage. The charge on the capacitor CINT is equal to the charge introduced by the current pulses at input IN:
Q=IINTt
resulting in an output of:
To measure a larger charge within the given output voltage range in current designs, the integration capacitor needs to be adjusted, that is another external capacitor needs to be added. The disadvantage of this circuit is that it needs an additional pad and that other external capacitor, leading to a higher module cost and a bigger die area. There is presently no known way to avoid this problem. The below described invention is directed to a circuit arrangement which offers a novel solution.
U.S. Patents which Relate to the Present Invention Are:
U.S. Pat. No. 6,608,516 (Lennous) discloses a system and method for adjusting the time constant of an integrator. In one embodiment, a variable time constant integrator includes an amplifier, a capacitor, and a variable gain element. In another embodiment, the variable gain element may include a MDAC (Multiplying Digital to Analog Converter). The Patent refers to signal conditioning and uses a voltage feedback to limit the range.
U.S. Patent Application 2007/0229161 (Killat) teaches methods and circuits for a low noise and high linear voltage-to-current converter which requires only small integration resistors. The circuit uses a shunt to measure the current, where a current IDC used as feedback is static and is derived from a bias voltage. Current IDC is used to set the DC operating point.
U.S. Pat. No. 4,059,812 (Proctor) describes a phase-locked-loop which comprises an adjustable integrator further comprising an integrating amplifier and an adjustable voltage source applied to one integrating amplifier input. The output of the integrating amplifier changes the set time of one or more one-shot controls feeding back to the adjustable integrator and thus to the integrating amplifier.
It should be noted that none of the above-cited examples of the related art have the features and advantages of the invention described below.
It is an object of at least one embodiment of the present invention to provide a method and an apparatus to increase the amount of charge that can be measured by an integrating amplifier.
It is another object of the present invention to limit the number of external capacitors to one.
It is yet another object of the present invention to increase the input range of the charge without using an additional capacitor.
It is still another object of the present invention to make the input range adjustable.
It is a further object of the present invention to limit the number of pads needed for measuring the amount of charge to two.
It is yet a further object of the present invention to prevent a DC offset in a current mirror.
These and many other objects have been achieved by coupling an output stage, comprising a current mirror, to the integrating amplifier. The output of the first current source of the current mirror is coupled via the external integrating capacitor to the input of the integrating amplifier. The output of the second current source of the current mirror, which mirrors the current of the first current source and thus the output current of the integrating amplifier, is fed back to the output of the integrating amplifier. The output of the first current source is also coupled to a load device, the active load, which generates the bias current for the first current source. The second current source replicates the output current of the first current source by a factor “m”, where the factor “m” is variable and is determined by the range switching required. To avoid a DC offset in the current of the current mirror, a switch is coupled between the first current source and the load device to switch off the active load for the output stage during the integration phase.
These and many other objects and advantages of the present invention will be readily apparent to one skilled in the art to which the invention pertains from a perusal of the claims, the appended drawings, and the following detailed description of the preferred embodiments.
Use of the same reference number in different figures indicates similar or like elements.
In the preferred embodiment of the present invention of an adjustable integrator, a current mirror is used in the output stage of the amplifier which feeds back a duplicate of the output current of the amplifier to its input node. This is be done on the die (chip) without requiring an extra pad. This method results in an integrator output voltage of:
where with reference to
Using current feedback, the range in the present invention is not limited to the voltage output range of the amplifier. The present invention utilizes only one capacitor and thus requires only two pads to handle the range switching. The extra current IEXTRA is generated by mirroring the current IOUT in the output stage of the amplifier. To avoid a DC offset in the mirrored current, the active load for the output stage is switched off during the integration phase. In the present invention, range switching is used to measure different charges with the same feedback capacitor (CINT). This is achieved by a replication of the output current IOUT of the amplifier through the current mirror of the output stage which comprises a first and a second current source. The first current source with current IOUT is inserted between the output of the amplifier and output OUT, and the second current source with a replication factor m (relative to the first current source) and current IEXTRA is coupled between the output of the amplifier and its input node. Range switching, that is changing current IEXTRA, is accomplished by changing the replication factor m.
Referring to
Referring now to
Still referring to
Amplifier means implies a device which amplifies a signal, and may be a transistor or a transistor circuit, either of these in discrete form or in integrated circuits (IC), a discrete amplifier, or a relay. These devices are cited by way of illustration and not of limitation, as applied to amplifier means.
Capacitor means implies a device which holds an electrical charge, and may be a transistor or a transistor circuit, either of these in discrete form or in integrated circuits (IC), wired to function as a capacitor, a capacitor in an integrated circuit (IC) or a discrete capacitor.
Switching means may imply devices such as a transistor or a transistor circuit, either of these in discrete form or in integrated circuits (IC), a relay, or a mechanical switch. These devices are cited by way of illustration and not of limitation, as applied to switching means.
We now describe the method of the preferred embodiment of the present invention of providing an adjustable integrator using a single capacitor:
Advantages of the present invention are:
While the invention has been particularly shown and described with reference to the preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the spirit and scope of the invention.