The present technology generally relates to implantable medical devices and, in particular, to implantable interatrial systems and associated methods for selectively controlling blood flow between the right atrium and the left atrium of a heart.
Heart failure is a medical condition associated with the inability of the heart to effectively pump blood to the body. Heart failure affects millions of people worldwide, and may arise from multiple root causes, but is generally associated with myocardial stiffening, myocardial shape remodeling, and/or abnormal cardiovascular dynamics. Chronic heart failure is a progressive disease that worsens considerably over time. Initially, the body's autonomic nervous system adapts to heart failure by altering the sympathetic and parasympathetic balance. While these adaptations are helpful in the short-term, over a longer period of time they may serve to make the disease worse.
Heart failure (HF) is a medical term that includes both heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF). The prognosis with both HFpEF and HFrEF is poor; one-year mortality is 26% and 22%, respectively, according to one epidemiology study. In spite of the high prevalence of HFpEF, there remain limited options for HFpEF patients. Pharmacological therapies have been shown to impact mortality in HFrEF patients, but there are no similarly-effective evidence-based pharmacotherapies for treating HFpEF patients. Current practice is to manage and support patients while their health continues to decline.
A common symptom among heart failure patients is elevated left atrial pressure. In the past, clinicians have treated patients with elevated left atrial pressure by creating a shunt between the left and right atria using a blade or balloon septostomy. The shunt decompresses the left atrium (LA) by relieving pressure to the right atrium (RA) and systemic veins. Over time, however, the shunt typically will close or reduce in size. More recently, percutaneous interatrial shunt devices have been developed which have been shown to effectively reduce left atrial pressure. However, these percutaneous devices have an annular passage with a fixed diameter which fails to account for a patient's changing physiology and condition. For this reason, existing percutaneous shunt devices may have a diminishing clinical effect after a period of time. Many existing percutaneous shunt devices typically are also only available in a single size that may work well for one patient but not another. Also, sometimes the amount of shunting created during the initial procedure is later determined to be less than optimal months later. Accordingly, there is a need for improved devices, systems, and methods for treating heart failure patients, particularly those with elevated left atrial pressure.
The present technology is generally directed to implantable systems and devices for facilitating the flow of fluid between a first body region and a second body region. In embodiments, the devices are selectively adjustable to control the amount of fluid flowing between the first body region and the second body region. The devices generally include a drainage and/or shunting element having a lumen extending therethrough for draining or otherwise shunting fluid between the first and second body regions. Some embodiments include an actuation assembly that can drive movement of a flow control element to change the flow resistance through the lumen or another characteristic of the lumen, thereby increasing or decreasing the relative drainage or flow rate of fluid between the first body region and the second body region.
In particular, some embodiments of the present technology provide adjustable devices that are selectively titratable to provide various levels of therapy. For example, the devices can be adjusted through a number of discrete positions or configurations, with each position or configuration providing a different flow resistance and/or drainage rate relative to the other positions or configurations. Accordingly, the devices can be incrementally adjusted through the positions or configurations until the desired flow resistance and/or drainage rate is achieved. Once the desired flow resistance and/or drainage rate is achieved, the devices are configured to maintain the set position or configuration until further input. In some embodiments, various components of the devices operate as a ratchet and/or similar to a hemostat mechanism, which enables the incremental adjustments of the devices between the plurality of positions or configurations, and can hold or lock the device in the desired position or configuration.
In some embodiments, the present technology provides adjustable interatrial shunts that are configured to shunt blood from the left atrium (LA) to the right atrium (RA). The adjustable interatrial shunts can include a shunting element having a lumen extending therethrough and configured to fluidly connect the LA and the RA. The adjustable interatrial shunts can further include a flow control element operably coupled to the shunt. The flow control element can be moveable through a plurality of discrete positions, with each discrete position being associated with a particular shunt geometry, and with each particular shunt geometry being associated with a different relative drainage resistance through the lumen for a given pressure differential between the LA and the RA. The flow control element can be selectively moveable between the plurality of discrete positions by operation of an actuation assembly. In some embodiments, the adjustable interatrial shunts include a ratchet mechanism that controls the movement of flow control element through the plurality of discrete positions and can hold or lock the shunt in a desired position or configuration.
The terminology used in the description presented below is intended to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain specific embodiments of the present technology. Certain terms may even be emphasized below; however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this Detailed Description section. Additionally, the present technology can include other embodiments that are within the scope of the examples but are not described in detail with respect to
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present technology. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features or characteristics may be combined in any suitable manner in one or more embodiments.
Reference throughout this specification to relative terms such as, for example, “generally,” “approximately,” and “about” are used herein to mean the stated value plus or minus 10%.
As used herein, the terms “interatrial device,” “interatrial shunt device,” “IAD,” “IASD,” “interatrial shunt,” and “shunt” are used interchangeably to refer to a device that, in at least one configuration, includes a shunting element that provides a blood flow between a first region (e.g., a LA of a heart) and a second region (e.g., a RA or coronary sinus of the heart) of a patient. Although described in terms of a shunt between the atria, namely the left and right atria, one will appreciate that the technology may be applied equally to devices positioned between other chambers and passages of the heart, or between other parts of the cardiovascular system. For example, any of the shunts described herein, including those referred to as “interatrial,” may be nevertheless used and/or modified to shunt between the LA and the coronary sinus, or between the right pulmonary vein and the superior vena cava. Moreover, while the disclosure herein primarily describes shunting blood from the LA to the RA, the present technology can be readily adapted to shunt blood from the RA to the LA to treat certain conditions, such as pulmonary hypertension. For example, mirror images of embodiments, or in some cases identical embodiments, used to shunt blood from the LA to the RA can be used to shunt blood from the RA to the LA in certain patients. Additionally, the technology described herein can be used to shunt fluids other than blood (e.g., cerebrospinal fluid, aqueous humor, etc.) between other body regions.
As used herein, the term “geometry” can include both the size and/or the shape of an element. Accordingly, when the present disclosure describes a change in geometry, it can refer to a change in the size of an element (e.g., moving from a smaller circle to a larger circle), a change in the shape of an element (e.g., moving from a circle to an oval), and/or a change in the shape and size of an element (e.g., moving from a smaller circle to a larger oval).
The headings provided herein are for convenience only and do not interpret the scope or meaning of the claimed present technology.
Heart failure can be classified into one of at least two categories based upon the ejection fraction a patient experiences: (1) HFpEF, historically referred to as diastolic heart failure or (2) HFrEF, historically referred to as systolic heart failure. One definition of HFrEF is a left ventricular ejection fraction lower than 35%-40%. Though related, the underlying pathophysiology and the treatment regimens for each heart failure classification may vary considerably. For example, while there are established pharmaceutical therapies that can help treat the symptoms of HFrEF, and at times slow or reverse the progression of the disease, there are limited available pharmaceutical therapies for HFpEF with only questionable efficacy.
In heart failure patients, abnormal function in the left ventricle (LV) leads to pressure build-up in the LA. This leads directly to higher pressures in the pulmonary venous system, which feeds the LA. Elevated pulmonary venous pressures push fluid out of capillaries and into the lungs. This fluid build-up leads to pulmonary congestion and many of the symptoms of heart failure, including shortness of breath and signs of exertion with even mild physical activity. Risk factors for HF include renal dysfunction, hypertension, hyperlipidemia, diabetes, smoking, obesity, old age, and obstructive sleep apnea. HF patients can have increased stiffness of the LV which causes a decrease in left ventricular relaxation during diastole resulting in increased pressure and inadequate filling of the ventricle. HF patients may also have an increased risk for atrial fibrillation and pulmonary hypertension, and typically have other comorbidities that can complicate treatment options.
Interatrial shunts have recently been proposed as a way to reduce elevated left atrial pressure, and this emerging class of cardiovascular therapeutic interventions has been demonstrated to have significant clinical promise.
One challenge with many conventional interatrial shunts is determining the most appropriate size and shape of the shunt lumen. A lumen that is too small may not adequately unload the LA and relieve symptoms; a lumen that is too large may overload the RA and right-heart more generally, creating new problems for the patient. Moreover, the relationship between pressure reduction and clinical outcomes and the degree of pressure reduction required for optimized outcomes is still not fully understood, in part because the pathophysiology for HFpEF (and to a lesser extent, HFrEF) is not completely understood. As such, clinicians are forced to take a best guess at selecting the appropriately sized shunt (based on limited clinical evidence) and generally cannot adjust the sizing over time. Worse, clinicians must select the size of the shunt based on general factors (e.g., the size of the patient's anatomical structures, the patient's hemodynamic measurements taken at one snapshot in time, etc.) and/or the design of available devices rather than the individual patient's health and anticipated response. With such traditional devices, the clinician does not have the ability to adjust or titrate the therapy once the device is implanted, for example, in response to changing patient conditions such as progression of disease. By contrast, interatrial shunting systems configured in accordance with embodiments of the present technology allow a clinician to select the size—perioperatively or post-implant—based on the patient.
In some embodiments, the present technology provides adjustable interatrial shunts that are configured to shunt blood from the LA to the RA. The adjustable interatrial shunts can include a shunting element having a lumen extending therethrough and configured to fluidly connect the LA and the RA. The adjustable interatrial shunts can further include a flow control element operably coupled to the shunt. The flow control element can be moveable through a plurality of discrete positions, with each discrete position being associated with a particular shunt geometry, and with each particular shunt geometry being associated with a different relative drainage resistance through the lumen for a given pressure differential between the LA and the RA. The flow control element can be selectively moveable between the plurality of discrete positions by operation of an actuation assembly. In some embodiments, the adjustable interatrial shunts include a ratchet mechanism and/or a mechanism similar to a hemostat that controls the movement of flow control element through the plurality of discrete positions, and can hold or lock the shunt in a desired position or configuration.
In some embodiments, the flow control element is configured to change a flow resistance through the shunting element to alter the flow of fluid through the lumen. For example, the flow control element can be configured to change a size, shape, or other dimension of a portion (e.g., an orifice such as an outflow or inflow port) of the lumen. In some embodiments, the flow control element can selectively change a size and/or shape of an orifice to alter the flow through the lumen. For example, the flow control element can be configured to selectively increase a diameter of the orifice and/or selectively decrease a diameter of the orifice (or another portion of the lumen) in response to an input. Throughout the present disclosure, reference to adjusting a diameter (e.g., increasing a diameter, decreasing a diameter, etc.) can refer to adjusting a hydraulic diameter of the lumen, adjusting a diameter at a particular location of the lumen, and/or adjusting a diameter along a length (e.g., a full length) of the lumen. In other embodiments, the flow control element is configured to otherwise affect a shape of the lumen. Accordingly, the flow control element can be coupled to a shunting element and/or can be included within the shunting element. For example, in some embodiments the flow control element is part of the shunting element and at least partially defines the orifice. In other embodiments, the flow control element is spaced apart from but is operably coupled to the shunting element.
In some embodiments, the systems described herein can include one or more actuation elements coupled to the flow control element. The flow control element can at least partially define a lumen orifice through which fluid traveling through the interatrial device must pass. Movement of the actuation element(s) may generate a change in a geometry of the flow control element, and thus a change in geometry of the fluid path. The change in geometry can be a restriction (e.g., contraction), an opening (e.g., expansion), or another configuration change.
In some embodiments, the actuation element can include a shape memory material (e.g., a shape memory alloy, or a shape memory polymer). Movement of an actuation element can be generated through externally applied stress and/or the use of a shape memory effect (e.g., as driven by a change in temperature). The shape memory effect enables deformations that have altered an element from its shape-set geometric configuration to be largely or entirely reversed during operation of the actuation element. For example, sufficient heating can produce at least a temporary change in material state (e.g., a phase change) in the actuator material, inducing a temporary elevated internal stress that promotes a shape change toward the original shape-set geometric configuration. In an example, the geometric change that accompanies this change in material state may reverse deformations that have been made to the material following manufacturing. For a shape memory alloy, the change in state can be from a martensitic phase (alternatively, R-phase) at the lower temperature to an austenitic phase (alternatively, R-phase) at the higher temperature. For a shape memory polymer, the change in state can be via a glass transition temperature or a melting temperature. The change in material state can recover deformation(s) of the material—for example, deformation with respect to its original (e.g., manufactured) geometric configuration—without any externally applied stress to the actuator element. That is, a deformation that is present in the material at a first temperature (e.g., body temperature) can be recovered and/or altered by raising the material to a second (e.g., higher) temperature. In some embodiments, upon cooling (and re-changing material state, e.g., back to a martensitic phase), the actuator element may approximately retain its geometric configuration (e.g., it may remain in the configuration that results from the application of heat). In some embodiments, upon cooling the actuator element may approximately retain its geometric configuration to within 30% of the heated, phase transition configuration. However, when the material has returned to a relatively cooler temperature (e.g., cools following the cessation of heat application), it may require a relatively lower force or stress to thermoelastically deform it compared to the material at a sufficiently heated temperature, and as such any subsequently applied external stress can cause the actuator element to once again deform away from the original geometric configuration.
The shape memory actuation element can be processed such that a transition temperature at which the change in state occurs (e.g., the austenite start temperature, the austenite final temperature, etc.) is above a threshold temperature (e.g., body temperature). For example, the transition temperature can be set to be about 45 deg. C., about 50 deg. C., about 55 deg. C., about 60 deg. C., or another higher or lower temperature. In some embodiments, the actuator material is heated from body temperature to a temperature above the austenite start temperature (or alternatively above the R-phase start temperature) such that an upper plateau stress (e.g., “UPS_body temperature”) of the material in a first state (e.g., thermoelastic martensitic phase, or thermoelastic R-phase at body temperature) is lower than an upper plateau stress (e.g., “UPS_actuated temperature”) of the material in a heated state (e.g., superelastic state), which achieves partial or full free recovery. For example, the actuator material can be heated such that UPS_actuated temperature>UPS_body temperature. In some embodiments, the actuator material is heated from body temperature to a temperature above the austenite start temperature (or alternatively above the R-phase start temperature) such that an upper plateau stress of the material in a first state (e.g., thermoelastic martensite or thermoelastic R-phase at body temperature”) is lower than a lower plateau stress (e.g., “LPS”) of the material in a heated state (e.g., superelastic state), which achieves partial or full free recovery. For example, the actuator material can be aged such that LPS_activated temperature>UPS_body temperature. In some embodiments, the actuator material is heated from body temperature to a temperature above the austenite start temperature (or alternatively above the R-phase start temperature) such that an upper plateau stress of the material in a first state (e.g., thermoelastic martensite or thermoelastic R-phase) is higher than a lower plateau stress of the material in a heated state, which achieves partial free recovery. For example, the actuator material can be aged such that LPS_activated temperature<UPS_body temperature.
As one of skill in the art will appreciate from the disclosure herein, various components of the interatrial shunting systems described above can be omitted without deviating from the scope of the present technology. Likewise, additional components not explicitly described above may be added to the interatrial shunting systems without deviating from the scope of the present technology. Accordingly, the systems described herein are not limited to those configurations expressly identified, but rather encompasses variations and alterations of the described systems.
The shunting element 202 can be a frame structure including a first annular element 206a at the first end portion 203a and a second annular element 206b at the second end portion 203b. The first and second annular elements 206a-b can each extend circumferentially around the lumen 204. In the illustrated embodiment, the first and second annular elements 206a-b each have a serpentine shape with a plurality of respective apices 208a-b. The apices 208a-b can be curved or rounded. In other embodiments, the apices 208a-b can be pointed or sharp such that the first and second annular elements 206a-b have a zig-zag shape. Optionally, the first and second annular elements 206a-b can have different and/or irregular patterns of apices 208a-b, or can be entirely devoid of apices 208a-b. The first and second annular elements 206a-b can be coupled to each other by one or more struts 210 extending longitudinally along the shunting element 202. The struts 210 can be positioned between the respective apices 208a-b of the first and second annular elements 206a-b. Other suitable stent like configurations may also be used to form the shunting element 202.
The system 200 further includes a membrane 212 operably coupled (e.g., affixed, attached, or otherwise connected) to the shunting element 202. In some embodiments, the membrane 212 is flexible and can be made of a material that is impermeable to or otherwise resists blood flow therethrough. In some embodiments, for example, membrane 212 can be made of a thin, elastic material such as a polymer. For example, the membrane 212 can be made of polytetrafluoroethylene (PTFE), expanded PTFE (ePTFE), silicone, nylon, polyethylene terephthalate (PET), polyether block amide (pebax), polyurethane, blends or combinations of these materials, or other suitable materials.
The membrane 212 can cover or otherwise interface with at least a portion of the shunting element 202, such as the exterior surface of the shunting element 202 between the first end portion 203a and the second end portion 203b. The membrane 212 can extend circumferentially around the shunting element 202 to at least partially surround and enclose the lumen 204. For example, in the illustrated embodiment, the membrane 212 extends between the first and second annular elements 206a-b and over the struts 210. The membrane 212 can couple the first and second annular elements 206a-b to each other, in combination with or as an alternative to the struts 210. The membrane 212 can extend past the first end portion 203a and/or the first annular element 206a (e.g., as best seen in
The membrane 212 includes an aperture 214 formed therein. When the membrane 212 is coupled to the shunting element 202, the aperture 214 can be at least generally aligned with or otherwise overlap the lumen 204 to permit blood flow therethrough. In some embodiments, the aperture 214 is positioned at or near the first end portion 203a of the shunting element 202. In other embodiments, the aperture 214 can be positioned at or near the second end portion 203b. Additionally, although
The geometry (e.g., size and/or shape) of the aperture 214 can be varied by deforming (e.g., stretching and/or compressing) or otherwise moving the portions of the membrane 212 surrounding the aperture 214. The change in geometry of the aperture 214 can affect the flow resistance and/or the amount of blood flow through the lumen 204. In some embodiments, depending on the size of the aperture 214 relative to the size of the lumen 204, blood flow through the lumen 204 can be partially or completely obstructed by the membrane 212. Accordingly, an increase in the size (e.g., a diameter, an area) of the aperture 214 can increase the amount of blood flow through the lumen 204 (e.g., by decreasing the flow resistance through the lumen 204), while a decrease in the size of the aperture 214 can decrease the amount of blood flow (e.g., by increasing the flow resistance through the lumen 204).
The system 200 can include an actuation assembly 216 operably coupled to the aperture 214 to selectively adjust the size thereof. In some embodiments, the actuation assembly 216 is coupled to a flow control element 215 that can adjust the geometry of the aperture 214. In the illustrated embodiment, the flow control element 215 includes a string element 218 (e.g., a cord, thread, fiber, wire, tether, ligature, or other flexible elongated element) around the aperture 214 for controlling the size thereof. For example, the string element 218 can include a loop portion 220 surrounding the aperture 214 and a connecting portion 222 coupling the loop portion 220 to the actuation assembly 216. In some embodiments, the loop portion 220 and the connecting portion 222 are different portions of one contiguous elongated element (e.g., arranged similarly to a lasso or snare) that attain their relative shapes (e.g., an elliptical, loop-like shape) as a consequence of how they are connected to the system 200. In other embodiment, the loop portion 220 and the connecting portion 222 can be separate elements that are directly or indirectly coupled to each other.
One or more portions of the string element 218 (e.g., the loop portion 220) can be coupled to the portion of the membrane 212 near the aperture 214. In the illustrated embodiment, the string element 218 (e.g., loop portion 220) passes through a plurality of openings or holes 224 (e.g., eyelets) located near the peripheral portion of the aperture 214. The openings 224 can be coupled to the shunting element 202 (e.g., to the first end portion 203a and/or first annular element 206a) via a plurality of flexible ribs 226 (e.g., sutures, strings, threads, metallic structures, polymeric structures, etc.). In other embodiments, the openings 224 are formed in or coupled directly to the membrane 212 such that the ribs 226 are omitted.
In some embodiments, the string element 218 has a lasso- or noose-like configuration in which the loop portion 220 can be tightened to a smaller size or loosened to a larger size by making an adjustment to (e.g., translating, rotating, applying or releasing tension, etc.) the connecting portion 222. In some embodiments, a motion caused by the adjustment of connecting portion 222 creates an induced motion in loop portion 220 (e.g., a motion that results in the loop portion 220 shifting to a larger or a smaller size). Due to the coupling between the string element 218 and the membrane 212, the size of the aperture 214 (e.g., a diameter, an area) can change along with the size of the loop portion 220 such that the size of the aperture 214 increases as the size of the loop portion 220 increases, and decreases as the size of the loop portion 220 decreases. For example, as the size of the loop portion 220 decreases, the portions of the membrane 212 surrounding the aperture 214 can be cinched, stretched, or otherwise drawn together by the loop portion 220 so that the size of the aperture 214 decreases. Conversely, as the size of the loop portion 220 increases, the portions of the membrane 212 surrounding the aperture can be released, loosened, stretched, or otherwise allowed to move apart so that the size of the aperture 214 increases. As described in greater detail with reference to
In other embodiments, the system 200 can implement different mechanisms for mechanically and/or operably coupling the actuation assembly 216, the loop portion 220, and the connecting portion 222. For example, there can be an inverse relationship between these components, e.g., the actuation assembly 216 can increase the size of the loop portion 220 and aperture 214 by increasing the amount of force applied to the connecting portion 222, and can decrease the size of the loop portion 220 and aperture 214 by decreasing the amount of applied force. In some embodiments, changes in the size of the loop portion 220 and aperture 214 are created via the actuation assembly 216 translating, rotating, or otherwise manipulating the connecting portion 222 in a way that does not substantially increase or decrease the amount of force applied to the connecting portion 222. In other embodiments, the adjustment to the connecting portion 222 made by the actuation assembly 216 can result in an alteration of the shape of (rather than the size of) loop portion 220 and aperture 214.
In some embodiments, the connecting portion 222 can be surrounded by or otherwise interface with a relatively stiff stabilization element (e.g., a conduit such as a plastic or metallic hypotube—not shown in
The actuation assembly 216 can be configured in a number of different ways. In some embodiments, for example, the actuation assembly 216 can include one or more shape memory elements configured to change geometry (e.g., transform between a first configuration and a second configuration) in response to a stimulus (e.g., heat or mechanical loading) as is known to those of skill in the art. It will be appreciated that many different types of shape changes can be produced via a shape memory effect. Accordingly, although certain embodiments herein are described in terms of transforming between a shortened configuration and a lengthened configuration, this is not intended to be limiting, and one of skill in the art will appreciate that the present technology can incorporate other types of shape changes produced via a shape memory effect. In some embodiments, the actuation assembly 216 can include one or more motors, such as electromagnetic motors, implanted battery and mechanical motors, MEMS motors, micro brushless DC motors, piezoelectric based motors, solenoids, and other motors. Furthermore, as described in greater detail below with references to
Certain aspects of the system 300 can be generally similar to certain aspects of the system 200, described in detail above with respect to
In some embodiments, the flow control element 315 is generally similar to the flow control element 215 described above with respect to
Referring to
The actuation element 344 can be transitioned between the first material state and the second material state by applying energy (e.g., heat) to the actuation element 344 to heat the actuation element 344 above a transition temperature. In some embodiments, the transition temperature for the actuation element 344 is greater than an average body temperature. Accordingly, the actuation element 344 is typically in the first material state when the system 300 is implanted in the body until the actuation element 344 is heated. If the actuation element 344 is deformed relative to its preferred geometry (e.g., the heat set geometry, the original geometry, etc.) while in the first material state, heating the actuation element 344 above its transition temperature causes the actuation element 344 to transition to the second material state and therefore transition from the deformed shape towards the preferred shape. Heat can be applied to the actuation element 344 via RF heating, resistive heating, or other suitable techniques.
Referring now to
Returning back to
The actuation assembly 316 further includes an engagement member 324 coupled to the connecting portion 322 of the flow control element 315. For example, as the connecting portion 322 is drawn towards the actuation component 340 via actuation of the actuation component 340, the engagement member 324 is also drawn towards the actuation component 340. The engagement member 324 is configured to interface with or otherwise engage the ratchet mechanism 330. For example, the engagement member 324 can be a hook or other “L” shaped structure that can engage with one of the grooves 335 defined by the teeth 334. For example, referring now to
When the actuation element 344 cools below its transition temperature, the actuation component 340 returns to the neutral configuration (
The ratchet mechanism 330 can limit movement of the engagement member 324 to be primarily in a single direction through any number of suitable techniques. For example, the teeth 334 can have a generally sawtooth configuration such that the engagement member 324 can move from the first groove 335a to the second groove 335b (e.g., by sliding up the inclined/sloped surface of a tooth 334), but not vice versa, as the flat backside of the teeth 334 will interface with the engagement member 324 and limit movement in the opposing direction. Likewise, the engagement member 324 can move from the second groove 335b to the third groove 335c, but not vice versa. In embodiments with a “one-way” ratchet mechanism, such as the illustrated embodiment, the ratchet mechanism can include a “reset” in which the ratchet mechanism returns the engagement member 324 to the first groove 335a. In some embodiments, this reset may function in a manner similar to a hemostat device. For example, in the illustrated embodiment, the ratchet mechanism 330 includes a ramp structure 336. Once the engagement member 324 is in the groove closest to the actuation component 340 (the third groove 335c in the illustrated embodiment), further actuation of the actuation element 344 moves the engagement member 324 out of the grooves 335 and onto the ramp structure 336, which directs the engagement member 324 back to the first groove 335a, thereby resetting the actuation assembly 316.
In the embodiment shown, the net effect of moving the engagement member 324 from the first groove 335a to the second groove 335b is transitioning the system from a first configuration in which the aperture 314 has a first size (e.g., a first diameter) (e.g.,
As one skilled in the art will appreciate, the actuation assembly 316 can be adapted for use with other adjustable shunts, including other adjustable interatrial shunts. For example, the actuation assembly 316 can be used to control the movement of flow control elements beyond those expressly described herein. Therefore, the present technology is not limited to the embodiments described herein, and instead provides a mechanism for discretely and systematically adjusting a medical device, which in turn enables the medical device to provide a titratable therapy.
Referring to
The actuation assembly 516 can further include an actuation component 540 operably coupled to and configured to move the second engagement member 514 with respect to the housing 510. In some embodiments, for example, the actuation component 540 is positioned within the track 520 between the first engagement member 512 and the second engagement member 514. A first end portion 540a of the actuation component 540 can be secured to the housing 510 (e.g., secured to the first engagement member 512). A second end portion 540b of the actuation component 540 can be secured to the second engagement member 514. The actuation component 540 can include an elastic element (not shown) and an actuation element (e.g., a shape memory wire—not shown). The elastic element can comprise any elastic material that can compress, expand, or otherwise deform in response to a force and recoil towards the initial position once the force is removed, such as silicone, natural or synthetic rubbers, blends or combinations of these materials, or other suitable elastic materials (e.g., a spring). The actuation element can comprise a shape memory alloy (e.g., nitinol). Accordingly, the actuation element can be transitionable between a first material state (e.g., a martensitic state, a R-phase, etc.) and a second material state (e.g., a R-phase, an austenitic state, etc.). In the first material state, the actuation element may be relatively deformable (e.g., plastic, malleable, compressible, expandable, etc.). In the second material state, the actuation element may have a preference toward a specific geometry (e.g., a heat set geometry, a shape set geometry, an original geometry, etc.) that has a specific shape, length, and/or other dimension.
The actuation element can be transitioned between the first material state and the second material state by applying energy (e.g., heat) to the actuation component 540 to heat the actuation element above a transition temperature. In some embodiments, the transition temperature for the actuation element is greater than an average body temperature. Accordingly, the actuation element is typically in the first material state when implanted in the body until the actuation component 540 is heated. If the actuation element is deformed relative to its preferred geometry while in the first material state, heating the actuation component 540 above its transition temperature causes the actuation element to transition to the second material state and therefore move towards its preferred geometry. Heat can be applied to the actuation component 540 via RF heating, resistive heating, or other suitable techniques.
In some embodiments, the elastic element and the actuation element can operate in a similar manner as the elastic element 342 and the actuation element 344 described above with respect to
Referring now to
When the actuation component 540 transitions from the actuated configuration (
The actuation assembly 516 can also include a “reset” in which the rack element 532 returns to an original position (e.g., such as shown in
Referring first to
In some embodiments, the actuation element 644a and the elastic element 642a can both be formed in a spring-like shape. In its most basic form, a spring can be characterized by the equation by F=k(x1-x0), where F is the force stored in a spring that has been deflected from its initial position x0 to another position x1. The spring constant, k, is governed by the spring's cross-sectional geometry, pitch diameter, number of coils, and underlying material properties (e.g., elastic modulus, plateau stress, etc.). In some embodiments, the choice of materials for both the actuation element 644a and the elastic element 642a can be selected such that ka1<kc<ka2; where ka1 is the actuation element's spring constant at a body temperature, kc is the elastic element's spring constant at body temperature, and ka2 is the actuation element's spring constant at the temperature above body temperature to which the actuation element is heated to drive movement. The mechanism of ka2>ka1 is due to a partial or full phase transformation from a relatively malleable state (e.g., martensitic) to a relatively stiff state (austenitic), such as described above with respect to actuation component 340 (
The actuation element 644a and/or the elastic element 642a can be connected to a flow control element (not shown) via a connecting line 622. For example, in embodiments in which the actuation assembly 616a is used in connection with the system 200 (
If nothing else was done other than removing the heat, the actuation assembly 616a would return to its original position once the spring constant of the actuation element 644a returned to ka1 (e.g., once the actuation element 644a cooled below its transition temperature and returned to the first material state). However, the actuation assembly 616a can optionally include a locking mechanism 630. The locking mechanism 630 can be activated when the actuation element 644a is heated such that the adjustment to the flow control element (not shown) is retained once the actuation element 644a cools below its transition temperature. Consequently, when the actuation element 644a cools below its transition temperature, the stored energy in the elastic element 642a is transferred to the locking mechanism 630 rather than to the actuation element 644a. The locking mechanism 630 may therefore control the relative position of the flow control element. The locking mechanism 630 may be any suitable locking mechanism. For example, as illustrated in
In some embodiments, the locking mechanism 630 can engage other aspects of the actuation assembly 616a instead of, or in addition to, the elastic element 642a. For example, in some embodiments the locking mechanism 630 may engage the actuation element 644a. In yet other embodiments, the locking mechanism 630 can be generally similar to the ratchet mechanism 330 described with respect to
In some embodiments, the orientation of the actuation element 644a and the elastic element 642a can be reversed, such that the actuation element 644a is coupled to the connecting line 622. In some embodiments, multiple actuation elements 644a and elastic elements 642a can be arranged in series and/or in parallel. In such embodiments, the actuation assembly 616a may also include multiple individually-activatable locking mechanisms 630. Incorporating multiple, individually actuatable actuation element 644a could provide greater granularity of adjustments to a flow control element coupled to the actuation assembly 616a. If arranged in series, the overall height and/or width of the housing 610 could remain generally the same while the length of the housing 610 would be increased. If arranged in parallel, the overall length of the housing 610 could remain generally the same but the height and/or width of the housing 610 would be increased.
The actuation assembly 716 includes a cam-lock type mechanism. More specifically, the actuation assembly 716 includes a housing 710 having an opening 711 for receiving a portion of a connecting line 722. In some embodiments, the connecting line 722 can be the same as, or generally similar to, the connecting line 222 described above with respect to
The actuation assembly 716 can further include an actuation element 744, an elastic element 742, and a locking mechanism 730 positioned between the actuation element 744 and the elastic element 742. As previously described in detail with respect to other embodiments, the actuation element 744 can be composed of a shape memory material and the elastic element 742 can be composed of any suitable elastic material. The actuation element 744, the elastic element 742, and/or the locking mechanism 730 may be positioned around the shaft element 745. For example, the actuation element 744 can have a helical arrangement, with the shaft element 745 extending through a center of the helix. The locking mechanism 730 and/or the elastic element 742 can have a tube-like design such that the shaft element 745 can extend through a central lumen(s) of the locking mechanism 730 and/or the elastic element 742. In some embodiments, the locking mechanism 730 can have a hardened knife-like edge 732 that, as described below with respect to
When the actuation element 744 cools below its transition temperature such that the elastic counterforce of the elastic element 742 overcomes the force pushing the actuation element 744 towards its preferred geometry, the “off-axis” force generated by the interface between the locking mechanism 730 and the angled face 743 of the elastic element 742 causes the edge 732 of the locking mechanism 730 to dig into or otherwise interface with a roughened surface of the shaft element 745, keeping the locking mechanism 730 (and thus the actuation element 744) in the actuated configuration (e.g., the configuration shown in
To disengage the locking mechanism 730 and return the actuation assembly 716 to its original (e.g., pre-actuated) configuration, the release element 734 can be heated above its transition temperature such that it transitions from the first material state (e.g., the martensitic material state) to the second material state (e.g., the austenitic material state). Because the release element 734 was compressed relative to its preferred geometry during actuation of the actuation element 744, heating the release element 734 above its transition temperature increases the force driving the release element 734 towards its preferred (e.g., lengthened) geometry. This force, which is generally parallel to the longitudinal axis of the shaft element 745, disengages the edge 732 of the locking mechanism 730 from the shaft element 745. To do so, the force generated by heating the release element 734 should be at least momentarily greater than the force stored in the elastic element 742 that is pushing the edge 732 into the shaft element 745. This allows the actuation assembly to return to and/or toward its pre-actuated configuration, shown in
As one skilled in the art will appreciate, various features of the present technology described herein can be combined to form shunting systems not explicitly described herein. For example, any of the actuation assemblies described herein can be adapted for use with the system 200 or the system 300, or another suitable interatrial shunting system. In another example, in some embodiments one or more portions of one actuation assembly or device described herein can be combined with one or more portions of another actuation assembly or device described herein. Accordingly, the present technology is not limited to the embodiments explicitly illustrated and discussed herein.
In embodiments of the present technology that utilize heat or another form of energy applied to a shape memory element or another component of the system, the energy/heat can be applied both invasively (e.g., via a catheter delivering laser, radiofrequency, or another form of energy, via an internal stored energy source such as a supercapacitor, etc.), non-invasively (e.g., using radiofrequency energy delivered by a transmitter outside of the body, by focused ultrasound, etc.), or through a combination of these methods.
The present technology enables a heart failure treatment to be adjusted over a period of time to provide a more effective therapy. Some embodiments of the present technology adjust the geometry of the shunt (e.g., the diameter of the aperture 314) consistently (e.g., continuously, hourly, daily, etc.). Consistent adjustments might be made, for example, to adjust the flow of blood based on a blood pressure level, respiratory rate, heart rate, and/or another parameter of the patient, which changes frequently over the course of a day. In some embodiments, for example, consistent adjustments can be made based on, or in response to, physiological parameters that are detected using sensors, including, for example, sensed left atrial pressure and/or right atrial pressure. For example, if the left atrial pressure increases, the systems described herein may automatically increase a diameter of the aperture to decrease flow resistance between the LA and the RA and allow increased blood flow. In another example, the systems described herein can be configured to adjust based on, or in response to, an input parameter from another device such as a pulmonary arterial pressure sensor, insertable cardiac monitor, pacemaker, defibrillator, cardioverter, wearable, external ECG or PPG, and the like. Some embodiments of the present technology adjust the geometry of the shunt only after a threshold has been reached (e.g., a sufficient period of time has elapsed). This may be done, for example, to avoid unnecessary back and forth adjustments and/or avoid changes based on clinically insignificant changes.
The present technology also enables a clinician to periodically (e.g., monthly, bi-monthly, annually, as needed, etc.) adjust the geometry of the shunt (e.g., the diameter of the aperture 314) to improve patient treatment. For example, during a patient visit, the clinician can assess a number of patient parameters and determine whether adjusting the diameter of the aperture 314, and thus altering blood flow between the LA and the RA, would provide better treatment and/or enhance the patient's quality of life. Patient parameters can include, for example, physiological parameters (e.g., left atrial blood pressure, right atrial blood pressure, the difference between left atrial blood pressure and right atrial blood pressure, flow velocity, heart rate, cardiac output, myocardial strain, etc.), subjective parameters (e.g., whether the patient is fatigued, how the patient feels during exercise, etc.), and other parameters known in the art for assessing whether a treatment is working. If the clinician decides to adjust the diameter of the aperture 314, the clinician can adjust the system 300 using the techniques described herein.
As one of skill in the art will appreciate from the disclosure herein, various components of the interatrial shunting systems described above can be omitted without deviating from the scope of the present technology. Likewise, additional components not explicitly described above may be added to the interatrial shunting systems without deviating from the scope of the present technology. Accordingly, the systems described herein are not limited to those configurations expressly identified, but rather encompasses variations and alterations of the described systems. Moreover, the following paragraphs provide additional description of various aspects of the present technology. One skilled in the art will appreciate that the following aspects can be incorporated into any of the systems described above.
Several aspects of the present technology are set forth in the following examples:
1. A system for shunting fluid between a first body region and a second body region of a patient, the system comprising:
2. The device of example 1, further comprising an actuation assembly configured to selectively move the flow control element through the plurality of discrete geometries, wherein the actuation assembly includes at least one actuation element and a ratchet mechanism.
3. The device of example 2 wherein the actuation element and the ratchet mechanism are configured to provide a lock step adjustment to the flow control element to move the flow control element through the plurality of discrete geometries.
4. The device of example 2 or 3 wherein the actuation assembly further includes an engagement member operably coupled to the flow control element and the actuation element, and wherein the engagement member is configured to engage the ratchet mechanism.
5. The device of example 4 wherein the ratchet mechanism includes a plurality of teeth defining a plurality of grooves therebetween, and wherein the engagement member engages the ratchet mechanism in one or more of the grooves.
6. The device of example 5 wherein the actuation element is actuatable between a neutral configuration and an actuated configuration, and wherein, when actuated between the neutral configuration and the actuated configuration, (i) the flow control element moves from a first geometry to a second geometry, and (ii) the engagement member moves from a first groove to a second groove.
7. The device of example 6 wherein, when the actuation element moves from the actuated configuration to the neutral configuration, the flow control element retains the second geometry and the engagement member remains in the second groove.
8. The device of any of examples 2-7 wherein the ratchet mechanism has a sawtooth configuration.
9. The device of any of examples 2-8 wherein the ratchet mechanism is a one-way ratchet mechanism that is configured to provide the discrete adjustments to the flow control element geometry in a first direction but prevent adjustment to the flow control element in a second direction opposite the first direction.
10. The device of example 9 wherein the geometry is a diameter, and wherein the discrete adjustments to the flow control element geometry in a first direction comprises making the diameter smaller.
11. The device of example 9 or 10 wherein the ratchet mechanism includes a ramp structure configure to reset the actuation assembly.
12. The device of any of examples 2-11 wherein the actuation element comprises a shape memory material.
13. A system for shunting fluid between a first body region and a second body region of a patient, the system comprising:
14. The system of example 13 wherein the aperture geometry is an aperture diameter.
15. The system of example 13 or 14, further comprising a ratchet mechanism that controls the movement of the flow control element through the plurality of discrete positions.
16. The system of example 15 wherein the ratchet mechanism is configured to selectively decrease the diameter of the aperture while preventing an increase in the diameter of the aperture.
17. The system of example 16 wherein the aperture is moveable between a plurality of diameters, with each corresponding diameter smaller than the previous.
18. A device for treating heart failure, the device comprising:
19. An actuation assembly for use with an adjustable interatrial shunt, the actuation assembly comprising:
20. The actuation assembly of example 19 wherein the actuation assembly is configured to retain the actuated configuration when the actuation element transitions from the second material state to the first material state.
21. The actuation assembly of example 19 or 20, further comprising a locking mechanism, wherein the locking mechanism is configured to engage the elastic element and/or the actuation element to retain the actuation assembly in the actuated configuration.
22. The actuation assembly of example 19 wherein the actuation assembly is configured to return to the pre-actuated configuration when the actuation element transitions from the second material state to the first material state.
23. The actuation assembly of example 22, further comprising a ratchet mechanism operably coupled to the elastic element and/or the actuation element.
24. The actuation assembly of any of examples 19-23 wherein the elastic element and the actuation element are arranged in series.
25. The actuation assembly of any of examples 19-23 wherein the elastic element and the actuation element are arranged in parallel.
26. The actuation assembly of any of examples 19-23 wherein the actuation element is disposed within the elastic element.
27. The actuation assembly of any of examples 19-26 wherein the actuation element is composed of nitinol.
28. The actuation assembly of any of examples 19-27 wherein the first material state is a martensitic material state, and wherein the second material state is an austenitic material state.
29. A system for shunting blood between a left atrium and a right atrium of a patient, the system comprising:
30. The system of example 29 wherein:
31. The system of example 30 wherein the first temperature is a body temperature of the patient and the second temperature is an elevated temperature resulting from heating of the shape memory element.
32. The system of any of examples 29-31 wherein the shape memory element is configured to transition from a first configuration to a second configuration in response to applied heat to adjust the size of the aperture.
33. The system of example 32 wherein the elastic element is configured to apply a force to the shape memory element that at least partially counteracts transitioning of the shape memory element from the second configuration to the first configuration after the heat has been applied.
34. The system of example 33 wherein the actuation assembly further comprises a locking structure configured to engage one or more of the shape memory element or the elastic element to maintain the shape memory element in the second configuration.
35. The system of example 34 wherein the locking structure comprises one or more ratchets, racks, pins, or teeth.
36. The system of any of examples 32-35, further comprising a ratchet mechanism operably coupled to the actuation assembly, wherein the ratchet mechanism enables the size of the aperture to decrease as the shape memory element transitions from the first configuration to the second configuration while preventing the size of the aperture from increasing as the shape memory element transitions from the second configuration to the first configuration.
37. The system of any of examples 32-35, further comprising a ratchet mechanism operably coupled to the actuation assembly, wherein the ratchet mechanism enables the size of the aperture to increase as the shape memory element transitions from the first configuration to the second configuration while preventing the size of the aperture from decreasing as the shape memory element transitions from the second configuration to the first configuration.
38. The system of any of examples 29-37 wherein the elastic element is connected to the shape memory element in series.
39. The system of any of examples 29-37 wherein the elastic element at least partially surrounds the shape memory element.
Embodiments of the present disclosure may include some or all of the following components: a battery, supercapacitor, or other suitable power source; a microcontroller, FPGA, ASIC, or other programmable component or system capable of storing and executing software and/or firmware that drives operation of an implant; memory such as RAM or ROM to store data and/or software/firmware associated with an implant and/or its operation; wireless communication hardware such as an antenna system configured to transmit via Bluetooth, WiFi, or other protocols known in the art; energy harvesting means, for example a coil or antenna which is capable of receiving and/or reading an externally-provided signal which may be used to power the device, charge a battery, initiate a reading from a sensor, or for other purposes. Embodiments may also include one or more sensors, such as pressure sensors, impedance sensors, accelerometers, force/strain sensors, temperature sensors, flow sensors, optical sensors, cameras, microphones or other acoustic sensors, ultrasonic sensors, ECG or other cardiac rhythm sensors, SpO2 and other sensors adapted to measure tissue and/or blood gas levels, blood volume sensors, and other sensors known to those who are skilled in the art. Embodiments may include portions that are radiopaque and/or ultrasonically reflective to facilitate image-guided implantation or image guided procedures using techniques such as fluoroscopy, ultrasonography, or other imaging methods. Embodiments of the system may include specialized delivery catheters/systems that are adapted to deliver an implant and/or carry out a procedure. Systems may include components such as guidewires, sheaths, dilators, and multiple delivery catheters. Components may be exchanged via over-the-wire, rapid exchange, combination, or other approaches.
The above detailed description of embodiments of the technology are not intended to be exhaustive or to limit the technology to the precise forms disclosed above. Although specific embodiments of, and examples for, the technology are described above for illustrative purposes, various equivalent modifications are possible within the scope of the technology as those skilled in the relevant art will recognize. For example, although steps are presented in a given order, alternative embodiments may perform steps in a different order. The various embodiments described herein may also be combined to provide further embodiments. For example, although this disclosure has been written to describe devices that are generally described as being used to create a path of fluid communication between the LA and RA, the LV and the right ventricle (RV), or the LA and the coronary sinus, it should be appreciated that similar embodiments could be utilized for shunts between other chambers of heart or for shunts in other regions of the body.
Unless the context clearly requires otherwise, throughout the description and the examples, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” As used herein, the terms “connected,” “coupled,” or any variant thereof, means any connection or coupling, either direct or indirect, between two or more elements; the coupling of connection between the elements can be physical, logical, or a combination thereof. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Detailed Description using the singular or plural number may also include the plural or singular number respectively. As used herein, the phrase “and/or” as in “A and/or B” refers to A alone, B alone, and A and B. Additionally, the term “comprising” is used throughout to mean including at least the recited feature(s) such that any greater number of the same feature and/or additional types of other features are not precluded. It will also be appreciated that specific embodiments have been described herein for purposes of illustration, but that various modifications may be made without deviating from the technology. Further, while advantages associated with some embodiments of the technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein.
This application claims the benefit of U.S. Provisional Patent Application No. 63/010,841, filed Apr. 16, 2020, and incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/027747 | 4/16/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63010841 | Apr 2020 | US |