1. Field of the Invention
This disclosure relates in general to an isolation sleeve employed during hydraulic fracturing operations through production tubing to protect the wellhead from the high fracturing pressure, and in particular to a sleeve assembly that is adjustable in length to accommodate variation in different wellhead stack-ups and tolerances,
2. Description of Prior Art
One type of treatment for an oil or gas well is referred to as well fracturing or a well “frac”. In a typical tracing operation, an adapter is connected to the upper end of a wellhead member, and high pressure liquid is pumped down the well to create fractures in the earth formation. Proppant material is often included in the fracturing fluid, which enters the fractures to maintain them open alter the high pressure is removed. Hydraulic fracturing is particularly useful for hydrocarbon bearing earth formations with low permeability and adequate porosity, as the entrained hydrocarbons can flow more easily through the fractures created in the earth formation.
Fracing fluid pressure often ranges up to pressures of 8,000 to 9,000 psi; whereas normal wellhead operating pressure may be a few hundred to a few thousand psi. Accordingly, fracing pressures usually exceed pressure ratings of the wellhead and its associated valves. Moreover, additives to the frac fluid, such as the proppant, can be very abrasive and damaging to parts of the wellhead. Isolation sleeves are sometimes used to address the issues of overpressure and fluid erosion. Generally, isolation sleeves seal between an adapter above the wellhead and the casing or tubing extending into the well.
Disclosed herein are examples of fracturing a wellbore. In one example disclosed is a fracturing assembly for use in a wellhead assembly that includes a fracturing spool that is selectively mounted onto the wellhead assembly, a seal disposed an axial bore in the fracturing spool, and an isolation sleeve. The isolation sleeve has one end in selective communication with a supply of fracturing fluid. A portion of the isolation sleeve extends into a main bore of the wellhead assembly and defines a barrier between the fracturing fluid and components in the wellhead assembly. The isolation sleeve has an outer surface with a threaded portion that engages threads on an inner surface of the sleeve, the threads have a length so that the isolation sleeve is adjustable to axial locations within the main bore. An anti-rotation screw can be included that is radially disposed through a sidewall of the fracturing spool, and has an end inserted into a groove formed in an outer surface of the seal so that the seal is rotationally affixed to the fracturing spool. Optionally included with this example is a lockdown screw radially disposed through a sidewall of the fracturing spool and in contact with an end of the seal distal from the groove and that exerts a force onto the seal directed towards the groove. The seal can include an annular load ring, an annular elastic compression seal stacked onto the load ring, an annular compression ring stacked onto the compression ring, passages formed axially in sidewalls of the load ring, compression seal, and compression ring, fasteners inserted into the passages and that each have a lower end threaded into the load ring and an upper end in interfering contact with the compression ring. In an embodiment the wellhead assembly is a first wellhead assembly, and wherein the fracturing spool is selectively mounted on a second wellhead assembly having components at axial locations different from axial locations of components of the first wellhead assembly, and wherein the isolation sleeve is selectively repositioned by rotation and isolates the components in the second wellhead assembly from the fracturing fluid. The wellhead assembly can include a production valve mounted on a tubing spool, and wherein the isolation sleeve extends through the production valve and into the tubing spool. In an example, the isolation sleeve extends past threads in the tubing spool and thereby defines a barrier between the fracturing fluid and the threads in the tubing spool.
Also disclosed herein is a fracturing assembly for use with wellhead assemblies, and that is made up of a fracturing spool that selectively mounts onto the wellhead assemblies and has an axial bore that registers with main bores in each of the wellhead assemblies, and an isolation sleeve in the fracturing spool to isolate fracturing fluid in the isolation sleeve from selected components at an axial location in a one of the wellhead assemblies. The isolation sleeve is adjustable to isolate the fracturing fluid from selected components in another one of the wellhead assemblies and that is at a different axial location. Threads on an outer surface of the isolation sleeve provide axial adjustment of the isolation sleeve in the fracturing spool. Anti-rotation screws can be provided in the fracturing spool for rotationaily anchoring the isolation sleeve to the fracturing spool. A seal can be set in an annular space between the isolation sleeve and walls of an axial bore in the fracturing spool, wherein the threads on the isolation sleeve engage threads on the seal so that rotating the isolation sleeve axially adjusts the isolation sleeve to different elevations in a one of the wellhead assemblies on which the fracturing spool is mounted.
A method of fracturing a well is disclosed herein that includes providing a supply of fracturing fluid to a wellhead assembly mounted onto the well, inserting an isolation sleeve into a main bore of the wellhead assembly to isolate components in the wellhead assembly from the fracturing fluid, and adjusting an axial position of the isolation sleeve within the main bore. In an example method, the isolation sleeve is inserted into a second wellhead assembly having components that are lower than the components in the first wellhead assembly. The axial position of the isolation sleeve is adjusted within, a main bore of the second wellhead assembly to isolate the components in the second wellhead assembly from the fracturing fluid. Optionally, the isolation sleeve is in a fracturing spool that is mounted onto the wellhead assembly, and a seal is between the isolation sleeve and the fracturing spool.
Some of the features and benefits of the present invention having been stated, others will become apparent as the description proceeds when taken in conjunction with the accompanying drawings, in which:
While the invention will be described in connection with the preferred embodiments, it will be understood that it is not intended to limit the invention to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the invention as defined by the appended claims.
The method, and system of the present disclosure will now he described, room felly hereinafter with inference to the accompanying drawings in which embodiments are shown. The method and system of the present disclosure may be in many different forms and should not be construed as limited to the illustrated embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey its scope to those skilled in the art. Like numbers refer to like elements throughout.
It is to be further understood that the scope of the present disclosure is not limited to the exact details of contraction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. In the drawings and specification, there have been disclosed illustrative embodiments and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation.
An example of a wellhead assembly 10 is shown in a side sectional view in
Fracturing system 17 also includes an annular isolation sleeve 42 shown coupled within the fracturing spool 18 and which depends downward and coaxially inserts within tubing hanger 28. An optional centralizing ring 43 is shown coaxially inserted between isolation sleeve 42 and fracturing spool 18. In one example, isolation sleeve 42 shields portions of wellhead assembly 10 from abrasion and/or pressure of fracturing fluid, which can damage selected components in those portions. Examples of selected components include elements in the production valve body 22 and threaded surfaces in the wellhead assembly 10. Additionally, upper lockdown screws 44 are shown provided within passages 45 that extend radially through the body of the fracturing spool 18. Lockdown screws 44 have an inner radial end that projects within the body of fracturing spool 18 and selectively exerts an axial downward force onto the isolation sleeve 42 to secure isolation sleeve 42 within main bore 23. Also shown in
An example of an annular seal assembly 52 is coaxially disposed in an annular space between isolation sleeve 42 and inner surface 53 of fracturing spool 18. In the example shown, seal assembly 52 includes an annular compression ring 54 which stacks on an upper compression seal 56. Upper compression seal 56, in one example, includes material made from an elastomer so that when axially compressed seal 56 radially expands to form a flow and pressure barrier in the annular space between isolation sleeve 42 and fracturing spool 18. Seal assembly 52 further includes an annular spacer 58 shown underneath upper compression seal 56 and a lower compression seal 60 on an end of spacer 58 distal from upper compression seal 56. On the lower end of seal assembly 52 is an annual load ring 62, shown having holes 64 in which threaded ends of retainer screws 66 are threadingly inserted. Retainer screws 66 have head portions 68 with an enlarged diameter that are shown set within a slot axially formed in an upper end of compression ring 54. The width of the slots reduces to define shoulders 69 that are in interfering contact with lower surfaces of the head portions 68. Accordingly, tightening or loosening retainer screws 66 can radially expand or relax the upper and lower compression seals 56, 60 so that selective sealing can take place between isolation sleeve 42 and inner circumference of the bore in the fracturing spool 18.
Still referring to
Referring now to
In one example of operation, isolation sleeve 42 is inserted into fracturing spool 18 with running tool 48 (
Referring now to
The present invention described herein, therefore, is well adapted, to carry out the objects and attain the ends and advantages mentioned, as well as others inherent therein. While a presently preferred embodiment of the invention has been given for purposes of disclosure, numerous changes exist in the details of procedures for accomplishing the desired results. These and other similar modifications will readily suggest themselves to those skilled in the art, and are intended to be encompassed within the spirit of the present invention disclosed herein and the scope of the appended claims.
This application claims priority to and the benefit of co-pending U.S. Provisional Application Ser. No. 61/672,565, filed Jul. 17, 2012, the full disclosure of which is hereby incorporated by reference herein for all purposes.
Number | Date | Country | |
---|---|---|---|
61672565 | Jul 2012 | US |