The present disclosure refers to an adjustable support. More specifically, the disclosure refers to a support for a kayak on a vehicle roof
Kayaking enthusiasts often need to transport their watercraft long distances to reach the rivers and lakes that they desire to paddle. Accordingly, they need a method to transport their kayak safely. These enthusiasts often use their vehicles to transport their watercraft.
A disadvantage of kayak carriers in the prior art is the difficulty that consumers face when purchasing a kayak carrier for their kayak. Consumers may have difficulty in finding a kayak carrier that is compatible with their particular kayak. Moreover, when a consumer does find a suitable kayak carrier, it is likely not designed for their specific kayak, and therefore provides an imperfect fit. Accordingly, the kayak may not fit well in the carrier because the carrier may be configured to support a specific kayak.
Other kayak carriers found in the prior art also require purchasing additional equipment such as a multi-purpose rack that is compatible with the carrier. Multi-purpose racks cause additional cost and time for installation.
Accordingly, there is a need to have a cost-effective kayak carrier compatible with many different size kayaks.
An adjustable kayak carrier according to the present disclosure shall hereafter be described with reference to the enclosed figures, in which:
Embodiments of the present disclosure include an adjustable kayak carrier for a vehicle roof comprising a first saddle for a rear of a kayak and a second saddle for a front of the kayak. Each saddle comprises two adjustable supports, which move relative to one another, perhaps on a guide, to conform to an infinite number of kayak sizes within the bounds of the vehicle.
Embodiments of the present disclosure deliver a kayak carrier that provides a suitable fit for any size kayak, thereby preventing confusion when purchasing a kayak carrier. The term “kayak” is defined as any elongated watercraft that is capable of supporting at least one person on a waterway and that may or may not have a mechanized transport structure.
Further embodiments of the present disclosure provide a kayak carrier that does not require, but could be used with, a multi-purpose vehicle rack. Providing a carrier that does not need an additional multi-purpose rack reduces cost and installation time by simplifying the carrier. Specifically, the kayak carrier may rest directly on, and in contact with, the roof of a vehicle. However, some embodiments of the present disclosure can be compatible with a multi-purpose rack so that multi-purpose rack owners can benefit from the features disclosed herein.
Embodiments of the present disclosure also prevent the pads and kayak from slipping relative to one another and relative to the vehicle roof. Movement on the vehicle roof can be prevented by using a surface with a high coefficient of friction on the base of the pad to prevent the pad from sliding on the vehicle roof. As is known, the coefficient of friction is defined as force of friction between two bodies and the force pressing them together. A similar high-friction surface can be applied to one of the kayak saddles to prevent the kayak from slipping. Moreover, a surface with a relatively low coefficient of friction can be applied to the other of the saddles to ease installation of a kayak on the saddles.
Embodiments of the present disclosure include first and second supports including a top surface having a slope relative to corresponding bottom surfaces in which the slopes of the first and second supports form a generally concave receiving surface in an installed configuration for a front of a vehicle. These embodiments also disclose third and fourth supports, which can include a top surface having a slope relative to corresponding bottom surfaces in which the slopes of the third and fourth supports form a generally concave receiving surface in an installed configuration for a rear of a vehicle. In one arrangement, the first and second supports can be arranged to support a first end of a kayak, and the third and fourth supports can be arranged to support a second end of the kayak.
The supports can rest on the vehicle in an installed configuration. Each of the supports can further have a through-hole extending length-wise from one end to another. The carrier can include a first guide that can be configured to slidably engage the first and second supports. The carrier can also include a second guide configured to slidably engage the third and fourth supports. Some embodiments include a first strap configured to secure the first and second supports to the front of the vehicle and a second strap configured to secure the third and fourth supports to the rear of the vehicle. As an example, the first and second supports can further include a relatively high-friction surface compared to surfaces of the third and fourth supports, thereby resisting movement of a kayak in an installed configuration. Similarly, the third and fourth supports can include a relatively low-friction surface compared to surfaces of the first and second supports, thereby facilitating a sliding motion during installation of a kayak. As another example, the first and second guides can be composed of a substantially rigid material or foam. Netting can be used for securing a kayak to the kayak carrier. Moreover, the through-holes can be configured for being coupled to a multi-purpose vehicle roof rack. In one particular arrangement, the supports can have a generally trapezoidal block-like shape.
Other embodiments of the present disclosure include first, second, third and fourth supports, each having at least one through-hole and first and second guides, in which the through-holes of the first and second supports can be configured to slidably accept the first guide to form a first saddle. In addition, the through-holes of the third and fourth supports can be configured to slidably accept the second guide to form a second saddle. The first and second guides can each include two ends and a channel with openings on each end of each of the guides. The embodiments can further include first and second fasteners corresponding to the channels of the first and second guides respectively, in which the fasteners, for example straps, are configured to couple the first and second guides to a vehicle. The first and second supports can include a relatively high-friction surface compared to surfaces of the third and fourth supports, thereby resisting movement of a kayak in an installed configuration. The third and fourth supports can include a relatively low-friction surface compared to surfaces of the first and second supports, thereby facilitating a sliding motion during installation of a kayak. The guides can be formed using a substantially rigid material. The first and second guides can constitute portions of a multi-purpose vehicle roof rack.
An additional embodiment of the present disclosure includes a first saddle and a second saddle, in which the first and second saddles each include two blocks with one or more longitudinal through-holes. The first and second saddles further include at least one guide, comprising two ends, extending through at least one of the longitudinal through-holes, in which each guide has an opening extending from one end of the guide to the other end. One or more straps can fit through the opening of each of the at least one guide and configured to attach the kayak carrier to a vehicle.
Embodiments will be described more fully hereinafter with reference to the accompanying drawings. Other embodiments are contemplated in many different forms and this disclosure should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. In the drawings, like numbers refer to like elements.
In
In another configuration, gap 21 can be closed such that supports 10 are joined together. When gap 21 is closed, this is the minimum size of kayak saddle 20. Typically, kayak hulls will not be smaller than the minimum size of kayak saddle 20.
In one arrangement, a kayak can be secured to kayak carrier 40 via netting 44. Netting 44 can be in two pieces (one piece for each saddle 41, 42), and can be secured to saddles 41 and 42 through channels 32; however, in one alternative embodiment, netting 44 can be secured to carrier 40 by wrapping it around guides 31. Mechanisms other than netting 44 can be used to secure the kayak to the kayak carrier 44. For example, one or more straps 44A can be secured to guides 31 as shown in
Supports 10 can also comprise a high-friction surface (not illustrated), such as rubber, on their bases. This surface will prevent saddles 41 and 42 from sliding on the vehicle roof.
While described generally herein, the cradle can be used for many purposes that would benefit from the features described herein, such as carrying items other than a kayak. In the drawings and specification, there have been disclosed embodiments and examples, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation, the scope of the disclosure being set forth in the following claims.
This is application claims priority to provisional Application No. 61/244,741, the disclosure of which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61244741 | Sep 2009 | US |