The present disclosure relates generally to retractable coverings for architectural openings and more particularly to a system for adjustably anchoring a lift cord that extends between rails used in the covering. The effective length of the lift cord extending between the rails in the covering is adjustable to adjust the maximum distance between the rails as permitted when the covering is fully extended.
Retractable coverings for architectural openings such as windows, doors, archways and the like have been utilized for many years. While the coverings may retract horizontally as in a vertical blind, most retractable coverings retract vertically, such as roller blinds, Venetian Blinds, cellular shades, and the like.
Coverings that retract vertically typically include a headrail and one or more movable rails operatively connected to the headrail by lift cords so that an operating mechanism for the covering can adjust the effective length of the lift cords as they extend from the headrail to one or more movable rails so that the movable rails can be desirably positioned within the architectural opening. A flexible shade material typically extends between the headrail and a first movable rail or between movable rails in coverings referred to as top-down/bottom-up coverings, but again the lift cords are manipulated from the headrail so as to move the one or more movable rails toward or away from the headrail to retract or extend the covering.
The lift cords have typically been connected to associated movable rails by establishing a knot in the lift cord and retaining the knot within or below the rail but as will be appreciated, it is very difficult to position a knot at a precisely desired location so that the rail is not only desirably and dependably spaced from the headrail for the covering when the covering is fully extended but is also desirably positioned horizontally so as to be parallel with the headrail. Typically there at least two lift cords, but there can be more depending upon the width of the covering. Desirably establishing the effective lengths of the lift cords determines a maximum spacing between rails and also the spacial orientation of the rail so that it can be positioned horizontally.
It is to provide an improved and simplified system for adjusting the effective length of lift cords for coverings for architectural openings that the present disclosure has been developed.
The lift cord anchor of the present disclosure is designed for use in conventional bottom up vertically movable retractable coverings for architectural openings, but can also be used in top-down/bottom-up coverings. The anchor may be a two-piece anchor having an outer housing in which is disposed a rotatable drum to which the lower end of a lift cord in a retractable covering can be operably connected. The housing is slidably positionable within a hollow movable rail of a covering for an architectural opening so as to be positionable in alignment with an associated lift cord that extends from a headrail for the covering through a flexible and retractable shade material to the movable rail. In top-down/bottom-up coverings, the shade material extends between movable rails of the covering and the anchor of the present disclosure can be used with either of the movable rails while being positionable within the movable rail to be aligned with an associated lift cord for connection therewith.
To connect a lift cord to the anchor, the lift cord is extended through a hole or aperture defined in the top surface of the movable rail and then pulled through an open end of the rail where it can be operably connected to the rotatable drum prior to the rotatable drum being snap-fit (or otherwise connected) into the housing of the anchor. Once the lift cord is operably connected to the anchor, the housing is slidably inserted into the open end of the movable rail until it is aligned with the hole through the top of the movable rail receiving the lift cord and the anchor is thereafter frictionally retained in that position.
To adjust the effective length of the lift cord with the anchor, the drum is provided with a tool or screw slot that is accessible through a hole provided through the movable rail in alignment with the screw slot so that a screwdriver or other tool can be used to rotate the drum, thereby wrapping the lift cord about the drum to shorten the effective length of the lift cord. The effective length can be lengthened by rotating the drum in the opposite direction once a plurality of wraps have been provided around the drum. The drum is retained in selected positions relative to the housing with two separate retaining systems so that once the drum is set relative to the housing for a pre-selected length of the lift cord, it will substantially retain this position until the position is adjusted by overcoming the retaining systems with a screwdriver or other similar tool.
Anchors may be provided along the length of the movable rail at substantially any location where a lift cord is desired to be connected to the movable rail. In some instances the covering may include at least two lift cords so that the movable rail can be suspended in a horizontal and parallel relationship with the headrail for the covering. In these instances, adjusting the length of the lift cords with the adjustable anchor of the present disclosure, the maximum allowed spacing between the headrail and the movable rail in a bottom-up covering or between movable rails in a top-down/bottom-up covering can be set or the inclination of the movable rail relative to horizontal can be adjusted so that the rail in its fully extended location is horizontal and parallel with the headrail.
Other aspects, features and details of the present disclosure can be more completely understood by reference to the following detailed description of a preferred embodiment, taken in conjunction with the drawings and from the appended claims.
The adjustable lift cord anchor or connector 20 of the present disclosure may be used in retractable coverings 22 for architectural openings, such as of the type shown in
While not shown in
With reference to
Looking first at the housing 36 as possibly seen best in
A second downwardly opening cord receiving cavity 66, which may have a generally rectangular cross-sectional configuration, is formed in a second raised body 68 which extends upwardly from the base plate 48 with the cord receiving cavity being in communication with the substantially receiving cavity 40 through a passage 70 in a bridge 72 between the cavities. The top of the cord receiving cavity 66 has an opening 74 (
It should be noted the main body 42 for the anchor 20 may generally be made of a substantially rigid material having some resiliency whereby when it is mounted within the movable rail 28 of the covering it can be wedged into a frictionally fixed position within the rail. Further, as will be appreciated with the description that follows, the resiliency of the material allows the rotatable drum 38 to be snap fit into the receiving recess 40 so as to be rotatably retained therein. The ears 44 may further include one or more apertures 78 defined therethrough. The holes 78 may reduce the material required to produce the anchor 20, and thus may reduce the weight of the anchor 20 as well. Accordingly, in some instances, the holes 78 may be omitted.
It should be noted that the receiving cavity 40 may be dimensioned and shaped to receive the drum 38, such that the drum 38 may rotate therein. Accordingly, depending on the desired shape and dimensions of the drum 38, which may be varied depending on the covering, size, and/or length of the lift cords, the receiving cavity 40 and/or housing may correspondingly be varied.
With reference to
The outer wall of the cylindrical body 88 defines a wrapping surface about which a lift cord 32 can be wrapped and a notch 94 is formed through the sidewall at one or more locations so that a lift cord can be inserted through the notch and knotted or otherwise operably connected within the interior of the cylindrical body (as shown in
To mount the rotatable drum 38 in the housing 36, it is aligned with the receiving recess 40 so that the cylindrical body 88 of the drum extends upwardly toward the top wall 56 of the raised body 50 of the housing and the pair of notches 96 in the intermediate disc of the rotatable drum are aligned with the teeth or catches 64 of the housing which are along the bottom of the receiving recess 40. Once so positioned, the rotatable drum can be compressed upwardly so the outer edge of the intermediate disc 80 engages and flexes upwardly the arcuate flanges 62 on the housing so that they permit the drum to slide thereby and allow it to be fully inserted into the recess. Once so positioned, the arcuate flanges snap back due to the resiliency of the material from which the housing is made to hold the rotatable drum in the cavity.
The two teeth or catches 64 along the bottom edge of the receiving recess 40 are sized so they slightly intermesh with the radial teeth 84 on the bottom of the rotatable drum 36 whereby when the drum is rotated, the teeth or catches 64 snap into and out of the gaps between the teeth 84 on the bottom of the rotatable drum to sequentially and releasably retain the drum in a selected angular position relative to the housing. Similarly, the teeth 92 on the top edge of the cylindrical wall of the rotatable drum engage the catches 60 extending downwardly from the top wall 56 of the raised body 50 so that as the drum is rotated the catches also snap in and out of the gaps between the teeth 92 on the top of the drum.
It will therefore be appreciated that two systems are provided for releasably holding the drum 38 in a selected position relative to the housing 36 with one system working in a vertical plane and the other system in a horizontal plane or, in other words, the two systems may operate in mutually perpendicular planes to assist in releasably retaining the drum in substantially any selected position. The selected position of the drum may be obtained by rotating the drum with a rotation tool 34 which can be inserted downwardly through the passage 58 through the top wall of the raised body 50 or upwardly through the hole 33 in the bottom rail and into the open bottom of the cavity 40.
The lift cord 32 or operating element associated with an anchor 20 in the covering 22 of the type illustrated in
In the covering 22 illustrated in
With reference to
With reference to
Although the present disclosure has been described with a certain degree of particularity, it is understood the disclosure has been made by way of example, and changes in detail or structure may be made without departing from the spirit of the disclosure as defined in the appended claims.
The present application claims the benefit under 35 U.S.C. §119(e) to U.S. provisional patent application No. 61/494,000 filed 7 Jun. 2011, entitled “Adjustable Lift Cord Anchor for Movable Rails in Coverings for Architectural Openings,” which is hereby incorporated by reference into the present application in its entirety.
Number | Date | Country | |
---|---|---|---|
61494000 | Jun 2011 | US |