The frame 12 is an elongate structure of generally rectangular shape having an upper end 12A, a lower end 12B, and defining a central opening 12C. A lateral support 22 is located within the central opening 12C adjacent to the upper end 12A. An upper connection structure 24 extends from the upper end 12A of the frame 12, to enable pivotal bolted, pinned, etc. connections to the frame 12. A side connection structure 26 extends from the frame 12 at approximately 90° with respect to the upper connection structure 24, to enable an additional connection to the assembly 10. The frame 12 is generally made of a suitable metallic material (e.g., steel) to support desired loading of the adjustable link assembly 10.
The drive shaft 16 is positioned substantially within the central opening 12C of the frame 12. The drive shaft 16 is a threaded screw-type shaft that engages the slide block 18 in a driving relationship. The drive shaft 16 is rotatably supported at the lateral support 22 and the lower end 12B of the frame 12 by bearing sets 28 and 30, respectively. The bearing sets 28 and 30 are sealed ball bearing sets.
The slide block 18 has a threaded opening 18A that accepts the drive shaft 16 so that the respective threads mesh with each other. Rotation of the drive shaft 16 moves the slide block 18 within the central opening 12C of the frame 12 in a vertical direction. The direction of vertical movement relative to the rotation of the drive shaft will depend upon the orientation of the threads, which can vary as desired. The slide block 18 further engages the frame 12 at the sides of the central opening 12C in a sliding relationship. Movement of the slide block 18 occurs within a range R, which is generally defined between the lateral support 22 and the lower end 12B of the frame 12. In one embodiment, the range R is about 127 cm (50 inches). However, the size of range R can vary as desired for particular applications. It will be understood that the operation of the adjustable link assembly 10 to cause vertical adjustment with the threaded drive shaft 16 and slide block 18 is comparable to that of known screw jacks.
The motor assembly 20 is engaged with the drive shaft 16, to selectively rotate the shaft 16 and move the slide block 18. The motor assembly 20 includes an electric motor 32 (shown only in schematic form in
The lower frame member 14 is generally U-shaped, having a lower base portion 14A and a pair of legs 14B and 14C extending upwards therefrom. The lower frame member 14 is made of a metallic material (e.g., steel). A lower connection structure 36 extends from the base 14A of the lower support member 14, to enable making pivotal bolted, pinned, etc. connections for supporting items from the adjustable link assembly 10. The legs 14B and 14C of the lower frame member 14 are pivotally connected to the slide block 18 using pin-like members 38. This causes the lower frame member 14 to move vertically with the slide block 18 when the slide block 18 is driven to move by rotation of the drive shaft 16. Components of the adjustable link assembly 10 are generally kept in tension, which helps maintain engagement of the threads of the drive shaft 16 and the slide block 18.
The monorail track 52 is of a conventional type used in gas turbine engine assembly facilities. It is positioned generally overhead, near a ceiling of the facility in which it is installed. The trolleys 54A and 54B are attached to the track 52, and include safety catch structures 58. The operation of monorail and trolley systems used for engine assembly is well known to those of ordinary skill in the art. It is possible to configure the system 50 such that the adjustable link assemblies 10A and 10B connect to existing monorail tracks and trolleys, that is, so that the adjustable link assemblies of the present invention replace existing cable hoist systems connected to the monorail tracks and trolleys.
The adjustable link assemblies 10A and 10B are suspended from the trolleys 54A and 54B, respectively, below the monorail track 52. The trolleys 54A and 54B are bolted to the upper connection structures 24 of the adjustable link assemblies 10A and 10B. The lateral connecting link 56 is a beam connected between the side connection structures 26 of the adjustable link assemblies 10A and 10B, which forces both link assemblies 10A and 10B and their respective trolleys 54A and 54B to move together along the monorail track 52. Typically, two adjustable link assemblies are used to support a single gas turbine engine during assembly, which makes it desirable to connect those adjustable link assemblies so they move together. Furthermore, the adjustable link assemblies 10A and 10B are typically vertically adjusted together. For example, where the assemblies 10A and 10B can be adjusted by remote control, an operator can use a single remote control to control vertical adjustments of both assemblies 10A and 10B simultaneously. Although use of the lateral connecting link 56 and use of a common remote control scheme are each optional.
As shown at station B (reference numbers at other stations are omitted for simplicity), a build beam assembly 66 is supported by the adjustable link assemblies 10A and 10B and their respective trolleys 54A and 54B from the monorail track 52. The build beam assembly 66 provides a direct connection to the engine components (e.g., the engine core 62), and can include hoists or other auxiliary lifts for supporting engine modules (e.g., the first module 64) and tooling. One example of a suitable build beam assembly 66 is described in co-pending U.S. patent application Ser. No. ______, filed on even date herewith, which is hereby incorporated by reference in its entirety. The auxiliary lifts of the build beam assembly 66 are used to lift relatively lightweight items (less than about 272 kg or 600 lbs and most commonly less than about 45 kg or 100 lbs.). The adjustable link assemblies 10A and 10B are controlled by an operator 68, who can control the vertical position of workpieces to better perform assembly operations, to better connect engine modules, and to perform other adjustments to facilitate assembly. One such way adjustment can be helpful is to position the engine (i.e., the workpiece) at a height suited to the particular operator. Another way adjustment can be helpful is to initially lift the engine core 62 off of the ground or off of a platform at station A, while permitting adjustment of the vertical position of the engine core 62 (and associated modules and components) at subsequent stations without having to set the engine core 62 or other components back down on the ground or onto a platform.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. For instance, the particular size and shape of an adjustable link assembly according to the present invention can vary as desired for particular applications. Moreover, one or more safety catch assemblies, such as spring-loaded sleeved catches similar to known safety catches for automotive jack screw lifts, can be included with an adjustable link assembly according to the present invention.
This application claims priority from U.S. Provisional Patent Application Ser. No. 60/796,248, filed Apr. 28, 2006, for ADJUSTABLE LINK SYSTEM AND MULTIPURPOSE ENGINE SUPPORT/BUILD BEAM by Amir Kalantari, which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60796248 | Apr 2006 | US |