The present invention relates to a connector assembly for joining or tying together a masonry structure with a supporting back-wall structure and, more particularly, to an adjustable masonry anchor assembly for use with Insulating Concrete Form (ICF) systems wherein the present masonry anchor is embedded into the ICF system during the wall forming process.
Brick, stone, and other masonry veneers or other exterior cladding is oftentimes used in construction to present a wide variety of different aesthetically pleasing exterior appearances to a building or other structure. Typically, this outer masonry wall is spaced from the supporting back-up wall forming a spacer cavity therebetween for insulation purposes. This outer masonry wall is typically joined or tied to the supporting back-up wall through the use of conventional wall ties or connectors that extend across the spacer cavity formed therebetween such as the connectors illustrated in U.S. Pat. Nos. 4,869,043 and 5,392,581. Such known connectors have utility when being used in conjunction with back-up wall structures formed from concrete blocks, wooden or metal studs (stud wall), or other similar back wall structures. Such known connectors, however, are not particularly adaptable for use with the growing use of ICF systems commonly used today for both residential and commercial construction.
ICF systems are well-known and serve to contain fluid concrete while it solidifies as well as provide insulation for the finished structure. Such systems utilize a plurality of individual units, panels or blocks aligned horizontally and vertically in an interlocking arrangement to create forms for concrete walls. Each unit or block includes a pair of foam panels which are retained in spaced apart parallel relationship to each other by a plurality of ties which are embedded into the foam panels to hold the panels together. These spacing ties are truss-like in nature and include opposing flange portions which reside within the respective opposing foam panels. The opposing tie flange portions are separated by an intermediate web portion connected therebetween enabling the tie to hold and secure the panels in proper spaced relationship to each other. These ICF systems serve as forms for poured concrete walls and yield a solid, continuous concrete wall construction when connected horizontally and vertically to blocks of similar construction. However, instead of being removed after the concrete has hardened, the ICF forms remain in place and become part of the wall structure. As such, the ICF forms provide insulation on both the inside and the outside of the wall. The ties within the ICF forms also act as furring strips so that interior and exterior finishes can be applied directly to the foam blocks.
ICF forms are typically made of expanded polystyrene and the embedded ends of the ICF ties positioned to hold the foam panels together include opposed portions which are flattened out to form fastening surfaces recessed within the corresponding panels to allow for any type of exterior or interior finish. Since the ties run the full height of the ICF forms, an ICF wall contains continuous furring strips from foundation to the eave line.
To construct an ICF wall, one simply stacks the ICF forms to shape the particular wall, install vertical and horizontal rebar to reinforce the concrete, and fill the center cavity of the ICF forms with concrete. Use of the known masonry connectors such as the connectors disclosed in U.S. Pat. Nos. 4,869,043 and 5,392,581 are not easily adaptable for use with ICF wall systems for a wide variety of reasons including the fact that walls formed using ICF systems result in solid concrete walls thereby rendering the attachment mechanisms associated with the known connectors inoperative in this particular application. Also, the various constructions of such known connectors are not compatible for use with ICF systems.
It is therefore desirable to provide a masonry connector which is specifically adaptable for use with ICF systems, which includes adjustable means for accommodating construction tolerances and for alignment with the masonry mortar joints, and which includes means for easy attachment to the ICF system.
Accordingly, the present invention is directed to an adjustable masonry anchor assembly which overcomes one or more of the problems set forth above for attaching to a wide variety of different ICF systems.
The present invention overcomes many of the shortcomings and limitations of the prior art devices discussed above and teaches the construction and operation of an adjustable masonry anchor assembly adaptable for use with a wide variety of different types of ICF systems wherein the main anchor member is attached to the ICF forms prior to pouring or filling the center cavity of the ICF forms with concrete. In one aspect of the present invention, the present masonry anchor assembly includes two separate members, the main anchor member and a cooperatively engageable masonry tie wire member. The anchor member is installed as the ICF wall is being constructed, whereas the masonry tie wire member is installed as the brick or other masonry facing wall is being constructed.
The present anchor member is formed from a substantially planar plate-like member and includes an anchor portion and an attachment portion. The terminal end of the anchor portion of the present anchor member is preferably triangularly shaped or otherwise includes a pointed end portion for facilitating the penetration of the anchor portion through the ICF foam panel as will be hereinafter explained. The anchor portion also includes at least one large opening through which concrete will flow when properly positioned within an ICF system wall when concrete is poured therewithin. The attachment portion of the present anchor member includes a tab member which is positioned substantially perpendicular to the anchor member and includes a plurality of openings for cooperatively receiving suitable fastening members for attaching the anchor member to the opposed flange portions of the truss-like spacing ties associated with the ICF forms.
To install the present anchor member, the anchor member is inserted through a slot formed in the ICF foam panel adjacent one of the opposed flange portions of the truss-like spacing ties embedded therein such that when the anchor member is inserted therewithin, the attachment tab portion will lie flush with the face of the ICF form and overlay the embedded flange portion associated with the spacing tie. In this regard, the tab portion is approximately the same width as the ICF tie flange portion. Once inserted, the anchor member is attached to the ICF form by inserting appropriate fastening members through the openings associated with the tab member and attaching the tab member to the embedded flange portion associated with the ICF tie member. When so attached, the anchor portion of the present anchor member extends inwardly into the space form by and between the opposed ICF panels and the opening associated with the anchor portion lies within the open space or center cavity formed within the ICF form and is positioned so as to receive the concrete as it is poured within the form. Attaching the tab member to the tie member associated with the ICF form through the use of appropriate fastening members is only a temporary attachment so as to hold the anchor member in proper position during pouring of the concrete into the ICF form for permanent joinder thereto. When the concrete is poured and has hardened, it anchors the main anchor member to the ICF wall being formed.
The attachment portion of the anchor member also includes an elongated slot located adjacent the tab member for receiving a tie wire member which can be adjustably positioned along the length of the slot so as to be positioned in alignment with the masonry mortar joint between the courses of brick or other masonry material as the masonry wall is being erected in front of the ICF formed wall system. These masonry tie wire members are embedded in the mortar between two courses of the brick or other masonry material and are fixedly secured thereto once the mortar hardens. Because the exact location of the mortar joint between two courses of brick or other masonry material in the vicinity of each respective anchor assembly is unknown at the time that the respective anchor member is embedded and secured within the ICF form, the elongated slot provides adjustability and flexibility to the user so as to properly position the masonry tie wire member at the proper position and location so as to extend directly into the mortar joint between two courses of the masonry material. The present masonry tie wire member is cooperatively engageable with the elongated slot associated with the attachment portion of the anchor member and can take on a wide variety of different shapes to accomplish the present task.
Any plurality of the present masonry anchor members can be utilized in association with a particular supporting ICF back-up wall and a front facing masonry wall to join, tie, or otherwise permanently fix the outer masonry wall to the supporting ICF back-up wall.
These and other objects and advantages of the present invention will become more apparent to those skilled in the art after considering the following detailed specification taken in conjunction with the accompanying drawings.
For a better understanding of the present invention, reference may be made to the accompanying drawings.
Referring to the drawings more particularly by reference numbers wherein like numerals refer to like parts, the number 30 in
The supporting back-wall structure 10 is formed by a plurality of individual ICF foam blocks 12 which are aligned horizontally and vertically in an interlocking arrangement to create the form for a specific concrete wall. Each ICF block 12 includes a pair of parallel opposing foam panels 14 retained in spaced apart relationship to each other by a plurality of ICF form ties 16. Each tie 16 includes a pair of opposed flange members 18 which are separated by, and connected to, a web portion which includes opposing truss members connected by a pair of substantially identical transverse bridge members 20, each bridge member 20 having a plurality of rebar retaining seats 22 molded therein. As best illustrated in
The rebar seats 22 are substantially identical to each other in configuration, and are arranged in a pair of opposing rows along each transverse bridge member 20. Each seat 20 includes a substantially U-shaped well formed by a plurality of adjacent fingers. These adjacent fingers are shaped and configured to create a substantially U-shaped well that is capable of retaining either one or a pair of rebar rods positioned therein.
Both the opposing horizontal top and bottom longitudinal edges of the panels 14 as well as the opposing vertical ends of each panel 14 include cooperatively engageable means typically in the form of an array of alternating teeth and sockets as best illustrated in
Although it is recognized that a wide variety of different types of ICF systems are available for use, it is important to note that the opposing flange members 18 associated with each respective ICF spacing tie 16 run substantially the full vertical height of each respective ICF block 12 thereby providing strength throughout the height of the respective blocks as well as throughout the height of the entire wall structure as best illustrated in
In order to facilitate locating the flange members 18 embedded within each respective ICF panel 14 to serve as anchoring studs for the anchor assembly 30, a pair of flange indicators 24 are molded into the outer surface of the respective panels 14 as best illustrated in
In addition, the exterior surface of each ICF block 12 likewise typically includes a mark or indicator 27 in the form of a raised horizontal bead line along its central longitudinal axis to mark the mid-height of each respective block. The indicator 27 is provided in the event that it is necessary or desirable to sever a block 12 laterally into equal halves. As such, the indicator line 27 is positioned between the upper and lower bridge members 20 associated with the plurality of ICF form ties 16 such that severing of the block 12 will not interfere with either bridge member 20. The indicators 26 can also be dimensionally spaced such that they can be used as a measuring guide. For example, the indicators 26 could be spaced at intervals of one inch or some other predetermined distance to facilitate measuring and cutting such blocks at a location offset from the central longitudinal axis 27 of the block.
The supporting back-wall structure 10 and the masonry wall structure 28 are joined or tied together by a plurality of the present anchor assemblies 30 as best illustrated in
The attachment portion 38 of anchor member 32 includes a tab member 44 which is positioned substantially perpendicular to the anchor member 32 as illustrated in
To install any one of the present anchor assemblies 30, the anchor member 32 is inserted through a slot previously formed in the ICF foam panel 14 adjacent one of the opposed ICF tie flange members 18 embedded therein such that when the anchor member 32 is inserted therewithin, the tab member 44 will lie flush with the outer face of the ICF panel 14 and overlay the embedded flange member 18 as best illustrated in
As best illustrated in
In addition, as best illustrated in
As illustrated in
As best illustrated in
The present anchor assembly 30 can also be fabricated so as to meet the particular design requirements for project specific design loads. Once these parameters are known, the present anchor assemblies 30 can be specifically designed and engineered to meet such requirements particularly if seismic and wind applications are involved. Some building codes may dictate a maximum horizontal and vertical spacing for positioning the present anchor assemblies along with a maximum area of wall to which an anchor assembly must be located. Positioning and locating the present anchor assemblies 30 in accordance with any specific building code requirements or other requirements can be accomplished as discussed above. In addition, the present anchor assemblies can be made from any suitable material such as from stainless steel or hot-dipped galvanized steel. Other materials are likewise available for use depending upon the particular application. In addition, the present assemblies can be made so as to be corrosion resistant.
Although a particular ICF system has been illustrated and disclosed herein, it is recognized that a wide variety of different ICF systems are available in the marketplace and that the present anchor assembly 30 is adaptable for use with any ICF system so long as such system includes a flange member similar to flange member 18 to which the anchor member 32 can be attached. In this regard, it is recognized and anticipated that any ICF block and/or panel construction other than the blocks 12 and panels 14 illustrated in
In addition, while a particular embodiment of the present anchor assembly 30 has been described herein, it is likewise recognized and anticipated that other embodiments are possible within the scope of the present invention. For example, the shape and dimensions of the anchor member 32 may vary widely according to the strength, wall dimensions and other physical characteristics of the particular application. In addition, the anchor tie member 34 may also vary in shape and form, provided only that the key to the mortar joint between two courses of masonry material is adequate to accomplish the desired joinder or tie between the ICF supporting structure and the masonry structure positioned adjacent thereto. As indicated above, other modifications and variations to the particular ICF system being utilized, and to the present anchor member 32 and anchor tie member 34 are envisioned and anticipated.
As is evident from the foregoing description, certain aspects of the present invention are not limited by the particular details of the examples illustrated herein and it is therefore contemplated that other modifications and applications, or equivalents thereof, will occur to those skilled in the art. It is accordingly intended that the claims shall cover all such modifications and applications that do not depart from the spirit and scope of the present invention.
Other aspects, objects and advantages of the present invention can be obtained from a study of the drawings and this disclosure.
This application claims the benefit of U.S. Provisional Patent Application No. 60/829,997, filed on Oct. 18, 2006, the disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4021990 | Schwalberg | May 1977 | A |
4869043 | Hatzinikolas et al. | Sep 1989 | A |
5207043 | McGee et al. | May 1993 | A |
5313752 | Hatzinikolas | May 1994 | A |
5392581 | Hatzinikolas et al. | Feb 1995 | A |
5845449 | Vaughan et al. | Dec 1998 | A |
5890337 | Boeshart | Apr 1999 | A |
6209281 | Rice | Apr 2001 | B1 |
6739105 | Fleming | May 2004 | B2 |
6820384 | Pfeiffer | Nov 2004 | B1 |
6941717 | Hohmann et al. | Sep 2005 | B2 |
7225590 | diGirolamo et al. | Jun 2007 | B1 |
7325366 | Hohmann et al. | Feb 2008 | B1 |
7587874 | Hohmann, Jr. | Sep 2009 | B2 |
20100037552 | Bronner | Feb 2010 | A1 |
Number | Date | Country |
---|---|---|
1251336 | Mar 1989 | CA |
1294457 | Jan 1992 | CA |
1306116 | Aug 1992 | CA |
2034085 | Feb 1995 | CA |
2102297 | Jan 2001 | CA |
Number | Date | Country | |
---|---|---|---|
20080092472 A1 | Apr 2008 | US |
Number | Date | Country | |
---|---|---|---|
60829997 | Oct 2006 | US |