The present disclosure generally relates to mattress assemblies, and more particularly, to adjustable foundations for mattress assemblies.
Adjustable foundations for mattress assemblies, also commonly referred to as articulating beds, are used in the healthcare field and in residential applications. A typical adjustable foundation includes a base and an adjustable mattress frame or support, which is divided into a head and back section, an intermediate seat section, and a leg and foot section. The various mattress frame sections are pivotally interconnected and have a continuous range of adjustment. The sections are generally moveable from a flat, user resting position to a seated position with the legs bent or the legs straight and the occupant's back angled upwardly with respect to the seat section. The sections are pivoted by motor drives, hand operated cranks or through the user's weight.
Disclosed herein is an adjustable mattress foundation and process of operation. In one embodiment, the adjustable mattress foundation includes a foundation frame comprising side frame members and transverse frame members attached at respective ends of the side frame members to define a generally rectangular shape; a mattress support surface including a head and back section hingedly connected to an intermediate seat section at one end and a leg and foot section hingedly connected to the intermediate seat section at another end, wherein the intermediate seat section includes an upper panel and a lower panel spaced apart from the upper panel, wherein the lower panel is hingedly connected to the head and back section and slidably engaged with the side frame members, and wherein the upper panel is stationary and hingedly connected to the leg and foot section; a first linear actuator having an extending and retracting member operatively coupled to a first linkage assembly to independently effect inclination or declination of the head and back section relative to the intermediate seat section, wherein the first linear actuator is further operative to effect an increase or decrease in a length of the intermediate seat section by movement of the lower panel relative to the upper panel; and a second linear actuator having an extending and retracting member operatively coupled to a second linkage assembly to independently effect inclination or declination of the foot and leg section.
A process for operating an adjustable mattress foundation includes changing a position of a head and back section relative to an intermediate seat section of an adjustable mattress foundation, the adjustable mattress foundation comprising a foundation frame comprising side frame members and transverse frame members attached at respective ends of the side frame members to define a generally rectangular shape; a mattress support surface including the head and back section, the intermediate seat section and a leg and foot section, wherein the intermediate seat section includes an upper panel and a lower panel spaced apart from the upper panel, wherein the lower panel is hingedly connected to the head and back section and slidably engaged with the side frame members, and wherein the upper panel is stationary and hingedly connected to the leg and foot section; and a first linear actuator having an extending and retracting member operatively coupled to a first linkage assembly to independently effect inclination or declination of the head and back section relative to the intermediate seat section, wherein the first linear actuator is further operative to effect an increase or decrease in a length of the intermediate seat section by movement of the lower panel relative to the upper panel; and lengthening the intermediate seat section upon inclining the head and back section by moving the first portion away from the second portion; or shortening the intermediate seat section upon declining the head and back section by moving the first portion towards the second portion.
In one or more embodiments, the adjustable mattress foundation includes a foundation frame comprising side frame members and transverse frame members attached at respective ends with a corner bracket to define a generally rectangular shape, the corner bracket at an angle of about 45 degrees between the respective ends of the side frame members and the transverse frame members; and a foam block coupled to the corner bracket and having an arcuate shaped exterior portion projecting from the corner bracket.
The disclosure may be understood more readily by reference to the following detailed description of the various features of the disclosure and the examples included therein.
Referring now to the figures wherein the like elements are numbered alike:
Referring now to
The head and back section 12 can be formed of a single panel 20 whereas the intermediate seat section 14 as well as the leg and foot section 16 can be formed of two panels 22, 24 and 26, 28, respectively, as shown more clearly in
Advantageously, the intermediate seat section 14 including upper and lower panels 22, 24, respectively, is configured to collectively increase or decrease in length upon articulation of the head section 12 and/or the leg and foot section 18 from a flat position to an elevated position or vice versa. By doing so, a prone user does not have to shift his position on the mattress in order to accommodate the inclination or declination. Additionally, a mattress disposed thereon has been found to better contour to the shape provided by the different sections during articulation, which also helps minimize pinch points.
The different sections 12, 14, and 16 are supported on a generally rectangular foundation frame 18, which includes a linkage assembly operable to selectively articulate the sections 12 and 16 relative to section 14 of the mattress support surface.
As shown in
The foam block 50 is coupled to a corner bracket 51 as shown in the exploded perspective view of
The upper and lower side frame members 40, 42 further include two pairs of pillars 52, 54 spaced apart from one another coupled to the upper and lower side frame members 30, 32. The pairs of pillars 42, 44 are configured to receive torsional members 46, 48 transversely extending between the side members 30, 32, which are operative with a linkage assembly described in greater detail below to articulate sections 12 and/or 16 of the adjustable mattress foundation 18.
Linear actuators 60, 62 shown more clearly in
A pair of roller arms 90 is coupled to torsional member 66, wherein each roller arm 90 includes a roller 92 at a free end. The roller arms 90 are spaced apart from one another and are configured to contact panel 20 of the head and back section 12. In this manner, upon actuation of the linear actuator 60 to effect rotational movement of the torsional member 66, the rollers 92 of the roller arms 90 are configured to contact panel 20 to provide inclination or declination of the head section 12. Similarly, a pair of roller arms 94 is coupled to torsional member 64, wherein each roller arm 94 includes a roller 96 at the free end. The roller arms 94 are spaced apart from one another and the rollers 96 attached thereto are configured to contact panel 26 of the foot and leg section 16. In this manner, upon actuation of the linear actuator 62 to effect rotational movement of the torsional member 64, the rollers 96 contact panel 26 to provide inclination or declination thereof. Because panel 26 is hingedly connected to panel 28, both panels 26, 28 in the leg and foot section 16 will incline or decline upon actuation of linear actuator 66.
As initially shown in
The upper panel 22 is attached at one end along its length to cross member 102. Additionally, the upper panel 22 is seated on and attached at each end along its width to spacers 104 positioned proximate to the slide plate 80 and disposed on the upper side members 40. The upper panel 22 is coplanar to the other panels 20, 26 and 28. By attaching the upper panel 22 to the cross member 84 and to the spacers 82 disposed on the side frame members 40, upper panel 22 can be spaced apart from the lower panel 24. It should be apparent that upper panel 22 of the intermediate seat section 14 is statically positioned during operation, i.e., does not translate from a fixed stationary position. In contrast, the lower panel 24 is in sliding engagement with the linear slide 100 upon articulation of the head and back section 12 to lengthen or shorten the intermediate seat section 14. It should also be apparent that an applied load on the lower panel 24 during use is minimal given the spaced relationship of the upper panel relative to the lower panel as well as the load surface area provided by the upper panel 22, which will carry the bulk of the applied load on the intermediate seat section 14 during use.
Referring back to
Upon inclination of the head and back section 12, lower panel 24 will slide towards the head end of the foundation 10, thereby elongating the intermediate seat section 14. Maximum elongation of the intermediate seat section 14 will occur upon maximum inclination of the head and back section 12. As such, the above mechanism and configuration permits “wall hugging” placement of the adjustable foundation since the head and back section 12 pivots about a fixed axis defined by torsional member 48 and the motion and extension of the lower panel 24 of the intermediate seat section 14 causes the head and section 12 to slide towards the wall, i.e., towards a head end of the adjustable mattress foundation. By doing so, the adjustable mattress assembly, if having the head end abutting a wall, will cause the head and back section 18 to “wall hug”, i.e., stay in close proximity to the wall regardless of inclination angle. Advantageously, this permits constant and easy access to a night table that may be disposed adjacent to the head and back section.
Turning now to
Optionally, any of the sections 12, 14, and 16 of the adjustable foundation can be modified to include a vibratory unit.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to make and use the invention. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
This Non-Provisional application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/368,755, filed Jul. 29, 2016, which is fully incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6006379 | Hensley | Dec 1999 | A |
6276011 | Antinori | Aug 2001 | B1 |
6393641 | Hensley | May 2002 | B1 |
7036166 | Kramer et al. | May 2006 | B2 |
7930780 | Clenet | Apr 2011 | B2 |
8418290 | Shih | Apr 2013 | B2 |
8640285 | Heimbrock et al. | Feb 2014 | B2 |
8806682 | Hornbach et al. | Aug 2014 | B2 |
9049942 | Huang | Jun 2015 | B2 |
10111530 | Kramer | Oct 2018 | B1 |
20140075674 | Chun et al. | Mar 2014 | A1 |
20160262548 | Broom et al. | Sep 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20180027980 A1 | Feb 2018 | US |
Number | Date | Country | |
---|---|---|---|
62368755 | Jul 2016 | US |