The present invention generally relates to an operator system for a moveable barrier. More particularly, the present invention relates to an operator system for driving opening and closing movements of a sectional door. More specifically, the present invention relates to an operator system having a motor housing capable of pivotal movements to selectively engage the sectional door. Still more specifically, the present invention relates to an operator system employing an adjustable motor housing to lock the sectional door in the closed position.
Typically, moveable barriers such as sectional doors are guided by track systems between opened and closed positions, and motorized operators are provided to drive movement of the sectional doors along the track systems. To provide a forcible stop against opening of the sectional doors in jack-shaft operators, a portion of such motorized operators can be made pivotal. Advantageously, the motor assemblies can be made to pivot between engaged and disengaged positions. In the engaged position, the motor assemblies can contact or block portions of the sectional doors, and prevent upward movement thereof. In doing so, the motor assemblies can be positioned to lock the sectional doors in the closed position. As such, the motor assemblies can prevent the sectional doors from being forced open by a person attempting to gain unauthorized access.
Counterbalance systems are widely used in conjunction with the motorized operators to facilitate movement of the sectional doors. The mounting heights of the counterbalance systems relative to the sectional doors can vary depending on the radius of the transitional track sections used between the vertical and horizontal track sections of the track systems. The radius of the transitional sections can determine how smoothly the sectional door opens and closes. For example, the larger the radius of the transitional track sections, the smoother the opening and closing movements of the sectional door tend to become. However, the larger the radius of transitional track sections become, the more space that is required above the sectional door. As such, compromises are made when installing sectional doors to account for the available clearance in a particular installation in terms of the ceiling downwardly projecting support beams and other obstructions. Generally, transitional track sections with a radius affording the smoothest operation of the sectional door within the clearance above the sectional door are employed.
As the radius of the transitional track sections varies according to the installation, so does the distance between the sectional door and counterbalance systems. The use of a motor housing positioned in close proximity to block the door with the largest radius transitional track sections and overlapingly engage the door with lesser radii produced some disadvantages. In particular, this approach resulted in undesirable noise when the operator struck the door and in some instances damage to the door and or operator assembly. However, to provide for positioning of the operator blocking assemblies in close proximity to the upper portion of the sectional doors, the motorized operators must be made with operator motor housings of differing dimensions depending upon the radius of the transitional track sections in a particular installation.
Because such operators are assembled at worksites in remote locations, providing various housings of different fixed lengths for every installation is impracticable. Besides the cost of manufacturing various housings of different fixed lengths, these various housings must be made available at the worksites. Therefore, as an alternative to fixed length housings, the housings have been modified by using extension pieces attached to the housings using additional fasteners.
For example, fasteners, such as set screws, have been used to maintain the position of the extension pieces relative to the housings. However, adjustment of the extension pieces relative to the housings has proven difficult using the set screws. Further, the set screws must be inserted at multiple positions on the extensions pieces which can be difficult after the motorized operator has been positioned on the counterbalance system above the sectional door.
To simplify adjustment of the extension pieces relative to the operator motor housings, the extension pieces and housings have been made to include mating threads. By twisting the extension pieces relative to the housings, the effective length of the housings can be adjusted using the mating threads to enable positioning relative to portions of the sectional doors. However, due to vibration caused by operation of the motorized operators and movement of the sectional doors, such adjustment is oftentimes subject to unwanted alteration. Therefore, when using the mating threads, additional fasteners are again required. Fasteners, such as a bolt and a locking nut, are needed to prevent unwanted changes in the effective length of the housings. Besides adding complexity to the installation of motorized operators, additional fasteners add additional expense and complexity to the motorized operators.
Consequently, there is a need for an operator system employing an adjustable motor housing to lock the sectional door in the closed position that is easily adjusted and remains in position over many opening and closing cycles of the sectional door and attendant movement and vibration without the need for additional relatively complex components or fasteners.
Therefore, an object of the present invention is to provide an operator system employing an adjustable motor housing to lock a sectional door in the closed position. Another object of the present invention is to provide an operator system employing an adjustable motor housing that is easily adjusted and remains in position over many opening and closing cycles of the sectional door. A further object of the present invention is to provide an operator system employing an adjustable motor housing that does not need additional components and/or fasteners to maintain the position thereof.
Another object of the invention is to provide an adjustable motor housing requiring only a two-piece motor housing and no other accessory components. A still further object is to provide such a motor housing that is easier and quicker to adjust by simple pull down of one piece of the two piece motor housing. Yet another object of the invention is to provide such a motor housing that is relative easy and therefore inexpensive to manufacture.
In general, the present invention contemplates a door system comprising, a sectional door moveable between an open position and a closed position, a track system guiding movement of the sectional door, and an operator system driving movement of the sectional door, said operator system including a motor assembly having an adjustable housing and capable of pivotal movement to a door locking position, said adjustable housing having a base section, an extendable section, and a latching mechanism for maintaining the extendable section in a desired position and for permitting selective axially repositioning of the extendable section relative to the base section.
A motorized operator system according to the concepts of the present invention is generally indicated by the numeral 10 in the accompanying drawings. As shown in
As shown in
Track assemblies, generally indicated by the letters T, T′, may be mounted to the frame F using flag angles 22 and brackets 23 that are fastened to the jambs 13, 14. The track assemblies T, T′ each include vertical track sections 24, horizontal track sections 25, and transitional track sections 26 joining the vertical track sections 24 and horizontal track sections 25. Additional support for the horizontal track sections 25 may be provided by horizontal angles 28 extending rearwardly from the jambs 13, 14, and struts 29 located proximate the distal ends of the horizontal track sections 25, and attached to the overhead structure (not shown). As is well known to persons skilled in the art, the track assemblies T, T′ provide a guide system for rollers attached to the side of the sectional door D, and define the travel of the sectional door D between open and closed positions.
As shown in
The drive tube 30 is rotatably supported by brackets 33 attached to the jambs 13, 14 proximate the flag angles 20. In addition, the drive tube 30 may be further supported at or proximate its center by a support bearing 34 and bracket 35. For example, the bracket 35 is fastened to the header extension 18, and the drive tube 30 is received within the support bearing 34 that is rotatably carried by the bracket 35.
Cable drum mechanisms 36 are mounted on the drive tube 30 proximate the ends thereof. The cable drum mechanisms 36 each have a cable (not shown) reeved thereabout which is affixed to the sectional door D preferably proximate the bottom. The winding and unwinding of the cable on the cable drum mechanisms 36 facilitates opening and closing movements of the sectional door D responsive to rotation of the drive tube 30, and, hence, generates a variable counterbalancing force in the coil spring. The counterbalancing force aids in raising and lowering the sectional door D in conventional fashion.
Depending on the location of the counterbalance system 20, the operator system 10 can be mounted adjacent the header 15 at various vertical positions above the sectional door D. In particular, a motor bracket 37 is mounted to an appropriately positioned header extension 19. The motor bracket 37 carries a motor assembly, generally indicated by the numeral 42, in such a manner as to rotate the drive tube 30 in either direction and thus move the door in the track assemblies. The motor assembly 42 is at least partially received in a motor housing, generally indicated by the numeral 48. The motor assembly 42 may be coupled to the tube 30 in any number of ways such as disclosed in applicant assignees' U.S. Pat. No. 6,851,465, or in a U.S. patent application entitled Pivoting Operator and Related Controls filed on or about the same date as the present application, both of which are incorporated herein by reference.
As best seen in
To account for the mounting position of the operator system 10, the motor housing 48 is made adjustable. As such, the motor housing 48 can be extended or retracted to facilitate location at a blocking position proximate a portion of the sectional door D. For example, the motor housing 48 includes a base section, generally indicated by the numeral 70, and an extendable section, generally indicated by the numeral 72. The base section 70 covers the motor of the motor assembly 42, and is fixedly attached to a gear case housing 50 (
As shown in
The base section 70 and extendable section 72 may also include bottom walls 86 and 88, respectively. The bottom walls 86 and 88 can, if necessary, be provided with apertures 86′ and 88′, respectively, to allow a tool or other access to the motor of the motor assembly 42. As shown in
A collar 90 can be integrally formed with the front wall 74 of the base section 70. The collar 90 is provided to facilitate attachment of camming members 66 in various positions relative to the base section 70. As such, the collar 90 includes various apertures 91 allowing the camming members 66 to be pinned to the base section 70.
To accommodate the collar 90, and prevent interference with the relative movement of the extendable section 72 to the base section 70, the front wall 80 of the extendable section 72 includes an opening 92. The opening 92 is sized according to the width of the collar 90, and travel of the extendable section 72 along the base section 70.
To facilitate guided relative movement of the extendable section 72 relative to the base section 70, the base section 70 includes channels 94, and the extendable section includes rails 96. The channels 94 are formed along the sidewalls 76 and 77 of the base section 70, and the rails 96 are formed along the sidewalls 82 and 83 of the extendable section 72. Travel of the extendable section 72 along the base section 70 is afforded by slidable movement of the rails 96 within the channels 94.
The extendable section 72 can be maintained in position, and selectively axially repositioned relative to the base section 70 using a latching mechanism, generally indicated by the numeral 100. The latching mechanism 100 includes a row of catches, generally indicated by the numeral 102, formed along the base section 70. The row of catches 102 is composed of various individual catches 103 which can be grooves formed in the rear wall 75 and sidewalls 76 and 77. The individual catches 103 are spaced apart by wall segments 104 to define various axial positions for locating the extendable section 72 relative to the base section 70. The individual catches 103 include wall sections 106 and 107. The wall sections 107 are angularly oriented with respect to the wall sections 106 to give the individual catches a tooth-shaped profile.
The latching mechanism 100 also includes tongue 108 formed on the extendable section 72. The tongue 108 is formed within a U-shaped aperture 109, and can be hingedly attached to the rear wall 81 and sidewalls 82 and 83. The tongue 108 includes a projection 110 extending into the interior of the extendable section 72. The projection 110 can be tooth-shaped to complement the tooth-shape of the individual catches 103. Upon insertion of the base section 70 into the extendable section 72, the projection 110 can be received in one of the individual catches 103 to axially position the extendable section 72 relative to the base section 70. Once the projection 110 is introduced into one of the individual catches 103, the projection 110 interacts with the individual catch 103 to prevent axial movement of the extendable section 72 with respect to the base section 70. As such, the interaction of the projection 110 and individual catches 103 provides a positive lock against movement of said extendable section 72 relative to said base section 70.
To selectively axially retract the extendable section 72 relative to the base section 70, an apertured nub 112 is formed opposite the projection 110 on the tongue 108. The apertured nub 112 is provided to receive a tool such as a screwdriver. The tool can be received within the apertured nub 112 to pry against the tongue 108. As such, the tongue 108 can be bent radially outwardly so that the projection 112 can be released from one of the individual catches 103. While thus released, the extendable section 72 can be selectively axially retracted relative to the base section 70, and the projection 110 introduced into another of the individual catches 103. As such, the overall length of the motor housing 48 can be adjusted. The motor housing 48 can be extended or retracted to account for the mounting position of the operator system 10 in order to facilitate selective blocking positioning relative to an upper portion of the sectional door D.
The operator system 10 is normally delivered from the factory with motor housing 48 having the extendable section 72 in the retracted position depicted in
Thus, it should be evident that the adjustable motor housing for a barrier locking operator disclosed herein carries out one or more of the objects of the present invention set forth above and otherwise constitutes an advantageous contribution to the art. As will be apparent to persons skilled in the art, modifications can be made to the preferred embodiment disclosed herein without departing from the spirit of the invention, the scope of the invention herein being limited solely by the scope of the attached claims.