The present disclosure relates generally to mounting brackets, and more particularly to mounting brackets used in frame systems for supporting photovoltaic panels on various types of support structures.
This section provides background information related to the present disclosure, which is not necessarily prior art.
With photovoltaic (PV) panel frame systems, typically the PV panels have to be supported at a slight angle relative to the support surface that they are supported from. Typically a frame system is employed that makes use of a plurality of bracket assemblies and elongated metallic frame members. The metallic frame members are typically supported above a support surface such as a roof of a building, although the frame members could be supported from a ground based support structure. The metallic frame members and bracket assemblies form an assembly to which the PV panels can be attached so that the PV panels can be supported in a stable manner above the support surface.
When the PV panels are securely mounted to the support frame members, typically the PV panels are adjusted so that their surfaces will be normal, or near normal, to the sun's rays that impinge them. Most often this involves using different types of brackets that support the PV panels relative to the frame members (and the support surface) such that a predetermined inclination is provided to the PV panels relative to the support surface. The degree of inclination may vary considerably, but often is between about 0-20 degrees for ballast frame systems and between about 0-30 degrees for roof mounted frame systems. So if the installer knows that a 5 degree inclination is needed for a specific installation on a specific roof surface, the installer will need to have a suitable quantity of support brackets on hand when installing the PV panels and the frame system on the specific roof surface. Since residential and commercial buildings have roof surfaces with a wide degree of different pitches, a frame system manufacturer will typically need to maintain a stock of bracket assemblies that provide different degrees of inclination to suit the specific needs of each installation project. As will be appreciated, this can add significant cost and complexity for the manufacturer of the frame system. This can also complicate inventory management for the manufacturer since a wide variety of different bracket assemblies may need to be kept in stock to meet the needs of different installations.
In one aspect the present disclosure relates to a bracket system for use with a photovoltaic panel frame system. The bracket system may be used to assist in mounting at least one photovoltaic panel at an angle non-parallel to a support surface on which the photovoltaic panel frame system is mounted. The bracket system may include a bracket assembly having a first member and a second member. The first member may have a neck portion and a foot portion extending non-parallel to the neck portion, with the foot portion having a radius of curvature. The second member may have a first surface having a radius of curvature that generally matches the radius of curvature of the foot portion. One of the first member and the second member may have an elongated slot formed therein and the other one of the first member and the second member may have a hole formed therein. A fastener may be adapted to extend through the elongated slot and the hole to secure the first and second members fixedly to a frame system component, and further such that the first member can be secured at a desired inclination relative to the frame system component.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
Referring now to
The PV panel system 10 in this example includes three PV panels 18, and 22 that are mounted closely adjacent one another. A pair of elongated frame members 24 and a pair of end frame members 26 form the PV frame system 16. Each of the frame members 24 and 26 preferably have integrally formed channels and are disposed to form a suitably shaped support framework. The frame system 16 enables the PV panels 18-22 to be supported thereon via a plurality of bracket assemblies 28 of the present disclosure along a frame member 24, and via a plurality of bracket assemblies 28′ along the frame member 25. This enables the PV panels 18, 20 and 22 to be supported non-parallel to the roof 12 of the building 14 with frame member 25 being at a higher elevation than frame member 24. The elongated frame members 24 and 25 and 26, as well as the end frame members 26, may each be secured to the roof 12 via a plurality of conventional mounting assemblies (not shown) that secure to the trusses of the roof 12, or by any other suitable structure. The bracket assemblies 28,28′ provide an adjustable degree of inclination to the PV panels 18-22 relative to the roof 12. As will be explained in further detail, the bracket assemblies 28,28′ may be secured by threaded bolts and nuts that engage within channels of the frame members 24 and/or 26.
Referring now to FIGS. 2A and 3-6, one of the bracket assemblies 28 can be seen in greater detail. Each bracket assembly 28 is intended to be used along the elevationally lower edge of the PV panels 18-22, and therefore is coupled to the frame member 24. Each bracket assembly 28 generally includes an L-shaped member 30, a base member 32, a washer 34 and a threaded bolt 36. The L-shaped member 30 includes a neck portion 38 having a head portion 40 with a vertically arranged slot 42. The head portion 40 may include a plurality of serrations, and typically is slightly offset from the remainder of the neck portion 38 as seen in
The base member 32 includes an upper surface 50 that is formed in an arc having a radius of curvature which is the same as the radius of curvature of the foot portion 44 of the L-shaped member 30. The upper surface 50 similarly includes a plurality of teeth 52 that engage with the teeth 48 of the L-shaped member 30 to positively hold the L-shaped member 30 at a predetermined angular orientation relative to the base member 32 when the two components are secured together by the threaded bolt 36 to one of the frame members 24.
With brief reference to
Referring to
Referring now to
Referring now to
In use the base member 32 and the L-shaped member 30 may be positioned on one of the elongated frame members 26. The L-shaped members 30 may each be positioned to provide the desired inclination before the threaded bolt 36 is tightened down. In this regard each of the base member 32 and the L-shaped member 30 may be provided with suitable markings on side portions thereof, such as on the sides of these components visible in
Referring briefly to
The bracket assemblies 28, 28′ can thus be quickly and easily configured to the desired inclination. Because of the significant degree of inclination adjustability that the bracket assemblies 28,28′ provide, the bracket assemblies 28,28′ can be used in a wide variety of applications where different degrees of inclination are needed. For a manufacturer, this significantly simplifies the manufacture of a PV frame system, as well as reducing the inventory of individual component parts that need to be kept on hand to meet the needs of different installations. Also, if the installer begins an installation and realizes that the needed degree of inclination for a PV panel system is slightly greater or lesser than originally planned for, this is no problem with the bracket assemblies 28,28′. Minor variations in the needed degree of inclination can easily be accommodated.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.