The present disclosure relates to systems for adjustably mounting components of an exhaust treatment system, for example, on an internal combustion engine.
Exhaust treatment components may comprise for example particulate filters, catalytic converters, and other elements through which exhaust gas is arranged to flow before being discharged to atmosphere. Such components often comprise a generally cylindrical housing, often referred to as a can, which forms a flowpath for the exhaust gas. A block of porous ceramic or other filter material may be arranged in the housing, which may be inwardly compressed to retain the block in position when the assembly is in motion, for example when attached to a vehicle engine, and to form a seal around the block so that the exhaust gas is forced to flow through the block along the length axis of the housing.
Often such blocks are of variable dimensions, even when produced under highly repeatable conditions, and so it is necessary to compress the housing to an indeterminate diameter to suit the exact dimensions of the block positioned inside the housing. Thus, the outer dimensions of individual housings may vary within a range of several millimetres.
The housing will usually include inlet and outlet connections which may be connected to upstream and downstream components of the exhaust treatment system. For example, where the housing is mounted on an internal combustion engine, the inlet connection may be connected to the outlet of a turbocharger, and the outlet to another, similar downstream treatment component.
Since the engine and other component specifications may vary from one engine build to another, and since in addition each component of the engine and exhaust gas treatment system is subject to manufacturing tolerances, it is often necessary to use flexible or adjustable fluid connectors in order to achieve a gas and pressure tight seal between adjacent components while compensating for slight misalignment between the components when they are fixed in position on the engine. Such connectors however increase the cost and overall dimensions of the assembly.
It is known to provide an adjustable mounting so that the position of each component can be varied to align the inlet and outlet connections correctly.
KR 200393143 Y1 for example discloses a mounting system for an exhaust treatment component, comprising a fixed vertical bracket and an arm extending horizontally from the bracket. The arm is positionally adjustable along the vertical direction of the bracket. A clamp for the exhaust component is connected to the arm and positionally adjustable along the horizontal direction of the arm.
U.S. Pat. No. 9,347,362 B2 discloses a mounting system for an exhaust treatment component, comprising two or more independently detachable brackets, each bracket having a mounting strap. The component is secured to the brackets by the straps.
Without using a flexible or adjustable fluid connector however it is often difficult to achieve satisfactory fluid connections between exhaust system components, particularly when they exhibit substantial dimensional tolerances, even when the components are mounted using an adjustable mounting system.
In a first aspect the present disclosure presents an assembly, and in a second aspect a mounting bracket, as defined in the claims.
The assembly and the mounting bracket are used for mounting a component of an exhaust treatment system to a support surface.
In the first aspect, the assembly includes a mount which is attachable to the support surface, together with at least two brackets and at least two bracket fixings. The mount defines at least two, substantially parallel mounting surfaces which are spaced apart along a length axis of the mount, each mounting surface extending in a respective adjustment plane substantially normal to the length axis. In use, each bracket is arranged in a use orientation with a clamping surface of the bracket in opposed relation to a respective one of the mounting surfaces. The brackets are configured for attachment of the component to all of the brackets in a use position wherein the component extends along the length axis. Each bracket is independently adjustable in its use orientation to define a selected clamping position which is variable in any direction in the respective adjustment plane. Each bracket fixing is operable to operatively engage the clamping surface of the respective bracket with the opposed mounting surface to fix the bracket to the mount in the selected clamping position.
Each bracket fixing may be arranged to be accessible and operable when the component is attached to all of the brackets in its use position.
In the second aspect, when considered in a reference plane passing through the bracket, the mounting bracket comprises two curved contact surfaces which are arranged to engage a curved outer surface of the component in its use position. Each contact surface defines an arc of a respective circle spaced by a radius from a respective centre point, the centre points of the respective circles being spaced apart in the reference plane so that each arc is contained in the circle of the other respective arc.
Two or more of the mounting brackets in accordance with the second aspect of the disclosure may form part of the assembly of the first aspect of the disclosure, in which case the reference plane will be substantially parallel with the respective adjustment plane. In the second aspect of the disclosure, the mounting bracket may also be used in other applications to mount a component of an exhaust treatment system directly on indirectly to a support surface. In the first aspect of the disclosure, the brackets may be arranged without the curved contact surfaces to suit the shape of the component.
In embodiments, the radius of each respective circle may be from 95% to 105% of the radius of the other respective circle, the centre points optionally being spaced apart by a distance not less than 8% and not more than 13% of the radius of each of the circles.
In embodiments, when considered in the reference plane, the contact surfaces may form opposite sides of a recess bounded by an open side through which in use the component may be introduced into the recess, the open side being defined as a straight line at which both contact surfaces terminate, wherein the centre points are spaced apart along a straight reference line collinear or substantially parallel with the open side. The reference line may be arranged outwardly of the recess with respect to the open side. The reference line and the open side may be spaced apart by a distance of not more than 4% of the radius of each of the circles.
Further features and advantages will be evident from the following illustrative embodiment which will now be described, purely by way of example and without limitation to the scope of the claims, and with reference to the accompanying drawings, in which:
Reference numerals and characters appearing in more than one of the figures indicate the same or corresponding parts in each of them.
Referring to
In the illustrated example, an inlet 8 is connected to the left hand end cap 3 and an outlet 9 to the right hand end cap 4 so that the housing defines a flowpath via which the exhaust gas can flow from the inlet 8 through the blocks 6 and out through the outlet 9. Two mounting straps 10 are welded respectively to the outer surface 5′ or 5″ of the reduced diameter portions 5 of the housing.
In use, the component 1 is mounted to a support surface 11, for example, a surface of the engine block or cylinder head of an internal combustion engine, by means of an assembly comprising a mount 20, two brackets 40, and two bracket fixings 60. In its use position as shown in
Referring also to
The length axis X1 extends in a general direction between the mounting surfaces and thus, in use, between the brackets 40 by which the component 1 is attached to the mount in its use position. It will be understood of course that the mount may have any shape consistent with its intended use situation, for example, to suit different engine configurations. In practice, small deviations from exact parallelism or perpendicularity are acceptable as long as the mounting surfaces permit adjustment of the two brackets to fix the component in its use position, as further described below.
In the illustrated example, the two pairs of mounting surfaces are arranged in opposed, facing relation, although they could alternatively face in the same direction or away from each other. Each mounting surface has a respective fixing hole 27 surrounded by a short, cylindrical collar 28 which extends away from the mounting surface on the opposite side of the respective flange 26.
Each bracket 40 is attachable to the support surface 11 (in the illustrated embodiment, via the pressed steel chassis of the mount) and configured for attachment of the component 1 to the bracket in a use position of the component, as will now be described.
Referring now to
In the illustrated embodiment the brackets 40 are identical, each bracket being symmetrical about a central reference plane P3 which passes through the bracket. The opposite flat sides of the bracket define clamping surfaces 43 which lie respectively in two common clamping planes P4 extending in parallel with the reference plane P3 on each side of the bracket. Conveniently, this allows the bracket to be used on either side of the mount 20, although if preferred, only one clamping surface or clamping plane may be provided. Each clamping surface 43 is provided with a fixing hole 44 to receive a bracket fixing 60. In the illustrated embodiment the bracket fixings 60 are threaded screws or bolts, with the fixing holes 44 being smooth or threaded to engage the screws, although of course other fixings may be used if preferred.
Referring to
Optionally, each bracket fixing 60 may be arranged to be accessible and operable when the component 1 is attached to all of the brackets 40 in its use position. In the illustrated embodiment this is facilitated by the collars 28 which extend the position of the head of the bracket fixing 60 away from the respective flange 26 of the mount so that it is more easily accessible by a short tool inserted behind the end cap 3 or 4 of the component 1 in its use position, as best seen in
During assembly, each bracket is arranged in a use orientation, as shown in
In one possible assembly procedure, the mount 20 may be fixed to the support surface 11 and the bracket fixings 60 engaged but left loose to retain the brackets 40 in their use orientation with the clamping surface 43 in parallel opposed relation to the respective mounting surface.
The component 1 may then be positioned in the recesses 45 of the brackets and fluidly connected to the upstream and downstream exhaust system components 12, 13 which define its use position.
Next, the component 1 may be attached and rigidly clamped to the bracket by component fixings 62 passing through the ends of its mounting straps 10 into the fixing holes 46 in the ends of the bracket. As the component fixings 62 are tightened they move each of the brackets 40 slidingly in the plane of its clamping surface 43 into its final clamping position.
Referring to
Finally, each bracket fixing 60 may be operated (e.g. tightened) to operatively engage the clamping surface 43 of the respective bracket 40 with the respective opposed mounting surface 22, 23, 24 or 25 to fix the bracket to the mount 20 in the selected clamping position on the mounting surface.
The bracket fixings 60 may act in tension to obtain sufficient friction between the clamping surface 43 and the mounting surface to restrain the component 1 against movement by dynamic forces, for example, when mounted on a vehicle. The clamping surface 43 may directly engage the respective mounting surface or may be spaced from the mounting surface by a suitable sheet material or the like, for example, to increase friction between the facing surfaces.
Referring now to
The radius R1, R2 of each circle may be selected to be somewhat greater than the radius of the curved surface of the component 1 which is clamped against the curved surfaces 41, 42 in its use position.
Referring to
The configuration of the curved contact surfaces thus accommodates the variation in the component diameter with relatively little difference in the use position of the component between each of the extreme cases as shown. In practice, the ends of the mounting straps 10 may be sufficiently flexible to accommodate the small variation in the use position of the component while effectively clamping the component to the contact surfaces.
Referring again to
Referring again to
Preferably the reference line L2 is arranged outwardly of the recess 45 with respect to the open side L1, as shown. In this case, further preferably, the reference line L2 and the open side L1 may be spaced apart by a distance D2 of not more than 4% of the radius R1, R2 of each of the circles C1, C2, as shown. Most preferably, the distance D2 between the reference line L2 and the open side L1 may be about 2.5%-3.5% of the radius R1, R2 of each of the circles C1, C2.
Again, when configured in this way it is found that the contact surfaces conform particularly closely to the cylindrical curvature of a component housing of variable diameter smaller than that of the circles C1, C2.
The novel assembly may be used to attach an exhaust treatment component to a support surface, for example, on an engine or in another use situation, in a use position which is determined by its fluid connections to the upstream and downstream components of the exhaust treatment system and not by the predetermined fixed position of the mount or the brackets. The configuration of the brackets makes it easy to adjust the brackets in any required direction in the adjustment plane P1, P2 to conform to the use position of the component. The brackets may then be clamped to the mounting surfaces to fix the component in its use position against dynamic forces which it may experience in use.
The brackets accommodate dimensional variations in the contact surface 5′, 5″ of the housing so that the component is supported over a substantial part of its surface area with minimal flexure of the housing, irrespective of its actual diameter within its dimensional tolerance range, and with little difference in the use position of the component.
When the brackets are used in the novel assembly, even the small difference in the use position of the component 1 in the brackets at each the extremities of its dimensional tolerance range can be accommodated by movement of the brackets relative to the mount, as can other variations in the dimensions and positions of the remaining components of the exhaust treatment assembly and support surface.
Finally, by providing for the clamping position of each of the brackets to move in any required direction in the adjustment plane while the bracket is loosely connected to the mounting surface in its use orientation, and by making it possible to fix each of the brackets in its final clamping position after arranging the component 1 in its use position, it is possible to install the complete assembly without measuring or predefining the bracket positions, which are defined simply by attaching the component 1 to the brackets. Since each bracket is independently adjustable, the use position of the component may vary both in translation and in rotation in multiple directions as dictated by its use environment, so that rigid fluid connections can be used instead of more bulky, flexible fluid connections.
In summary, an exhaust treatment component may be mounted in brackets, each bracket having a clamping surface which in a use orientation is arranged in parallel with a corresponding mounting surface of a fixed mount, the mounting surfaces defining adjustment planes which are spaced apart along a length axis of the mount. Each bracket may be adjusted independently in its use orientation to define a variable clamping position in the adjustment plane. In another aspect, the component may be mounted in one or more brackets, each bracket comprising curved contact surfaces, each surface being defined by an arc of a respective circle, each arc being contained in the circle of the other respective arc. The component can be clamped to the bracket irrespective of its diameter. The brackets may be assembled to the mount to mount a component of indeterminate diameter in an indeterminate mounting position which is variable in both rotation and translation in multiple directions.
In alternative embodiments the assembly may comprise more than two brackets and mounting surfaces. The mounting surfaces need not be arranged in pairs; each mounting surface could have alternative fixing arrangements, for example, a single hole, more than two holes, or any suitable surface cooperating with the bracket fixings. The clamping surfaces and mounting surfaces could be coated or textured, e.g. serrated or knurled, to provide an enhanced friction connection. Instead of a threaded fastening or fastenings, each of the bracket fixings might comprise one or more clamps or any other suitable arrangement for engaging the bracket with the respective mounting surface. Instead of the fixing holes 46, the brackets may have any suitable shape or features to facilitate the attachment of the component 1 in its use position.
The brackets may have any suitable shape within the scope of the claims. In embodiments where the brackets are used without the mount, the brackets may be configured with any suitable mounting holes, flanges or other surfaces or features to facilitate the direct or indirect attachment of the brackets to a support surface.
Many further possible adaptations are possible within the scope of the claims.
In the claims, reference characters and numerals are provided in parentheses for ease of reference, and should not be construed as limiting features.
Number | Date | Country | Kind |
---|---|---|---|
1801606.3 | Jan 2018 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/025027 | 1/29/2019 | WO | 00 |