This application claims priority to International PCT Application No. PCT/FI2006/050341 having an international filing date of Jul. 13, 2006, which claims priority to Finland Patent Application No. 20055420 filed Jul. 25, 2005, each of the foregoing incorporated herein by reference in its entirety.
A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.
The invention relates to an adjustable multiband antenna especially applicable in mobile terminals. The invention further relates to a radio device equipped with such an antenna.
The adjustability of an antenna means in this description, that a resonance frequency or frequencies of the antenna can be changed electrically. The aim is that the operating band of the antenna around a resonance frequency always covers the frequency range, which the function presumes at each time. There are different causes for the need for adjustability. As portable radio devices, like mobile terminals, are becoming smaller thickness-wise, too, the distance between the radiating plane and the ground plane of an internal planar antenna unavoidably becomes shorter. This results in e.g. that the antenna bandwidths will decrease. Then, as a mobile terminal is intended for operating in a plurality of radio systems having frequency ranges relatively close to each other, it becomes more difficult or impossible to cover frequency ranges used by more than one radio system. Such a system pair is for instance GSM1800 and GSM1900 (Global System for Mobile telecommunications). Correspondingly, securing the function that conforms to specifications in both transmitting and receiving bands of a single system can become more difficult. If the system uses sub-band division, it is advantageous if the resonance frequency of the antenna can be tuned in a sub-band being used at each time, from the point of view of the radio connection quality.
In the invention described here the antenna adjusting is implemented by a switch. The use of switches for the purpose in question is well known as such. For example the publication EP1113 524 discloses an antenna, where a planar radiator can at a certain point be connected to the ground by a switch. When the switch is closed, the electric length of the radiator is decreased, in which case the antenna resonance frequency becomes higher and the operating band corresponding to the resonance frequency is displaced upwards. A capacitor can be in series with the switch to set the band displacement as large as desired. The solution is suitable for single-band antennas. The controlled displacement of the operating bands of a multi-band antenna is impossible.
In
The object of the filter 132 is to strict the effect of the switching only to one operating band. If it is desired that the effect is stricted e.g. to the upper operating band, the filter is made to be of high-pass type, and its cut-off frequency is arranged between the antenna operating bands. In this case the lower operating band is located in the stop band of the filter, and the impedance of the adjusting circuit at the frequencies of the lower operating band is high in both states of the switch. Changing the switch state then causes neither a change in the electric length of the antenna nor a displacement of the lower operating band.
In the solution according to
In
Both the lower and upper operation band can be displaced in the structure according to
The lengths of the first and fourth transmission line are in the order of the quarter wave. If that length is shorter than the quarter wave, connecting a short extension line to its end results in that the band is displaced upwards, and if the length is longer than the quarter wave, connecting a short extension line to its end results in that the band is displaced downwards. The losses caused by the switch and thus the influence of the switch on the antenna efficiency depend on the length of the transmission line joining the radiating plane. That length and the lengths of the extension lines can be optimized so that the desired band displacements will be obtained at the cost of relatively small lowering of the antenna efficiency. The adjusting circuits further may comprise discrete tuning capacitors as an addition or replacing some transmission lines.
In the solution described above, the controlled displacement of two bands requires two adjusting circuits with their switches. This means a relatively complicated structure and high production costs.
In a first aspect of the invention, an adjusting circuit of an antenna, which has at least two operating bands is disclosed. In one embodiment, the adjusting circuit of an antenna is galvanically connected to a point of the radiator, where the circuit can affect the places of two antenna operating bands. The adjusting circuit comprises a multi-pole switch, by which said radiator point can be connected to one of alternative transmission lines. For example, one of the two transmission lines is open and another shorted. A discrete capacitor can be located between the separate conductor of the transmission line and an output pole of the switch as an additive tuning element. The adjusting circuit further comprises an LC circuit between the radiator and the switch. Among other things, the lengths of the transmission lines, the values of the discrete components and the distance between the antenna short-circuit point and the adjusting circuit connecting point then are variables from the point of view of the antenna adjusting. Such values are calculated for these variables that each of the two antenna operation bands separately shifts to a desired other place, when the switch state is changed.
An advantage of the invention is that desired displacements for the two antenna operation bands are obtained. One of the displacements can be set as zero, too. Another advantage of the invention is that these displacements can be implemented by a relatively simple adjusting circuit, which is connected to the radiator only at one point. A further advantage of the invention is that the space required for the antenna adjusting circuit is relatively small. This is due to that physically very short transmission lines are enough in the adjusting circuit according to the invention. A further advantage of the invention is that a relatively high efficiency is achieved for the antenna despite the use of a switch. A further advantage of the invention is that said LC circuit functions as an ESD protector (electro-static discharge) for the switch at the same time.
In an alternative, embodiment, the adjustable antenna comprises at least a lower and an upper operating band comprises a ground plane; a radiating plane; and an adjusting circuit for displacing at least one of said lower and upper operating bands. The adjusting circuit comprises an LC circuit with an input coupled to the radiating plane, a switch with its fixed end coupled to an output of the LC circuit and at least two tuning lines, the first of which is coupled to a first output pole of the switch and the second of said tuning lines coupled to a second output pole of the switch.
In one variant, the electric distance in the radiating plane between a grounding point and an adjusting point is arranged for desired displacements of the operating bands.
In another variant, the length of the tuning lines is at the most a fifth of the wavelength corresponding to the highest utilization frequency of the antenna.
In yet another variant, the first tuning line of the adjusting circuit is open at its tail end and the second tuning line is short-circuited at its tail end, and the adjusting circuit further comprises a capacitor connected between the second output pole of the switch and a separate conductor of the second tuning line.
In yet another variant, the radiating plane is coupled to the second tuning line, the adjusting circuit corresponds to a short-circuited transmission line with a quarter wavelength in the upper operating band, and the capacitance of the capacitor is arranged so that the adjusting circuit corresponds to a short-circuited transmission line with a zero length in the lower operating band, and when the radiator is connected to the first tuning line, the adjusting circuit corresponds to an open transmission line with a quarter wavelength in the upper operating band and the inductance of a coil of the LC circuit is arranged so that the adjusting circuit corresponds to an open transmission line with a zero length in the lower operating band.
In yet another variant, the first tuning line of the adjusting circuit is open at its tail end and the second tuning line is terminated by another coil at its tail end to keep the upper operating band in its place when the state of the switch changes.
In yet another variant the length of the tuning lines is less than a twentieth of the wavelength corresponding to the highest utilization frequency of the antenna.
In yet another variant, the number of the output poles of the switch is at least three to increase the number of alternative places of at least one operating band.
In yet another variant, the LC circuit comprises an ESD protector of the switch.
In yet another variant, the LC circuit is a low-pass filter limiting the effect of changing the switch state to the lower operating band.
In yet another variant, the LC circuit is a high-pass filter limiting the effect of changing the switch state to the upper operating band.
In a second aspect of the invention, a method of operating a multi-band adjustable antenna is disclosed. In one embodiment, the multi-band adjustable antenna comprises at least two operating bands and an adjusting circuit with the adjusting circuit comprising a switch, and the method comprises operating the multi-band adjustable antenna in a first state having at least first and second operating bands; switching the state of the switch; and operating the multi-band adjustable antenna in a second state having at least third and fourth operating bands.
In one variant, at least one of the operating bands comprises the GSM900 operating band.
In yet another variant, at least one of the one of the operating bands comprises the GSM1800 operating band.
In yet another variant, at least one of the operating bands comprises the GSM850 operating band.
In yet another variant, at least one of the operating bands comprises the GSM1900 operating band.
In a third aspect of the invention, apparatus incorporating the aforementioned antenna apparatus are disclosed. In one embodiment, the apparatus comprises a radio device, comprising: a radio transceiver circuit; and an adjustable multiband antenna having at least a lower and an upper operating band, said antenna comprising: a ground plane; a radiating plane; and an adjusting circuit for displacing at least one of said lower and upper operating bands.
In one variant, the adjusting circuit comprises: an LC circuit with an input coupled to the radiating plane; a switch with its fixed end coupled to an output of the LC circuit; and at least two tuning lines, the first of which is coupled to a first output pole of the switch and the second of said tuning lines coupled to a second output pole of the switch.
Based on the location of the adjusting point X, a circuit connected to it affects both the lower and the upper operating band. If the adjusting point were connected directly to the ground plane, for example, the electric length of the antenna parts corresponding to both the lower and the upper operating band would decrease, in which case both bands would shift upwards. The adjusting circuit connected to the adjusting point is located either below the radiating plane 320 or on the opposite side of the circuit board PCB.
The electric distance between the grounding point G and the adjusting point X has a significant effect on how big the band displacements are when the adjusting circuit is controlled. In an antenna according to the invention, said distance is one variable in addition to the variables of the adjusting circuit when a desired result is seeked. An arrangement is included in the radiating plane for setting said distance. At the simplest, this arrangement means only that the direct distance between the points G and X is chosen to be suitable. In the example of
In this example the first tuning line 434 is open at its tail end, and the second tuning line 435 is short-circuited at its tail end. The tuning lines are short, usually shorter than the quarter wavelength. In that case the open line represents a certain capacitance, and the short-circuited line represents a certain inductance. As known, the values of the capacitance and the inductance depend on the frequency: At the frequencies of the upper operating band they are higher than at the frequencies of the lower operating band, if the line is shorter than the quarter wavelength also in the upper band. The frequency-dependency of the capacitance in the discrete capacitor is just negligible. So the lengths of the tuning lines are used as variables in this invention when the adjusting circuit is designed. Among other things, the values of the discrete components of the adjusting circuit, the length of the input line 431 and the electric distance between the grounding point G and the adjusting point X in the radiating plane, mentioned in the description of
The capacitor C2 functions also as a blocking capacitor preventing the forming of a direct current circuit through the short-circuited tuning line as seen from the control circuit of the switch. On the side of the open tuning line, no blocking capacitor is needed, of course, but also there could be a discrete component for the tuning purpose.
The number of the switch operating states and of the tuning lines or circuits corresponding to those states can naturally be also more than two to implement several alternative places for an operating band. On the other hand, more than two operating bands may be implemented by the radiating plane, in which case the displacements of them all can be controlled by one adjusting circuit to some extent.
In the example of
Another alternative would be to design the adjusting circuit so that when the radiator is connected to the open tuning line, the whole adjusting circuit would be “seen” as an open transmission line with about a quarter wavelength at the frequencies of the lower operating band, and correspondingly as an open transmission line with about a half wavelength at the frequencies of the upper operating band. On the other hand, when the radiator is connected to the short-circuited tuning line, the whole adjusting circuit would be “seen” as a short-circuited transmission line with about a quarter wavelength at the frequencies of the lower operating band, and correspondingly as a short-circuited transmission line with about a half wavelength at the frequencies of the upper operating band. Also in this case the impedance of the adjusting circuit would change from low to high in the lower operating band and from high to low in the upper operating band, when the switch state is changed. This again results in that the lower operating band shifts down-wards and the upper operating band shifts upwards, as in the previous case corresponding to the exemplary design. Using discrete components according to the invention, the physical lengths of the transmission lines needed are considerably shorter, for which reason the adjusting circuit fits into a smaller space.
The left end of the curve 61 represents the band used by GSM900 system and the right end represents the band used by GSM1800 system. In the previous band the adjusting circuit impedance is intended to be low, in which case particularly the resistive part of the impedance should be low. The resistive part is indeed only about 5% of the antenna characteristics impedance. In the band used by GSM1800 system the adjusting circuit impedance is intended to be high. In this example it is inductive and has an absolute value, which is about five times the antenna characteristics impedance. The left end of the curve 62 represents the band used by GSM1900 system and the right end represents the band used by GSM850 system. In the previous band the adjusting circuit impedance is intended to be low, in which case particularly the resistive part of the impedance should be low. The resistive part is indeed less than 10% of the antenna characteristics impedance. In the band used by GSM850 system the adjusting circuit impedance is intended to be high. In this example it is inductive and has an absolute value, which is nearly three times the antenna characteristics impedance.
The antenna proper and the adjusting circuit are designed so that when the radiator is connected to the open tuning line, the antenna's upper operating band covers e.g. the frequency range of the GSM1800 system and the lower operating band covers e.g. the frequency range of the GSM850 system. At the frequencies of the lower operating band the adjusting circuit impedance is arranged to be relatively high. The inductance of the coil L2 is chosen so that its reactance in the upper operating band is relatively high. For this reason the adjusting circuit impedance hardly changes at the frequencies of the upper operating band when the radiator is connected to the tuning line, which is terminated by the coil L2. In that case the upper operating band remains nearly in its place. Instead, at the frequencies of the lower operating band the adjusting circuit impedance becomes lower so that the lower operating band shifts upwards for example to the range used by the GSM900 system.
Another way to limit the effect of the switch to one operating band is to implement the LC circuit between the radiator and the switch as a filter, the cut-off frequency of which is located between the lower and upper operating bands of the antenna. When the object is to displace only the upper operating band, the filter is of high-pass type, and when the object is to displace only the lower operating band, the filter is of low-pass type. The order of the filter is naturally selectable. Also this kind of filter functions at the same time as an ESD protector for the switch. For this aim a high-pass part can be added to the low-pass filter so that a bandpass filter is formed.
The antenna in
The adjustable multiband antenna according to the invention has been described above. Its structure can naturally differ from that presented. The invention does not limit the manufacturing method of the antenna. The antenna can be e.g. ceramic, in which case the radiators are conductive coatings of the ceramics. The switch used in the adjusting circuit can be of e.g. the FET (Field Effect Transistor), PHEMT (Pseudomorphic High Electron Mobility Transistor) or MEMS (Micro Electro Mechanical System) type. It is possible to use a capacitance diode as the adjusting component, too. The inventive idea can be applied in different ways within the scope defined by the independent claim 1.
Number | Date | Country | Kind |
---|---|---|---|
20055420 | Jul 2005 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI2006/050341 | 7/13/2006 | WO | 00 | 7/27/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/012697 | 1/2/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2745102 | Norgorden | May 1956 | A |
3938161 | Sanford | Feb 1976 | A |
4004228 | Mullett | Jan 1977 | A |
4028652 | Wakino et al. | Jun 1977 | A |
4031468 | Ziebell et al. | Jun 1977 | A |
4054874 | Oltman | Oct 1977 | A |
4069483 | Kaloi | Jan 1978 | A |
4123756 | Nagata et al. | Oct 1978 | A |
4123758 | Shibano et al. | Oct 1978 | A |
4131893 | Munson et al. | Dec 1978 | A |
4201960 | Skutta et al. | May 1980 | A |
4255729 | Fukasawa et al. | Mar 1981 | A |
4313121 | Campbell et al. | Jan 1982 | A |
4356492 | Kaloi | Oct 1982 | A |
4370657 | Kaloi | Jan 1983 | A |
4423396 | Makimoto et al. | Dec 1983 | A |
4431977 | Sokola et al. | Feb 1984 | A |
4546357 | Laughon et al. | Oct 1985 | A |
4559508 | Nishikawa et al. | Dec 1985 | A |
4625212 | Oda et al. | Nov 1986 | A |
4652889 | Bizouard et al. | Mar 1987 | A |
4661992 | Garay et al. | Apr 1987 | A |
4692726 | Green et al. | Sep 1987 | A |
4703291 | Nishikawa et al. | Oct 1987 | A |
4706050 | Andrews | Nov 1987 | A |
4716391 | Moutrie et al. | Dec 1987 | A |
4740765 | Ishikawa et al. | Apr 1988 | A |
4742562 | Kommrusch | May 1988 | A |
4761624 | Igarashi et al. | Aug 1988 | A |
4800348 | Rosar et al. | Jan 1989 | A |
4800392 | Garay et al. | Jan 1989 | A |
4821006 | Ishikawa et al. | Apr 1989 | A |
4823098 | DeMuro et al. | Apr 1989 | A |
4827266 | Sato et al. | May 1989 | A |
4829274 | Green et al. | May 1989 | A |
4862181 | PonceDeLeon et al. | Aug 1989 | A |
4879533 | De Muro et al. | Nov 1989 | A |
4896124 | Schwent | Jan 1990 | A |
4954796 | Green et al. | Sep 1990 | A |
4965537 | Kommrusch | Oct 1990 | A |
4977383 | Niiranen | Dec 1990 | A |
4980694 | Hines | Dec 1990 | A |
5017932 | Ushiyama et al. | May 1991 | A |
5047739 | Kuokkanene | Sep 1991 | A |
5053786 | Silverman et al. | Oct 1991 | A |
5097236 | Wakino et al. | Mar 1992 | A |
5103197 | Turunen | Apr 1992 | A |
5109536 | Kommrusch | Apr 1992 | A |
5155493 | Thursby et al. | Oct 1992 | A |
5157363 | Puurunen | Oct 1992 | A |
5159303 | Flink | Oct 1992 | A |
5166697 | Viladevall et al. | Nov 1992 | A |
5170173 | Krenz et al. | Dec 1992 | A |
5203021 | Repplinger et al. | Apr 1993 | A |
5210510 | Karsikas | May 1993 | A |
5210542 | Pett et al. | May 1993 | A |
5220335 | Huang | Jun 1993 | A |
5229777 | Doyle | Jul 1993 | A |
5239279 | Turunen | Aug 1993 | A |
5278528 | Turunen | Jan 1994 | A |
5281326 | Galla | Jan 1994 | A |
5298873 | Ala-Kojola | Mar 1994 | A |
5302924 | Jantunen | Apr 1994 | A |
5304968 | Ohtonen | Apr 1994 | A |
5307036 | Turunen | Apr 1994 | A |
5319328 | Turunen | Jun 1994 | A |
5349315 | Ala-Kojola | Sep 1994 | A |
5349700 | Parker | Sep 1994 | A |
5351023 | Niiranen | Sep 1994 | A |
5354463 | Turunen | Oct 1994 | A |
5355142 | Marshall et al. | Oct 1994 | A |
5357262 | Blaese | Oct 1994 | A |
5363114 | Shoemaker | Nov 1994 | A |
5369782 | Kawano et al. | Nov 1994 | A |
5382959 | Pett et al. | Jan 1995 | A |
5386214 | Sugawara | Jan 1995 | A |
5387886 | Takalo | Feb 1995 | A |
5394162 | Korovesis et al. | Feb 1995 | A |
RE34898 | Turunen et al. | Apr 1995 | E |
5408206 | Turunen | Apr 1995 | A |
5418508 | Puurunen | May 1995 | A |
5432489 | Yrjola | Jul 1995 | A |
5438697 | Fowler et al. | Aug 1995 | A |
5440315 | Wright et al. | Aug 1995 | A |
5442280 | Baudart | Aug 1995 | A |
5442366 | Sanford | Aug 1995 | A |
5444453 | Lalezari | Aug 1995 | A |
5467065 | Turunen | Nov 1995 | A |
5473295 | Turunen | Dec 1995 | A |
5506554 | Ala-Kojola | Apr 1996 | A |
5508668 | Prokkola | Apr 1996 | A |
5517683 | Collett et al. | May 1996 | A |
5521561 | Yrjola | May 1996 | A |
5532703 | Stephens et al. | Jul 1996 | A |
5541560 | Turunen | Jul 1996 | A |
5541617 | Connolly et al. | Jul 1996 | A |
5543764 | Turunen | Aug 1996 | A |
5550519 | Korpela | Aug 1996 | A |
5557287 | Pottala et al. | Sep 1996 | A |
5557292 | Nygren et al. | Sep 1996 | A |
5570071 | Ervasti | Oct 1996 | A |
5585771 | Ervasti | Dec 1996 | A |
5585810 | Tsuru et al. | Dec 1996 | A |
5589844 | Belcher et al. | Dec 1996 | A |
5594395 | Niiranen | Jan 1997 | A |
5604471 | Rattila | Feb 1997 | A |
5627502 | Ervasti | May 1997 | A |
5649316 | Prudhomme et al. | Jul 1997 | A |
5668561 | Perrotta et al. | Sep 1997 | A |
5675301 | Nappa | Oct 1997 | A |
5689221 | Niiranen | Nov 1997 | A |
5694135 | Dikun et al. | Dec 1997 | A |
5703600 | Burrell et al. | Dec 1997 | A |
5709832 | Hayes et al. | Jan 1998 | A |
5711014 | Crowley et al. | Jan 1998 | A |
5717368 | Niiranen | Feb 1998 | A |
5731749 | Yrjola | Mar 1998 | A |
5734305 | Ervasti | Mar 1998 | A |
5734350 | Deming et al. | Mar 1998 | A |
5734351 | Ojantakanen | Mar 1998 | A |
5739735 | Pyykko | Apr 1998 | A |
5742259 | Annamaa | Apr 1998 | A |
5757327 | Yajima et al. | May 1998 | A |
5764190 | Murch et al. | Jun 1998 | A |
5767809 | Chuang et al. | Jun 1998 | A |
5768217 | Sonoda et al. | Jun 1998 | A |
5777581 | Lilly et al. | Jul 1998 | A |
5777585 | Tsuda et al. | Jul 1998 | A |
5793269 | Ervasti | Aug 1998 | A |
5812094 | Maldonado | Sep 1998 | A |
5815048 | Ala-Kojola | Sep 1998 | A |
5822705 | Lehtola | Oct 1998 | A |
5852421 | Maldonado | Dec 1998 | A |
5861854 | Kawahata et al. | Jan 1999 | A |
5874926 | Tsuru et al. | Feb 1999 | A |
5880697 | McCarrick et al. | Mar 1999 | A |
5886668 | Pedersen et al. | Mar 1999 | A |
5892490 | Asakura et al. | Apr 1999 | A |
5903820 | Hagstrom | May 1999 | A |
5905475 | Annamaa | May 1999 | A |
5920290 | McDonough et al. | Jul 1999 | A |
5926139 | Korisch | Jul 1999 | A |
5929813 | Eggleston | Jul 1999 | A |
5936583 | Sekine et al. | Aug 1999 | A |
5943016 | Snyder, Jr. et al. | Aug 1999 | A |
5952975 | Pedersen et al. | Sep 1999 | A |
5959583 | Funk | Sep 1999 | A |
5963180 | Leisten | Oct 1999 | A |
5966097 | Fukasawa et al. | Oct 1999 | A |
5970393 | Khorrami et al. | Oct 1999 | A |
5977710 | Kuramoto et al. | Nov 1999 | A |
5986606 | Kossiavas et al. | Nov 1999 | A |
5986608 | Korisch et al. | Nov 1999 | A |
5990848 | Annamaa | Nov 1999 | A |
5999132 | Kitchener et al. | Dec 1999 | A |
6005529 | Hutchinson | Dec 1999 | A |
6006419 | Vandendolder et al. | Dec 1999 | A |
6008764 | Ollikainen | Dec 1999 | A |
6009311 | Killion et al. | Dec 1999 | A |
6014106 | Annamaa | Jan 2000 | A |
6016130 | Annamaa | Jan 2000 | A |
6023608 | Yrjola | Feb 2000 | A |
6031496 | Kuittinen et al. | Feb 2000 | A |
6034637 | McCoy et al. | Mar 2000 | A |
6034640 | Oida et al. | Mar 2000 | A |
6037848 | Alila | Mar 2000 | A |
6043780 | Funk et al. | Mar 2000 | A |
6072434 | Papatheodorou | Jun 2000 | A |
6078231 | Pelkonen | Jun 2000 | A |
6091363 | Komatsu et al. | Jul 2000 | A |
6097345 | Walton | Aug 2000 | A |
6100849 | Tsubaki et al. | Aug 2000 | A |
6112106 | Crowley et al. | Aug 2000 | A |
6133879 | Grangeat et al. | Oct 2000 | A |
6134421 | Lee et al. | Oct 2000 | A |
6140973 | Annamaa | Oct 2000 | A |
6147650 | Kawahata et al. | Nov 2000 | A |
6157819 | Vuokko | Dec 2000 | A |
6177908 | Kawahata | Jan 2001 | B1 |
6185434 | Hagstrom | Feb 2001 | B1 |
6190942 | Wilm et al. | Feb 2001 | B1 |
6195049 | Kim et al. | Feb 2001 | B1 |
6204826 | Rutkowski et al. | Mar 2001 | B1 |
6215376 | Hagstrom | Apr 2001 | B1 |
6246368 | Deming et al. | Jun 2001 | B1 |
6252552 | Tarvas et al. | Jun 2001 | B1 |
6252554 | Isohatala et al. | Jun 2001 | B1 |
6255994 | Saito | Jul 2001 | B1 |
6259029 | Hand | Jul 2001 | B1 |
6268831 | Sanford | Jul 2001 | B1 |
6297776 | Pankinaho | Oct 2001 | B1 |
6304220 | Herve et al. | Oct 2001 | B1 |
6308720 | Modi | Oct 2001 | B1 |
6316975 | O'Toole et al. | Nov 2001 | B1 |
6323811 | Tsubaki et al. | Nov 2001 | B1 |
6326921 | Egorov et al. | Dec 2001 | B1 |
6337663 | Chi-Minh | Jan 2002 | B1 |
6340954 | Annamaa et al. | Jan 2002 | B1 |
6342859 | Kurz et al. | Jan 2002 | B1 |
6346914 | Annamaa | Feb 2002 | B1 |
6348892 | Annamaa | Feb 2002 | B1 |
6353443 | Ying | Mar 2002 | B1 |
6366243 | Isohatala | Apr 2002 | B1 |
6377827 | Rydbeck | Apr 2002 | B1 |
6380905 | Annamaa | Apr 2002 | B1 |
6396444 | Goward | May 2002 | B1 |
6404394 | Hill | Jun 2002 | B1 |
6417813 | Durham | Jul 2002 | B1 |
6423915 | Winter | Jul 2002 | B1 |
6429818 | Johnson et al. | Aug 2002 | B1 |
6452551 | Chen | Sep 2002 | B1 |
6452558 | Saitou et al. | Sep 2002 | B1 |
6456249 | Johnson et al. | Sep 2002 | B1 |
6459413 | Tseng et al. | Oct 2002 | B1 |
6462716 | Kushihi | Oct 2002 | B1 |
6469673 | Kaiponen | Oct 2002 | B2 |
6473056 | Annamaa | Oct 2002 | B2 |
6476769 | Lehtola | Nov 2002 | B1 |
6480155 | Eggleston | Nov 2002 | B1 |
6501425 | Nagumo | Dec 2002 | B1 |
6518925 | Annamaa | Feb 2003 | B1 |
6529168 | Mikkola | Mar 2003 | B2 |
6535170 | Sawamura | Mar 2003 | B2 |
6538604 | Isohatala | Mar 2003 | B1 |
6549167 | Yoon | Apr 2003 | B1 |
6556812 | Pennanen et al. | Apr 2003 | B1 |
6566944 | Pehlke et al. | May 2003 | B1 |
6580396 | Lin | Jun 2003 | B2 |
6580397 | Lindell | Jun 2003 | B2 |
6600449 | Onaka | Jul 2003 | B2 |
6603430 | Hill et al. | Aug 2003 | B1 |
6606016 | Takamine | Aug 2003 | B2 |
6611235 | Barna et al. | Aug 2003 | B2 |
6614400 | Egorov | Sep 2003 | B2 |
6614405 | Mikkonen | Sep 2003 | B1 |
6634564 | Kuramochi | Oct 2003 | B2 |
6636181 | Asano | Oct 2003 | B2 |
6639564 | Johnson | Oct 2003 | B2 |
6646606 | Mikkola | Nov 2003 | B2 |
6650295 | Ollikainen et al. | Nov 2003 | B2 |
6657593 | Nagumo et al. | Dec 2003 | B2 |
6657595 | Alameh et al. | Dec 2003 | B1 |
6670926 | Miyasaka | Dec 2003 | B2 |
6677903 | Wang | Jan 2004 | B2 |
6683573 | Park | Jan 2004 | B2 |
6693594 | Pankinaho et al. | Feb 2004 | B2 |
6717551 | Desclos et al. | Apr 2004 | B1 |
6727857 | Mikkola et al. | Apr 2004 | B2 |
6734825 | Guo et al. | May 2004 | B1 |
6734826 | Dai et al. | May 2004 | B1 |
6738022 | Klaavo et al. | May 2004 | B2 |
6741214 | Kadambi et al. | May 2004 | B1 |
6753813 | Kushihi | Jun 2004 | B2 |
6759989 | Tarvas et al. | Jul 2004 | B2 |
6765536 | Phillips et al. | Jul 2004 | B2 |
6774853 | Wong et al. | Aug 2004 | B2 |
6781545 | Sung | Aug 2004 | B2 |
6801166 | Mikkola | Oct 2004 | B2 |
6801169 | Chang et al. | Oct 2004 | B1 |
6806835 | Iwai | Oct 2004 | B2 |
6819287 | Sullivan et al. | Nov 2004 | B2 |
6819293 | De Graauw | Nov 2004 | B2 |
6825818 | Toncich | Nov 2004 | B2 |
6836249 | Kenoun et al. | Dec 2004 | B2 |
6847329 | Ikegaya et al. | Jan 2005 | B2 |
6856293 | Bordi | Feb 2005 | B2 |
6862437 | McNamara | Mar 2005 | B1 |
6862441 | Ella | Mar 2005 | B2 |
6873291 | Aoyama | Mar 2005 | B2 |
6876329 | Milosavljevic | Apr 2005 | B2 |
6882317 | Koskiniemi | Apr 2005 | B2 |
6891507 | Kushihi et al. | May 2005 | B2 |
6897810 | Dai et al. | May 2005 | B2 |
6900768 | Iguchi et al. | May 2005 | B2 |
6903692 | Kivekas | Jun 2005 | B2 |
6911945 | Korva | Jun 2005 | B2 |
6922171 | Annamaa et al. | Jul 2005 | B2 |
6925689 | Folkmar | Aug 2005 | B2 |
6927792 | Mimura et al. | Aug 2005 | B1 |
6937196 | Korva | Aug 2005 | B2 |
6950066 | Hendler et al. | Sep 2005 | B2 |
6950068 | Bordi | Sep 2005 | B2 |
6952144 | Javor | Oct 2005 | B2 |
6952187 | Annamaa | Oct 2005 | B2 |
6958730 | Nagumo et al. | Oct 2005 | B2 |
6961544 | Hagstrom | Nov 2005 | B1 |
6963308 | Korva | Nov 2005 | B2 |
6963310 | Horita et al. | Nov 2005 | B2 |
6967618 | Ojantakanen et al. | Nov 2005 | B2 |
6975278 | Song et al. | Dec 2005 | B2 |
6985108 | Mikkola | Jan 2006 | B2 |
6992543 | Luetzelschwab et al. | Jan 2006 | B2 |
6995710 | Sugimoto et al. | Feb 2006 | B2 |
7023341 | Stilp | Apr 2006 | B2 |
7031744 | Kuriyama et al. | Apr 2006 | B2 |
7042403 | Colburn et al. | May 2006 | B2 |
7053841 | Ponce De Leon et al. | May 2006 | B2 |
7054671 | Kaiponen et al. | May 2006 | B2 |
7057560 | Erkocevic | Jun 2006 | B2 |
7081857 | Kinnunen et al. | Jul 2006 | B2 |
7084831 | Takagi et al. | Aug 2006 | B2 |
7099690 | Milosavljevic | Aug 2006 | B2 |
7113133 | Chen et al. | Sep 2006 | B2 |
7119749 | Miyata et al. | Oct 2006 | B2 |
7126546 | Annamaa et al. | Oct 2006 | B2 |
7136019 | Mikkola et al. | Nov 2006 | B2 |
7136020 | Yamaki | Nov 2006 | B2 |
7142824 | Kojima et al. | Nov 2006 | B2 |
7148847 | Yuanzhu | Dec 2006 | B2 |
7148849 | Lin | Dec 2006 | B2 |
7148851 | Takaki et al. | Dec 2006 | B2 |
7170464 | Tang et al. | Jan 2007 | B2 |
7176838 | Kinezos | Feb 2007 | B1 |
7180455 | Oh et al. | Feb 2007 | B2 |
7193574 | Chiang et al. | Mar 2007 | B2 |
7205942 | Wang et al. | Apr 2007 | B2 |
7218280 | Annamaa et al. | May 2007 | B2 |
7218282 | Humpfer et al. | May 2007 | B2 |
7224313 | McKinzie, III et al. | May 2007 | B2 |
7230574 | Johnson | Jun 2007 | B2 |
7237318 | Annamaa | Jul 2007 | B2 |
7256743 | Korva | Aug 2007 | B2 |
7274334 | O'Riordan et al. | Sep 2007 | B2 |
7283097 | Wen et al. | Oct 2007 | B2 |
7289064 | Cheng | Oct 2007 | B2 |
7292200 | Posluszny et al. | Nov 2007 | B2 |
7319432 | Andersson | Jan 2008 | B2 |
7330153 | Rentz | Feb 2008 | B2 |
7333067 | Hung et al. | Feb 2008 | B2 |
7339528 | Wang et al. | Mar 2008 | B2 |
7340286 | Korva et al. | Mar 2008 | B2 |
7345634 | Ozkar et al. | Mar 2008 | B2 |
7352326 | Korva | Apr 2008 | B2 |
7358902 | Erkocevic | Apr 2008 | B2 |
7382319 | Kawahata et al. | Jun 2008 | B2 |
7385556 | Chung et al. | Jun 2008 | B2 |
7388543 | Vance | Jun 2008 | B2 |
7391378 | Mikkola | Jun 2008 | B2 |
7405702 | Annamaa et al. | Jul 2008 | B2 |
7417588 | Castany et al. | Aug 2008 | B2 |
7423592 | Pros et al. | Sep 2008 | B2 |
7432860 | Huynh | Oct 2008 | B2 |
7439929 | Ozkar | Oct 2008 | B2 |
7468700 | Milosavlejevic | Dec 2008 | B2 |
7468709 | Niemi | Dec 2008 | B2 |
7498990 | Park et al. | Mar 2009 | B2 |
7501983 | Mikkola | Mar 2009 | B2 |
7502598 | Kronberger | Mar 2009 | B2 |
7589678 | Perunka | Sep 2009 | B2 |
7616158 | Mark et al. | Nov 2009 | B2 |
7633449 | Oh | Dec 2009 | B2 |
7663551 | Nissinen | Feb 2010 | B2 |
7679565 | Sorvala | Mar 2010 | B2 |
7692543 | Copeland | Apr 2010 | B2 |
7710325 | Cheng | May 2010 | B2 |
7724204 | Annamaa | May 2010 | B2 |
7760146 | Ollikainen | Jul 2010 | B2 |
7764245 | Loyet | Jul 2010 | B2 |
7786938 | Sorvala | Aug 2010 | B2 |
7800544 | Thornell-Pers | Sep 2010 | B2 |
7830327 | He | Nov 2010 | B2 |
7889139 | Hobson et al. | Feb 2011 | B2 |
7889143 | Milosavljevic | Feb 2011 | B2 |
7901617 | Taylor | Mar 2011 | B2 |
7916086 | Koskiniemi et al. | Mar 2011 | B2 |
7963347 | Pabon | Jun 2011 | B2 |
7973720 | Sorvala | Jul 2011 | B2 |
8049670 | Jung et al. | Nov 2011 | B2 |
8179322 | Nissinen | May 2012 | B2 |
20010050636 | Weinberger | Dec 2001 | A1 |
20020183013 | Auckland et al. | Dec 2002 | A1 |
20020196192 | Nagumo et al. | Dec 2002 | A1 |
20030146873 | Blancho | Aug 2003 | A1 |
20040090378 | Dai et al. | May 2004 | A1 |
20040145525 | Annabi et al. | Jul 2004 | A1 |
20040171403 | Mikkola | Sep 2004 | A1 |
20050057401 | Yuanzhu | Mar 2005 | A1 |
20050159131 | Shibagaki et al. | Jul 2005 | A1 |
20050176481 | Jeong | Aug 2005 | A1 |
20060071857 | Pelzer | Apr 2006 | A1 |
20070042615 | Liao | Feb 2007 | A1 |
20070082789 | Nissila | Apr 2007 | A1 |
20070152881 | Chan | Jul 2007 | A1 |
20080055164 | Zhang et al. | Mar 2008 | A1 |
20080059106 | Wight | Mar 2008 | A1 |
20080088511 | Sorvala | Apr 2008 | A1 |
20080266199 | Milosavljevic | Oct 2008 | A1 |
20090009415 | Tanska | Jan 2009 | A1 |
20090135066 | Raappana et al. | May 2009 | A1 |
20090174604 | Keskitalo | Jul 2009 | A1 |
20090196160 | Crombach | Aug 2009 | A1 |
20100220016 | Nissinen | Sep 2010 | A1 |
20100244978 | Milosavljevic | Sep 2010 | A1 |
20100309092 | Lambacka | Dec 2010 | A1 |
20110102290 | Milosavljevic | May 2011 | A1 |
20110133994 | Korva | Jun 2011 | A1 |
20120119955 | Milosavljevic | May 2012 | A1 |
Number | Date | Country |
---|---|---|
1316797 | Oct 2007 | CN |
10015583 | Nov 2000 | DE |
10104862 | Aug 2002 | DE |
101 50 149 | Apr 2003 | DE |
0208424 | Jan 1987 | EP |
0278069 | Aug 1988 | EP |
0279050 | Aug 1988 | EP |
0339822 | Mar 1989 | EP |
0 332 139 | Sep 1989 | EP |
0 376 643 | Apr 1990 | EP |
0383292 | Aug 1990 | EP |
0399975 | Dec 1990 | EP |
0400872 | Dec 1990 | EP |
0401839 | Sep 1991 | EP |
0447218 | Sep 1994 | EP |
0615285 | Oct 1994 | EP |
0621653 | Feb 1995 | EP |
0 749 214 | Dec 1996 | EP |
0637094 | Jan 1997 | EP |
0 759 646 | Feb 1997 | EP |
0 766 341 | Feb 1997 | EP |
0 766 340 | Apr 1997 | EP |
0751043 | Apr 1997 | EP |
0807988 | Nov 1997 | EP |
0 831 547 | Mar 1998 | EP |
0851530 | Jul 1998 | EP |
0856907 | Aug 1998 | EP |
1 294 048 | Jan 1999 | EP |
0892459 | Jan 1999 | EP |
0766339 | Feb 1999 | EP |
0 942 488 | Sep 1999 | EP |
1 003 240 | May 2000 | EP |
1006605 | Jun 2000 | EP |
1006606 | Jun 2000 | EP |
1014487 | Jun 2000 | EP |
1024553 | Aug 2000 | EP |
1026774 | Aug 2000 | EP |
0999807 | Oct 2000 | EP |
1 052 723 | Nov 2000 | EP |
1052722 | Nov 2000 | EP |
1052723 | Nov 2000 | EP |
1 063 722 | Dec 2000 | EP |
1067627 | Jan 2001 | EP |
1094545 | Apr 2001 | EP |
1 102 348 | May 2001 | EP |
1098387 | May 2001 | EP |
1 113 524 | Jul 2001 | EP |
1113524 | Jul 2001 | EP |
1 128 466 | Aug 2001 | EP |
1 139 490 | Oct 2001 | EP |
1 146 589 | Oct 2001 | EP |
1 162 688 | Dec 2001 | EP |
1162688 | Dec 2001 | EP |
0993070 | Apr 2002 | EP |
1 248 316 | Sep 2002 | EP |
0923158 | Sep 2002 | EP |
1 267 441 | Dec 2002 | EP |
1271690 | Jan 2003 | EP |
1 294 049 | Mar 2003 | EP |
1306922 | May 2003 | EP |
1 329 980 | Jul 2003 | EP |
1 351 334 | Aug 2003 | EP |
1 361 623 | Nov 2003 | EP |
1248316 | Jan 2004 | EP |
1396906 | Mar 2004 | EP |
1 406 345 | Apr 2004 | EP |
1 414 108 | Apr 2004 | EP |
1 432 072 | Jun 2004 | EP |
1 437 793 | Jul 2004 | EP |
1439603 | Jul 2004 | EP |
1 445 822 | Aug 2004 | EP |
1 453 137 | Sep 2004 | EP |
1 469 549 | Oct 2004 | EP |
1220456 | Oct 2004 | EP |
1467456 | Oct 2004 | EP |
1469549 | Oct 2004 | EP |
1 482 592 | Dec 2004 | EP |
1 498 984 | Jan 2005 | EP |
1 564 839 | Jan 2005 | EP |
1498984 | Jan 2005 | EP |
1170822 | Apr 2005 | EP |
1 544 943 | Jun 2005 | EP |
1753079 | Feb 2007 | EP |
1 791 213 | May 2007 | EP |
1843432 | Oct 2007 | EP |
20020829 | Nov 2003 | FI |
2553584 | Oct 1983 | FR |
2873247 | Jan 2006 | FR |
2266997 | Nov 1993 | GB |
2 360 422 | Sep 2001 | GB |
239246 | Dec 2003 | GB |
59202831 | Nov 1984 | JP |
600206304 | Oct 1985 | JP |
61245704 | Nov 1986 | JP |
06152463 | May 1994 | JP |
7131234 | May 1995 | JP |
7221536 | Aug 1995 | JP |
7249923 | Sep 1995 | JP |
07307612 | Nov 1995 | JP |
08216571 | Aug 1996 | JP |
09083242 | Mar 1997 | JP |
9260934 | Oct 1997 | JP |
9307344 | Nov 1997 | JP |
10028013 | Jan 1998 | JP |
10107671 | Apr 1998 | JP |
10173423 | Jun 1998 | JP |
10 209733 | Aug 1998 | JP |
10224142 | Aug 1998 | JP |
10 327011 | Dec 1998 | JP |
10322124 | Dec 1998 | JP |
11 004117 | Jan 1999 | JP |
114113 | Jan 1999 | JP |
11 068456 | Mar 1999 | JP |
11127010 | May 1999 | JP |
11127014 | May 1999 | JP |
11136025 | May 1999 | JP |
11 355033 | Dec 1999 | JP |
2000278028 | Oct 2000 | JP |
200153543 | Feb 2001 | JP |
2001267833 | Sep 2001 | JP |
2001217631 | Oct 2001 | JP |
2001326513 | Nov 2001 | JP |
2002319811 | Oct 2002 | JP |
2002329541 | Nov 2002 | JP |
2002335117 | Nov 2002 | JP |
200360417 | Feb 2003 | JP |
2003124730 | Apr 2003 | JP |
2003179426 | Jun 2003 | JP |
2003318638 | Nov 2003 | JP |
2004112028 | Apr 2004 | JP |
2004363859 | Dec 2004 | JP |
2005005985 | Jan 2005 | JP |
2005252661 | Sep 2005 | JP |
20010080521 | Oct 2001 | KR |
10-2006-7027462 | Dec 2002 | KR |
20020096016 | Dec 2002 | KR |
511900 | Dec 1999 | SE |
WO 9200635 | Jan 1992 | WO |
WO 9627219 | Sep 1996 | WO |
WO 9801919 | Jan 1998 | WO |
WO 9801921 | Jan 1998 | WO |
WO 9837592 | Aug 1998 | WO |
WO 9930479 | Jun 1999 | WO |
WO 0036700 | Jun 2000 | WO |
WO 0120718 | Mar 2001 | WO |
WO 0124316 | Apr 2001 | WO |
WO 0128035 | Apr 2001 | WO |
WO 0129927 | Apr 2001 | WO |
WO 0133665 | May 2001 | WO |
WO 0161781 | Aug 2001 | WO |
WO 0191236 | Nov 2001 | WO |
WO 0208672 | Jan 2002 | WO |
WO 0211236 | Feb 2002 | WO |
WO 0213307 | Feb 2002 | WO |
WO 0241443 | May 2002 | WO |
WO 02067375 | Aug 2002 | WO |
WO 02078123 | Oct 2002 | WO |
WO 02078124 | Oct 2002 | WO |
WO 03094290 | Nov 2003 | WO |
WO 2004017462 | Feb 2004 | WO |
WO 2004036778 | Apr 2004 | WO |
WO 2004057697 | Jul 2004 | WO |
WO 2004070872 | Aug 2004 | WO |
2004100313 | Nov 2004 | WO |
WO 2004112189 | Dec 2004 | WO |
WO 2005011055 | Feb 2005 | WO |
WO 2005018045 | Feb 2005 | WO |
WO 2005034286 | Apr 2005 | WO |
WO 2005038981 | Apr 2005 | WO |
WO 2005055364 | Jun 2005 | WO |
WO 2005062416 | Jul 2005 | WO |
WO 2006000631 | Jan 2006 | WO |
WO 2006000650 | Jan 2006 | WO |
WO 2006051160 | May 2006 | WO |
WO 2006084951 | Aug 2006 | WO |
WO 2006097567 | Sep 2006 | WO |
WO 2007000483 | Jan 2007 | WO |
WO 2007000483 | Jan 2007 | WO |
WO 2007012697 | Feb 2007 | WO |
WO 2007039667 | Apr 2007 | WO |
WO 2007039668 | Apr 2007 | WO |
WO 2007042614 | Apr 2007 | WO |
WO 2007042615 | Apr 2007 | WO |
WO 2007050600 | May 2007 | WO |
WO 2007080214 | Jul 2007 | WO |
WO 2007098810 | Sep 2007 | WO |
WO 2007138157 | Dec 2007 | WO |
WO 2008059106 | Mar 2008 | WO |
WO 2008129125 | Oct 2008 | WO |
WO 2009027579 | May 2009 | WO |
WO 2009095531 | Aug 2009 | WO |
WO 2009106682 | Sep 2009 | WO |
Entry |
---|
“An Adaptive Microstrip Patch Antenna For Use In Portable Transceivers”, Rostbakken et al., Vehicular Technology Conference, 1996, Mobile Technology for the Human Race, pp. 339-343. |
“Dual Band Antenna for Hand Held Portable Telephones”, Liu et al., Electronics Letters, vol. 32, No. 7, 1996, pp. 609-610. |
“Improved Bandwidth of Microstrip Antennas using Parasitic Elements,” IEE Proc. vol. 127, Pt. H. No. 4, Aug. 1980. |
“A 13.56MHz RFID Device and Software for Mobile Systems”, by H. Ryoson, et al., Micro Systems Network Co., 2004 IEEE, pp. 241-244. |
“A Novel Approach of a Planar Multi-Band Hybrid Series Feed Network for Use in Antenna Systems Operating at Millimeter Wave Frequencies,” by M.W. Elsallal and B.L. Hauck, Rockwell Collins, Inc., 2003 pp. 15-24, waelsall@rockwellcollins.com and blhauck@rockwellcollins.com. |
Abedin, M. F. And M. Ali, “Modifying the ground plane and its erect on planar inverted-F antennas (PIFAs) for mobile handsets,” IEEE Antennas and Wireless Propagation Letters, vol. 2, 226-229, 2003. |
C. R. Rowell and R. D. Murch, “A compact PIFa suitable for dual frequency 900/1800-MHz operation,” IEEE Trans. Antennas Propag., vol. 46, No. 4, pp. 596-598, Apr. 1998. |
Cheng- Nan Hu, Willey Chen, and Book Tai, “A Compact Multi-Band Antenna Design for Mobile Handsets”, APMC 2005 Proceedings. |
Endo, T., Y. Sunahara, S. Satoh and T. Katagi, “Resonant Frequency and Radiation Efficiency of Meander Line Antennas,” Electronics and Commu-nications in Japan, Part 2, vol. 83, No. 1, 52-58, 2000. |
European Office Action, May 30, 2005 issued during prosecution of EP 04 396 001.2-1248. |
Examination Report dated May 3, 2006 issued by the EPO for European Patent Application No. 04 396 079.8. |
F.R. Hsiao, et al. “A dual-band planar inverted-F patch antenna with a branch-line slit,” Microwave Opt. Technol. Lett., vol. 32, Feb. 20, 2002. |
Griffin, Donald W. et al., “Electromagnetic Design Aspects of Packages for Monolithic Microwave Integrated Circuit-Based Arrays with Integrated Antenna Elements”, IEEE Transactions on Antennas and Propagation, vol. 43, No. 9, pp. 927-931, Sep. 1995. |
Guo, Y. X. and H. S. Tan, “New compact six-band internal antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 3, 295-297, 2004. |
Guo, Y. X. and Y.W. Chia and Z. N. Chen, “Miniature built-in quadband antennas for mobile handsets”, IEEE Antennas Wireless Propag. Lett., vol. 2, pp. 30-32, 2004. |
Hoon Park, et al. “Design of an Internal antenna with wide and multiband characteristics for a mobile handset”, IEEE Microw. & Opt. Tech. Lett. vol. 48, No. 5, May 2006. |
Hoon Park, et al. “Design of Planar Inverted-F Antenna With Very Wide Impedance Bandwidth”, IEEE Microw. & Wireless Comp., Lett., vol. 16, No. 3, pp. 113-115-, Mar., 2006. |
Hossa, R., A. Byndas, and M. E. Bialkowski, “Improvement of compact terminal antenna performance by incorporating open-end slots in ground plane,” IEEE Microwave and Wireless Components Letters, vol. 14, 283-285, 2004. |
I. Ang, Y. X. Guo, and Y. W. Chia, “Compact internal quad-band antenna for mobile phones” Micro. Opt. Technol. Lett., vol. 38, No. 3 pp. 217-223 Aug. 2003. |
International Preliminary Report on Patentability for International Application No. PCT/F12004/000554, date of issuance of report May 1, 2006. |
Jing, X., et al.; “Compact Planar Monopole Antenna for Multi-Band Mobile Phones”; Microwave Conference Proceedings, 4.-7.12.2005.APMC 2005, Asia- Pacific Conference Proceedings, vol. 4. |
Kim, B. C., J. H. Yun, and H. D. Choi, “Small wideband PIFA for mobile phones at 1800 MHz,” IEEE International Conference on Vehicular Technology, 27{29, Daejeon, South Korea, May 2004. |
Kim, Kihong et al., “Integrated Dipole Antennas on Silicon Substrates for Intra-Chip Communication”, IEEE, pp. 1582-1585, 1999. |
Kivekas., O., J. Ollikainen, T. Lehtiniemi, and P. Vainikainen, “Bandwidth, SAR, and eciency of internal mobile phone antennas,” IEEE Transactions on Electromagnetic Compatibility, vol. 46, 71{86, 2004. |
K-L Wong, Planar Antennas for Wireless Communications., Hoboken, NJ: Willey, 2003, ch. 2. |
Lindberg., P. And E. Ojefors, “A bandwidth enhancement technique for mobile handset antennas using wavetraps,” IEEE Transactions on Antennas and Prepagation, vol. 54, 2226{2232, 2006. |
Marta Martinez- Vazquez, et al “Integrated Planar Multiband Antennas for Personal Communication Handsets”, IEEE Trasactions on Antennas and propagation, vol. 54, No. 2, Feb. 2006. |
P. Ciais, et al., “Compact Internal Multiband Antennas for Mobile and Wlan Standards”, Electronic Letters, vol. 40, No. 15, pp. 920-921, Jul. 2004. |
P. Ciais, R. Staraj, 0, Kossiavas, and C. Luxey, “Design of an internal quadband antenna for mobile phones”, IEEE Microwave Wireless Comp. Lett., vol. 14, No. 4, pp. 148-150, Apr., 2004. |
P. Salonen, et al. “New slot configurations for dual-band planar inverted-F antenna,” Microwave Opt. Technol., vol. 28, pp. 293-298, 2001. |
Papapolyrnerou, loannis et al., “Micromachined Patch Antennas”, IEEE Transactions on Antennas and Propagation, vol. 46, No. 2, pp. 275-283, Feb. 1998. |
Product of the Month, RFDesign, “GSM/CPRS Quad Band Power Amp Includes Antenna Switch,” 1 page, reprinted 11/04 issue of RF Design (www.rfdesign.com), Copyright 2004, Freescale Semiconductor, RFD-24-EK. |
S. Tarvas, et al. “An internal dual-band mobile phone antenna,” in 2000 IEEE Antennas Propagat. Soc. Int. Symp. Dig., pp. 266-269, Salt Lake City, UT, USA. |
Wang, F., Z. Du, Q. Wang, and K. Gong, “Enhanced-bandwidth PIFA with T-shaped ground plane,” Electronics Letters, vol. 40, 1504-1505, 2004. |
Wang, H.; “Dual-Resonance Monopole Antenna with Tuning Stubs”; IEEE Proceedings, Microwaves, Antennas & Propagation, vol. 153, No. 4, Aug. 2006; pp. 395-399. |
Wong, K., et al.; “A Low-Profile Planar Monopole Antenna for Multiband Operation of Mobile Handsets”; IEEE Transactions on Antennas and Propagation, Jan. '03, vol. 51, No. 1. |
X.-D. Cai and J.-Y. Li, Analysis of asymmetric TEM cell and its optimum design of electric field distribution, IEE Proc 136 (1989), 191-194. |
X.-Q. Yang and K.-M. Huang, Study on the key problems of interaction between microwave and chemical reaction, Chin Jof Radio Sci 21 (2006), 802-809. |
Chiu, C.-W., et al., “A Meandered Loop Antenna for LTE/WWAN Operations in a Smartphone,” Progress in Electromagnetics Research C, vol. 16, pp. 147-160, 2010. |
Lin, Sheng-Yu; Liu, Hsien-Wen; Weng, Chung-Hsun; and Yang, Chang-Fa, “A miniature Coupled loop Antenna to be Embedded in a Mobile Phone for Penta-band Applications,” Progress in Electromagnetics Research Symposium Proceedings, Xi'an, China, Mar. 22-26, 2010, pp. 721-724. |
Zhang, Y.Q., et al. “Band-Notched UWB Crossed Semi-Ring Monopole Antenna,” Progress in Electronics Research C, vol. 19, 107-118, 2011, pp. 107-118. |
Joshi, Ravi Kumar, et al. “Broadband Concentric Rings Fractal Slot Antenna,” Department of Electrical Engineering, Indian Institute of Technology, Kanpur-208 016, India. |
Singh, Rajender, “Broadband Planar Monopole Antennas,” M.Tech credit seminar report, Electronic Systems group, EE Dept, IIT Bombay, Nov. 2003, pp. 1-24. |
Gobien, Andrew, T. “Investigation of Low Profile Antenna Designs for Use in Hand-Held Radios,”Ch.3, The Inverted-L Antenna and Variations; Aug. 1997, pp. 42-76. |
See, C.H., et al., “Design of Planar Metal-Plate Monopole Antenna for Third Generation Mobile Handsets,” Telecommunications Research Centre, Bradford University, 2005, pp. 27-30. |
Chen, Jin-Sen, et al., “CPW-fed Ring Slot Antenna with Small Ground Plane,” Department of Electronic Engineering, Cheng Shiu University. |
“LTE—an introduction,” Ericsson White Paper, Jun. 2009, pp. 1-16. |
“Spectrum Analysis for Future LTE Deployments,” Motorola White Paper, 2007, pp. 1-8. |
Chi, Yun-Wen, et al. “Quarter-Wavelength Printed Loop Antenna With an Internal Printed Matching Circuit for GSM/DCS/PCS/UMTS Operation in the Mobile Phone,” IEEE Transactions on Antennas and Propagation, vol. 57, No. 9m Sep. 2009, pp. 2541-2547. |
Wong, Kin-Lu, et al. “Planar Antennas for WLAN Applications,” Dept. of Electrical Engineering, National Sun YetSen University, 2002 09 Ansoft Workshop, pp. 1-45. |
“λ/4 printed monopole antenna for 2.45GHz,” Nordic Semiconductor, White Paper, 2005, pp. 1-6. |
White, Carson, R., “Single- and Dual-Polarized Slot and Patch Antennas with Wide Tuning Ranges,” The University of Michigan, 2008. |
Number | Date | Country | |
---|---|---|---|
20100295737 A1 | Nov 2010 | US |