This invention relates to head worn computing. More particularly, this invention relates to 3-way adjustable nose bridge assemblies for head-worn computers.
Wearable computing systems have been developed and are beginning to be commercialized. Many problems persist in the wearable computing field that need to be resolved to make them meet the demands of the market.
Aspects of the present invention relate to 3-way adjustable nose bridge assemblies for head worn computers.
These and other systems, methods, objects, features, and advantages of the present invention will be apparent to those skilled in the art from the following detailed description of the preferred embodiment and the drawings. All documents mentioned herein are hereby incorporated in their entirety by reference.
Embodiments are described with reference to the following Figures. The same numbers may be used throughout to reference like features and components that are shown in the Figures:
While the invention has been described in connection with certain preferred embodiments, other embodiments would be understood by one of ordinary skill in the art and are encompassed herein.
Aspects of the present invention relate to head-worn computing (“HWC”) systems. HWC involves, in some instances, a system that mimics the appearance of head-worn glasses or sunglasses. The glasses may be a fully developed computing platform, such as including computer displays presented in each of the lenses of the glasses to the eyes of the user. In embodiments, the lenses and displays may be configured to allow a person wearing the glasses to see the environment through the lenses while also seeing, simultaneously, digital imagery, which forms an overlaid image that is perceived by the person as a digitally augmented image of the environment, or augmented reality (“AR”).
HWC involves more than just placing a computing system on a person's head. The system may need to be designed as a lightweight, compact and fully functional computer display, such as wherein the computer display includes a high resolution digital display that provides a high level of immersion comprised of the displayed digital content and the see-through view of the environmental surroundings. User interfaces and control systems suited to the HWC device may be required that are unlike those used for a more conventional computer such as a laptop. For the HWC and associated systems to be most effective, the glasses may be equipped with sensors to determine environmental conditions, geographic location, relative positioning to other points of interest, objects identified by imaging and movement by the user or other users in a connected group, and the like. The HWC may then change the mode of operation to match the conditions, location, positioning, movements, and the like, in a method generally referred to as a contextually aware HWC. The glasses also may need to be connected, wirelessly or otherwise, to other systems either locally or through a network. Controlling the glasses may be achieved through the use of an external device, automatically through contextually gathered information, through user gestures captured by the glasses sensors, and the like. Each technique may be further refined depending on the software application being used in the glasses. The glasses may further be used to control or coordinate with external devices that are associated with the glasses.
Referring to
We will now describe each of the main elements depicted on
The HWC 102 is a computing platform intended to be worn on a person's head. The HWC 102 may take many different forms to fit many different functional requirements. In some situations, the HWC 102 will be designed in the form of conventional glasses. The glasses may or may not have active computer graphics displays. In situations where the HWC 102 has integrated computer displays the displays may be configured as see-through displays such that the digital imagery can be overlaid with respect to the user's view of the environment 114. There are a number of see-through optical designs that may be used, including ones that have a reflective display (e.g. LCoS, DLP), emissive displays (e.g. OLED, LED), hologram, TIR waveguides, and the like. In embodiments, lighting systems used in connection with the display optics may be solid state lighting systems, such as LED, OLED, quantum dot, quantum dot LED, etc. In addition, the optical configuration may be monocular or binocular. It may also include vision corrective optical components. In embodiments, the optics may be packaged as contact lenses. In other embodiments, the HWC 102 may be in the form of a helmet with a see-through shield, sunglasses, safety glasses, goggles, a mask, fire helmet with see-through shield, police helmet with see-through shield, military helmet with see-through shield, utility form customized to a certain work task (e.g. inventory control, logistics, repair, maintenance, etc.), and the like.
The HWC 102 may also have a number of integrated computing facilities, such as an integrated processor, integrated power management, communication structures (e.g. cell net, WiFi, Bluetooth, local area connections, mesh connections, remote connections (e.g. client server, etc.)), and the like. The HWC 102 may also have a number of positional awareness sensors, such as GPS, electronic compass, altimeter, tilt sensor, IMU, and the like. It may also have other sensors such as a camera, rangefinder, hyper-spectral camera, Geiger counter, microphone, spectral illumination detector, temperature sensor, chemical sensor, biologic sensor, moisture sensor, ultrasonic sensor, and the like.
The HWC 102 may also have integrated control technologies. The integrated control technologies may be contextual based control, passive control, active control, user control, and the like. For example, the HWC 102 may have an integrated sensor (e.g. camera) that captures user hand or body gestures 116 such that the integrated processing system can interpret the gestures and generate control commands for the HWC 102. In another example, the HWC 102 may have sensors that detect movement (e.g. a nod, head shake, and the like) including accelerometers, gyros and other inertial measurements, where the integrated processor may interpret the movement and generate a control command in response. The HWC 102 may also automatically control itself based on measured or perceived environmental conditions. For example, if it is bright in the environment the HWC 102 may increase the brightness or contrast of the displayed image. In embodiments, the integrated control technologies may be mounted on the HWC 102 such that a user can interact with it directly. For example, the HWC 102 may have a button(s), touch capacitive interface, and the like.
As described herein, the HWC 102 may be in communication with external user interfaces 104. The external user interfaces may come in many different forms. For example, a cell phone screen may be adapted to take user input for control of an aspect of the HWC 102. The external user interface may be a dedicated UI, such as a keyboard, touch surface, button(s), joy stick, and the like. In embodiments, the external controller may be integrated into another device such as a ring, watch, bike, car, and the like. In each case, the external user interface 104 may include sensors (e.g. IMU, accelerometers, compass, altimeter, and the like) to provide additional input for controlling the HWD 104.
As described herein, the HWC 102 may control or coordinate with other local devices 108. The external devices 108 may be an audio device, visual device, vehicle, cell phone, computer, and the like. For instance, the local external device 108 may be another HWC 102, where information may then be exchanged between the separate HWCs 108.
Similar to the way the HWC 102 may control or coordinate with local devices 106, the HWC 102 may control or coordinate with remote devices 112, such as the HWC 102 communicating with the remote devices 112 through a network 110. Again, the form of the remote device 112 may have many forms. Included in these forms is another HWC 102. For example, each HWC 102 may communicate its GPS position such that all the HWCs 102 know where all of HWC 102 are located.
An aspect of the present invention relates to the mechanical and electrical construction of a side arm of a head worn computer. In general, when a head worn computer takes the form of glasses, sunglasses, certain goggles, or other such forms, two side arms are included for mounting and securing the head worn computer on the ears of a person wearing the head worn computer. In embodiments, the side arms may also contain electronics, batteries, wires, antennas, computer processors, computer boards, etc. In embodiments, the side arm may include two or more subassemblies. For example, as will be discussed in more detail below, the side arm may include a temple section and an ear horn section. The two sections may, for example, be mechanically arranged to allow an ear horn section to move such that both side arms can fold into a closed position.
An aspect of the present invention relates to an adjustable nose bridge. An adjustable nose bridge may be important with head worn computers, especially those with computer displays, to ensure comfort and alignment of the displays and/or other portions of the head worn computer.
In embodiments, a side arm of the HWC 102 may include an audio jack (not shown) and the audio jack may be magnetically attachable to the side arm. For example, the temple section 304 or ear horn section 308 may have a magnetically attachable audio jack with audio signal wires associated with an audio system in the HWC 102. The magnetic attachment may include one or more magnets on one end (e.g. on the headphone end or the side arm end) and magnetically conductive material on the other end. In other embodiments, both ends of the attachment may have magnets, of opposite polarization, to create a stronger magnetic bond for the headphone). In embodiments, the audio signal wires or magnetic connection may include a sensor circuit to detect when the headphone is detached from the HWC 102. This may be useful in situations where the wearer is wearing the headphones during a period when there is not constant audio processing (e.g. listening for people to talk with periods of silence). In embodiments, the other side's headphone may play a tone, sound, signal, etc. in the event a headphone is detached. In embodiments, an indication of the detachment may be displayed in the computer display.
In embodiments, the HWC 102 may have a vibration system that vibrates to alert the wearer of certain sensed conditions. In embodiments, the vibration system (e.g. an actuator that moves quickly to cause vibration in the HWC 102) may be mounted in a side arm (e.g. the temple portion 304, or ear horn 308), in the top mount 312, etc. In embodiments, the vibration system may be capable of causing different vibration modes that may be indicative of different conditions. For example, the vibration system may include a multi-mode vibration system, piezo-electric vibration system, variable motor, etc., that can be regulated through computer input and a processor in the HWC 102 may send control signals to the vibration system to generate an appropriate vibration mode. In embodiments, the HWC 102 may be associated with other devices (e.g. through Bluetooth, WiFi, etc.) and the vibratory control signals may be associated with sensors associated with the other device. For example, the HWC 102 may be connected to a car through Bluetooth such that sensor(s) in the car can cause activation of a vibration mode for the vibration system. The car, for example, may determine that a risk of accident is present (e.g. risk of the driver falling asleep, car going out of its lane, a car in front of the wearer is stopped or slowing, radar in the car indicates a risk, etc.) and the car's system may then send a command, via the Bluetooth connection, to the HWC 102 to cause a vibratory tone to be initiated in the HWC 102.
In embodiments, the connection between the speaker system and the HWC 102 may be positioned other than under the temple section. It may be positioned on a side, top, bottom, end of a section of the side arm, for example. It may be positioned on the front bridge, for example. In embodiments, the speaker system may be connected to a top or side portion and the speaker may be further positioned to face forward, away from the user's ear. This may be a useful configuration for providing sound to others. For example, such a configuration may be used when the user wants to provide translations to a person nearby. The user may speak in a language, have the language translated, and then spoken through the forward facing speakers.
The removable nature of the speaker systems may be desirable for breakaway situations so a snag does not tear the glasses from the user or pull hard on the user's ear. The removable nature may also be useful for modularity configurations where the user wants to interchange speaker types or attach other accessories. For example, the user may want ear buds at one point and an open ear speaker configuration at another point and the user may be able to make the swap with ease given this configuration. The port on the HWC 102 may also be adapted for other accessories that include lights or sensors for example. The accessory may have an ambient light sensor to assist with the control of the lighting and contrast systems used in the HWC 102 displays, for example. In embodiments, the speaker port may be used as a charging port for the HWC 102 or data port for the HWC 102.
Another aspect of the present invention relates to an adjustable nose bridge assembly of a head-worn computer. Positioning of a head-worn computer can be complicated by the nature of the computer displays that are intended to be positioned in front of the user's eyes along with the fact that people have different shaped heads, noses, eye positions, etc. The inventors have appreciated the difficulties in such positioning and have developed an intuitive mechanism for a multi-axis adjustment system for the head-worn computer. In embodiments, the multi-axis adjustment system provides for vertical adjustment of the nose bridge, persistent rotational settings for the nose pads, and persistent outward/inward flex of the nose pads. Such a system is designed to be used on a wide variety of nose shapes and head sizes.
Although embodiments of HWC have been described in language specific to features, systems, computer processes and/or methods, the appended claims are not necessarily limited to the specific features, systems, computer processes and/or methods described. Rather, the specific features, systems, computer processes and/or methods are disclosed as non-limited example implementations of HWC. All documents referenced herein are hereby incorporated by reference.
This application is a continuation of U.S. patent application Ser. No. 15/249,637, filed on Aug. 29, 2016, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1897833 | Benway | Feb 1933 | A |
2064604 | Hempel | Dec 1936 | A |
3531190 | Leblanc | Sep 1970 | A |
3671111 | Okner | Jun 1972 | A |
4145125 | Chika | Mar 1979 | A |
4513812 | Papst et al. | Apr 1985 | A |
4695129 | Faessen et al. | Sep 1987 | A |
5596451 | Handschy | Jan 1997 | A |
5625372 | Hildebrand | Apr 1997 | A |
D383148 | Lee | Sep 1997 | S |
5717422 | Fergason | Feb 1998 | A |
5808800 | Handschy | Sep 1998 | A |
5808802 | Hur | Sep 1998 | A |
5870166 | Chang et al. | Feb 1999 | A |
5954642 | Johnson | Sep 1999 | A |
6034653 | Robertson | Mar 2000 | A |
6076927 | Owens | Jun 2000 | A |
6137675 | Perkins | Oct 2000 | A |
6195136 | Handschy | Feb 2001 | B1 |
6359723 | Handschy | Mar 2002 | B1 |
6369952 | Rallison | Apr 2002 | B1 |
6421031 | Ronzani | Jul 2002 | B1 |
6456438 | Lee | Sep 2002 | B1 |
6480174 | Kaufmann | Nov 2002 | B1 |
6491389 | Yaguchi | Dec 2002 | B2 |
6824265 | Harper | Nov 2004 | B1 |
6847336 | Lemelson | Jan 2005 | B1 |
6987787 | Mick | Jan 2006 | B1 |
D521493 | Wai | May 2006 | S |
7088234 | Naito | Aug 2006 | B2 |
7199934 | Yamasaki | Apr 2007 | B2 |
7206134 | Weissman | Apr 2007 | B2 |
7477207 | Estep | Jan 2009 | B2 |
7582828 | Ryan | Sep 2009 | B2 |
7791889 | Belady | Sep 2010 | B2 |
7830370 | Yamazaki | Nov 2010 | B2 |
D628616 | Yuan | Dec 2010 | S |
7850301 | Dichiara | Dec 2010 | B2 |
7855743 | Sako | Dec 2010 | B2 |
7928926 | Yamamoto | Apr 2011 | B2 |
8004765 | Amitai | Aug 2011 | B2 |
D645492 | Zhao | Sep 2011 | S |
D645493 | Zhao | Sep 2011 | S |
8018579 | Krah | Sep 2011 | B1 |
D646316 | Zhao | Oct 2011 | S |
D647947 | Yu | Nov 2011 | S |
8089568 | Brown | Jan 2012 | B1 |
8092007 | Dichiara | Jan 2012 | B2 |
8166421 | Magal | Apr 2012 | B2 |
D665838 | Kim | Aug 2012 | S |
D667482 | Healy | Sep 2012 | S |
D667483 | Krsmanovic | Sep 2012 | S |
D669066 | Olsson | Oct 2012 | S |
D671590 | Klinar | Nov 2012 | S |
8378924 | Jacobsen | Feb 2013 | B2 |
D680152 | Olsson | Apr 2013 | S |
8427396 | Kim | Apr 2013 | B1 |
D685019 | Li | Jun 2013 | S |
8494215 | Kimchi | Jul 2013 | B2 |
D692047 | Shin | Oct 2013 | S |
8553910 | Dong | Oct 2013 | B1 |
8564883 | Totani | Oct 2013 | B2 |
D693398 | Rubin | Nov 2013 | S |
8576276 | Bar-zeev | Nov 2013 | B2 |
8576491 | Takagi | Nov 2013 | B2 |
8587869 | Totani | Nov 2013 | B2 |
8593795 | Chi | Nov 2013 | B1 |
8594467 | Lu | Nov 2013 | B2 |
8662686 | Takagi | Mar 2014 | B2 |
8665214 | Forutanpour et al. | Mar 2014 | B2 |
8670183 | Clavin | Mar 2014 | B2 |
8678581 | Blum | Mar 2014 | B2 |
8698157 | Hanamura | Apr 2014 | B2 |
8711487 | Takeda | Apr 2014 | B2 |
D704764 | Markovitz | May 2014 | S |
8745058 | Garcia-barrio | Jun 2014 | B1 |
8750541 | Dong | Jun 2014 | B1 |
8752963 | Mcculloch | Jun 2014 | B2 |
8803867 | Oikawa | Aug 2014 | B2 |
8814691 | Haddick | Aug 2014 | B2 |
8823071 | Oyamada | Sep 2014 | B2 |
8832557 | Fadell | Sep 2014 | B2 |
8837880 | Takeda | Sep 2014 | B2 |
8866702 | Wong | Oct 2014 | B1 |
D716808 | Yeom | Nov 2014 | S |
8878749 | Wu | Nov 2014 | B1 |
D719568 | Heinrich | Dec 2014 | S |
D719569 | Heinrich | Dec 2014 | S |
D719570 | Heinrich | Dec 2014 | S |
D723092 | Markovitz | Feb 2015 | S |
D723093 | Li | Feb 2015 | S |
8955973 | Raffle | Feb 2015 | B2 |
8957835 | Hoellwarth | Feb 2015 | B2 |
8964298 | Haddick | Feb 2015 | B2 |
D724083 | Olsson | Mar 2015 | S |
8971023 | Olsson | Mar 2015 | B2 |
D727317 | Olsson | Apr 2015 | S |
9031273 | Dong | May 2015 | B2 |
D730975 | Stables | Jun 2015 | S |
D732025 | Heinrich | Jun 2015 | S |
D733709 | Kawai | Jul 2015 | S |
9105261 | Horii | Aug 2015 | B2 |
D738373 | Davies | Sep 2015 | S |
9128281 | Osterhout | Sep 2015 | B2 |
9129295 | Border | Sep 2015 | B2 |
9143693 | Zhou | Sep 2015 | B1 |
D741398 | Echeverri | Oct 2015 | S |
9158116 | Osterhout | Oct 2015 | B1 |
D744581 | Votel | Dec 2015 | S |
D745007 | Cazalet | Dec 2015 | S |
D747401 | Exley | Jan 2016 | S |
D751551 | Ho | Mar 2016 | S |
D751552 | Osterhout | Mar 2016 | S |
D757006 | Cazalet | May 2016 | S |
D761796 | Heinrich | Jul 2016 | S |
D765076 | Rochat et al. | Aug 2016 | S |
9423842 | Osterhout | Aug 2016 | B2 |
D766895 | Choi | Sep 2016 | S |
D768759 | Markovitz et al. | Oct 2016 | S |
D769873 | Cazalet et al. | Oct 2016 | S |
9482880 | Chandrasekhar | Nov 2016 | B1 |
9523856 | Osterhout | Dec 2016 | B2 |
9529195 | Osterhout | Dec 2016 | B2 |
9529199 | Osterhout | Dec 2016 | B2 |
9651787 | Haddick | May 2017 | B2 |
9651788 | Osterhout | May 2017 | B2 |
9651789 | Osterhout | May 2017 | B2 |
9672210 | Osterhout | Jun 2017 | B2 |
9684172 | Border | Jun 2017 | B2 |
D792400 | Osterhout | Jul 2017 | S |
D793391 | Nakagawa et al. | Aug 2017 | S |
D793467 | Krause | Aug 2017 | S |
D794022 | Limaye et al. | Aug 2017 | S |
D795865 | Porter et al. | Aug 2017 | S |
9746676 | Osterhout | Aug 2017 | B2 |
D796504 | Natsume et al. | Sep 2017 | S |
D796506 | Natsume et al. | Sep 2017 | S |
D800118 | Xing et al. | Oct 2017 | S |
D803832 | Lin et al. | Nov 2017 | S |
9846308 | Osterhout | Dec 2017 | B2 |
9897822 | Osterhout | Feb 2018 | B2 |
9933622 | Border | Apr 2018 | B2 |
D819026 | Limaye et al. | May 2018 | S |
10018837 | Border et al. | Jul 2018 | B2 |
10025119 | Huynh | Jul 2018 | B2 |
10036889 | Border et al. | Jul 2018 | B2 |
10690936 | Heisey | Jun 2020 | B2 |
20020021498 | Ohtaka | Feb 2002 | A1 |
20020054272 | Ebata | May 2002 | A1 |
20020152425 | Chaiken et al. | Oct 2002 | A1 |
20020183101 | Oh | Dec 2002 | A1 |
20030030912 | Gleckman | Feb 2003 | A1 |
20040008158 | Chi | Jan 2004 | A1 |
20040066363 | Yamano | Apr 2004 | A1 |
20040132509 | Glezerman | Jul 2004 | A1 |
20050237271 | Yamamoto | Oct 2005 | A1 |
20050248717 | Howell et al. | Nov 2005 | A1 |
20050264752 | Howell | Dec 2005 | A1 |
20050280772 | Hammock | Dec 2005 | A1 |
20060061542 | Stokic | Mar 2006 | A1 |
20060109623 | Harris et al. | May 2006 | A1 |
20060239629 | Qi | Oct 2006 | A1 |
20070100637 | Mccune | May 2007 | A1 |
20070296684 | Thomas | Dec 2007 | A1 |
20080122736 | Ronzani | May 2008 | A1 |
20080125288 | Case | May 2008 | A1 |
20080143954 | Abreu | Jun 2008 | A1 |
20080291277 | Jacobsen | Nov 2008 | A1 |
20090013204 | Kobayashi | Jan 2009 | A1 |
20090040296 | Moscato | Feb 2009 | A1 |
20090108837 | Johansson | Apr 2009 | A1 |
20090279180 | Amitai | Nov 2009 | A1 |
20100045928 | Levy | Feb 2010 | A1 |
20100079356 | Hoellwarth | Apr 2010 | A1 |
20100079508 | Hodge | Apr 2010 | A1 |
20100130140 | Waku | May 2010 | A1 |
20100149073 | Chaum | Jun 2010 | A1 |
20100259718 | Hardy | Oct 2010 | A1 |
20100309426 | Howell | Dec 2010 | A1 |
20110130958 | Stahl | Jun 2011 | A1 |
20110131495 | Bull | Jun 2011 | A1 |
20110159931 | Boss | Jun 2011 | A1 |
20110164047 | Pance | Jul 2011 | A1 |
20110164163 | Bilbrey | Jul 2011 | A1 |
20110196610 | Waldman | Aug 2011 | A1 |
20110199171 | Prest | Aug 2011 | A1 |
20110201213 | Dabov | Aug 2011 | A1 |
20110202823 | Berger | Aug 2011 | A1 |
20110213664 | Osterhout | Sep 2011 | A1 |
20110234475 | Endo | Sep 2011 | A1 |
20110285764 | Kimura | Nov 2011 | A1 |
20120026455 | Takahashi | Feb 2012 | A1 |
20120050493 | Ernst | Mar 2012 | A1 |
20120062850 | Travis | Mar 2012 | A1 |
20120078628 | Ghulman | Mar 2012 | A1 |
20120147317 | Loeb, Jr. | Jun 2012 | A1 |
20120162270 | Fleck | Jun 2012 | A1 |
20120169608 | Forutanpour | Jul 2012 | A1 |
20120188245 | Hyatt | Jul 2012 | A1 |
20120212593 | Na | Aug 2012 | A1 |
20120223885 | Perez | Sep 2012 | A1 |
20120242570 | Kobayashi | Sep 2012 | A1 |
20120242698 | Haddick | Sep 2012 | A1 |
20120250152 | Larson | Oct 2012 | A1 |
20120264510 | Wigdor | Oct 2012 | A1 |
20120268449 | Choi | Oct 2012 | A1 |
20120306850 | Balan | Dec 2012 | A1 |
20120307198 | Ifergan | Dec 2012 | A1 |
20120326948 | Crocco | Dec 2012 | A1 |
20120327116 | Liu | Dec 2012 | A1 |
20130009366 | Hannegan | Jan 2013 | A1 |
20130044042 | Olsson | Feb 2013 | A1 |
20130063695 | Hsieh | Mar 2013 | A1 |
20130069985 | Wong | Mar 2013 | A1 |
20130083009 | Geisner | Apr 2013 | A1 |
20130083055 | Piemonte | Apr 2013 | A1 |
20130100259 | Ramaswamy | Apr 2013 | A1 |
20130120841 | Shpunt | May 2013 | A1 |
20130121562 | Barnum | May 2013 | A1 |
20130135198 | Hodge | May 2013 | A1 |
20130154913 | Genc | Jun 2013 | A1 |
20130185052 | Boyd | Jul 2013 | A1 |
20130196757 | Latta | Aug 2013 | A1 |
20130201080 | Evans | Aug 2013 | A1 |
20130201081 | Evans | Aug 2013 | A1 |
20130207970 | Shpunt | Aug 2013 | A1 |
20130230215 | Gurman | Sep 2013 | A1 |
20130235331 | Heinrich | Sep 2013 | A1 |
20130249776 | Olsson et al. | Sep 2013 | A1 |
20130250503 | Olsson | Sep 2013 | A1 |
20130257622 | Davalos | Oct 2013 | A1 |
20130265212 | Kato | Oct 2013 | A1 |
20130265227 | Julian | Oct 2013 | A1 |
20130293580 | Spivack | Nov 2013 | A1 |
20130321265 | Bychkov | Dec 2013 | A1 |
20130321271 | Bychkov | Dec 2013 | A1 |
20130342981 | Cox | Dec 2013 | A1 |
20140028704 | Wu | Jan 2014 | A1 |
20140029498 | Kim | Jan 2014 | A1 |
20140043682 | Hussey | Feb 2014 | A1 |
20140062854 | Cho | Mar 2014 | A1 |
20140111864 | Margulis | Apr 2014 | A1 |
20140129328 | Mathew | May 2014 | A1 |
20140146394 | Tout | May 2014 | A1 |
20140147829 | Jerauld | May 2014 | A1 |
20140152530 | Venkatesha | Jun 2014 | A1 |
20140152558 | Salter | Jun 2014 | A1 |
20140152676 | Rohn | Jun 2014 | A1 |
20140153173 | Pombo | Jun 2014 | A1 |
20140159995 | Adams | Jun 2014 | A1 |
20140160055 | Margolis | Jun 2014 | A1 |
20140160157 | Poulos | Jun 2014 | A1 |
20140160170 | Lyons | Jun 2014 | A1 |
20140168735 | Yuan | Jun 2014 | A1 |
20140176603 | Kumar | Jun 2014 | A1 |
20140177023 | Gao | Jun 2014 | A1 |
20140183269 | Glaser | Jul 2014 | A1 |
20140206416 | Aurongzeb | Jul 2014 | A1 |
20140347572 | Liu | Nov 2014 | A1 |
20140354624 | Chaji | Dec 2014 | A1 |
20140375545 | Ackerman | Dec 2014 | A1 |
20150029088 | Kim | Jan 2015 | A1 |
20150042544 | Sugihara | Feb 2015 | A1 |
20150084862 | Sugihara | Mar 2015 | A1 |
20150145839 | Hack | May 2015 | A1 |
20150168730 | Ashkenazi | Jun 2015 | A1 |
20150178932 | Wyatt | Jun 2015 | A1 |
20150198807 | Hirai | Jul 2015 | A1 |
20150205117 | Border | Jul 2015 | A1 |
20150205132 | Osterhout | Jul 2015 | A1 |
20150293587 | Wilairat | Oct 2015 | A1 |
20150294627 | Yoo | Oct 2015 | A1 |
20150309317 | Osterhout | Oct 2015 | A1 |
20150309534 | Osterhout | Oct 2015 | A1 |
20150309995 | Osterhout | Oct 2015 | A1 |
20150346496 | Haddick | Dec 2015 | A1 |
20150346511 | Osterhout | Dec 2015 | A1 |
20150347823 | Monnerat | Dec 2015 | A1 |
20150382305 | Drincic | Dec 2015 | A1 |
20160018646 | Osterhout | Jan 2016 | A1 |
20160018647 | Osterhout | Jan 2016 | A1 |
20160018648 | Osterhout | Jan 2016 | A1 |
20160018649 | Osterhout | Jan 2016 | A1 |
20160037833 | Kriesel | Feb 2016 | A1 |
20160048025 | Cazalet | Feb 2016 | A1 |
20160078278 | Moore | Mar 2016 | A1 |
20160085278 | Osterhout | Mar 2016 | A1 |
20160131904 | Border | May 2016 | A1 |
20160131911 | Border | May 2016 | A1 |
20160132082 | Border | May 2016 | A1 |
20160133201 | Border | May 2016 | A1 |
20160161743 | Osterhout | Jun 2016 | A1 |
20160161747 | Osterhout | Jun 2016 | A1 |
20160171846 | Brav | Jun 2016 | A1 |
20160178904 | Deleeuw | Jun 2016 | A1 |
20160187658 | Osterhout | Jun 2016 | A1 |
20160246055 | Border | Aug 2016 | A1 |
20160266412 | Yoshida | Sep 2016 | A1 |
20160370606 | Huynh | Dec 2016 | A1 |
20170031395 | Osterhout | Feb 2017 | A1 |
20170099749 | Nikkhoo et al. | Apr 2017 | A1 |
20170219831 | Haddick | Aug 2017 | A1 |
20170220865 | Osterhout | Aug 2017 | A1 |
20170227778 | Osterhout | Aug 2017 | A1 |
20170227793 | Abreu | Aug 2017 | A1 |
20170235133 | Border | Aug 2017 | A1 |
20170235134 | Border | Aug 2017 | A1 |
20170311483 | Kawai | Oct 2017 | A1 |
20170337187 | Osterhout | Nov 2017 | A1 |
20170343810 | Bietry | Nov 2017 | A1 |
20170351098 | Osterhout | Dec 2017 | A1 |
20180003988 | Osterhout | Jan 2018 | A1 |
20180024369 | Kato | Jan 2018 | A1 |
20180143451 | Osterhout et al. | May 2018 | A1 |
20180267302 | Border et al. | Sep 2018 | A1 |
Number | Date | Country |
---|---|---|
368898 | May 1990 | EP |
777867 | Jun 1997 | EP |
2207164 | Jul 2010 | EP |
2486450 | Aug 2012 | EP |
2502410 | Sep 2012 | EP |
2009171505 | Jul 2009 | JP |
5017989 | Sep 2012 | JP |
2012212990 | Nov 2012 | JP |
1020110101944 | Sep 2011 | KR |
20130002363 | Apr 2013 | KR |
09414152 | Jun 1994 | WO |
03023756 | Mar 2003 | WO |
2010101919 | Sep 2010 | WO |
2011143655 | Nov 2011 | WO |
2012058175 | May 2012 | WO |
2013050650 | Apr 2013 | WO |
2013103825 | Jul 2013 | WO |
2013110846 | Aug 2013 | WO |
2013170073 | Nov 2013 | WO |
2013176079 | Nov 2013 | WO |
2015079610 | Jun 2015 | WO |
2016073734 | May 2016 | WO |
2016132974 | Aug 2016 | WO |
2016205601 | Dec 2016 | WO |
2017100074 | Jun 2017 | WO |
2018044537 | Mar 2018 | WO |
Entry |
---|
PCT/US2015/059264, , “International Application Serial No. PCT/US2015/059264, International Search Report and Written Opinion dated Feb. 19, 2016”, Osterhout Group, Inc., 11 Pages. |
15782758.5, “European Application Serial No. 15782758.5, Extended European Search Report dated Nov. 27, 2017”, Osterhout Group, Inc., 10 Pages. |
15857713.0 European Application Serial No. 15857713.0, Extended European Search Report dated Oct. 16, 2017, Osterhout Group, Inc., seven pages. |
Chinese Office Action dated May 25, 2021 for CN Patent Application No. 201780060034.1, with English translation, 8 pages. |
Clements-Cortes, et al. “Short-Term Effects of Rhythmic Sensory Stimulation in Alzheimer's Disease: An Exploratory Pilot Study,” Journal of Alzheimer's Disease 52 (2016), IOS Press Feb. 9, 2016, pp. 651-660. |
European Search Report dated Mar. 13, 2020, for EP Application No. 17847193.4, eight pages. |
Examination Report dated Jul. 27, 2021, for Australian Application No. 2017321192, three pages. |
Final Office Action dated Dec. 31, 2018, for U.S. Appl. No. 15/249,637, filed Aug. 29, 2016, ten pages. |
Indian Office Action dated Jun. 21, 2021, for IN Application No. 201947008592, with English translation, 7 pages. |
Non-Final Office Action dated Mar. 22, 2018, for U.S. Appl. No. 15/249,637, filed Aug. 29, 2016, thirteen pages. |
Non-Final Office Action dated Sep. 27, 2019, for U.S. Appl. No. 15/249,637, filed Aug. 29, 2016, eighteen pages. |
Notice of Allowance dated Feb. 13, 2020, for U.S. Appl. No. 15/249,637, filed Aug. 29, 2016, eight pages. |
Notice of reasons for rejection, dated Jul. 21, 2021, for JP Patent Application No. 2019-511616, with English translation, 10 pages. |
Osterhout. (Oct. 14, 2015). “Commercial and Social Implications”, 12 pages. |
PCT/2016/064441, Application Serial No. PCT/US2016/064441, International Search Report and Written Opinion dated Feb. 7, 2017, Osterhout Group, Inc., 16 pages. |
PCT/US2015/026704, International Preliminary Report on Patentability and Written Opinion dated Nov. 3, 2016, Osterhout Group, Inc., 10 pages. |
PCT/US2015/026704, “International Search Report and Written Opinions,” dated Aug. 21, 2015, 15 pages. |
PCT/US2015/059264, International Application Serial No. PCT/US2015/059264, International Preliminary report on Patentability and Written Opinion dated May 18, 2017, Osterhout Group, Inc., eight pages. |
PCT/US2016/038008, International Application Serial No. PCT/US2016/038008, International Preliminary Report on Patentability dated Dec. 28, 2017, Osterhout Group, Inc. six pages. |
PCT/US2016/038008, International Application Serial No. PCT/US2016/038008, International Search Report and Written Opinion dated Oct. 27, 2016, Osterhout Group, Inc. eight pages. |
PCT/US2016/064441, “International Application Serial No. PCT/US2016/064441, International Preliminary Reporton Patentability and Written Opinion dated Jun. 21, 2018”, Osterhout Group, Inc., 8 Pages. |
PCTUS2017046701, “Application Serial No. PCTUS2017046701, International Search Report and the Written Opinion dated Nov. 6, 2017”, 7 pages. |
Schedwill, “Bidirectional OLED Microdisplay”, Fraunhofer Research Institution for Organics, Materials and Electronic Device COMEDD, Apr. 11, 2014, 2 pages. |
Vogel, et al., “Data glasses controlled by eye movements”, Information and communication, Fraunhofer-Gesellschaft, Sep. 22, 2013, 2 pages. |
Ye, Hui et al., “High Quality Voice Morphing”, Cambridge University Engineering Department Trumpington Street, Cambridge, England, CB2 1PZ, 2004, I-9-I-12. |
“Audio Spotlight,” by Holosonics, http://www.holosonics.com, accessed Jul. 3, 2014, three pages. |
“Sound from Ultrasound,” Wikipedia entry, http://en.m.wikipedia.org/wiki/Sound_from_ultrasound, accessed Jul. 3, 2014, 13 pages. |
Israeli Notice of Allowance dated Apr. 4, 2022, for IL Application No. 265031, three pages. |
Chinese Office Action dated Dec. 23, 2021 for CN Patent Application No. 201780060034.1, with English translation, 10 pages. |
Japanese Notice of Allowance dated Apr. 4, 2022, for JP Patent Application No. 2019-511616, with English translation, 6 pages. |
Japanese Office Action dated Dec. 17, 2021 for JP Patent Application No. 2019-511616, with English translation, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20210096394 A1 | Apr 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15249637 | Aug 2016 | US |
Child | 15931389 | US |