The present invention relates to a system for adjusting the pedal location along a crank arm of an exercise bike, and, more particularly, to a simple, tool less system that allows a user to change the location of the pedals of an exercise bike along the crank arm to adjust the throw or radius of the rotational movement.
There are a number of differing exercise bikes currently available commercially. While there are certainly differences in such exercise bikes, in general, most have some frame with a crank mechanism having a center shaft that passes through the frame along a generally horizontal axis and having two crank arms that extend outwardly in parallel planes and spaced at 180 degrees apart. There are also pedals that are affixed in one manner or another to the crank arms such that the user can place both feet into the pedals and rotate the crank mechanism in a rotational movement for exercise, therapy or both.
In many of such exercise bikes, the throw, or radial distance that the pedals are located away from the rotational axis is fixed, however, there are real advantages to having the throw adjustable by the user.
The advantages of having an adjustable throw or radius are well known. For example, after a knee replacement surgery, the rehabilitation includes working out on an exercise bike to regain the strength and flexibility of the knee. A problem occurs, however, in that the normal throw or total radius of the rotational movement of the pedals is simply too great for many patients and it can overstress the replacement knee. In the case of exercise bikes, the present fixed pedal location of many such bikes has a rotation diameter of about 13 inches (33 cm.) and which makes it virtually impossible for the average patient to achieve a complete revolution of the pedals during the early phases of post operation rehabilitation.
It is, therefore, more advantageous to the patient to commence the rehabilitation with a shorter radius or throw and then, as the knee regains strength, gradually increase the throw during the rehabilitation process.
The ability to change the radius of the rotational movement of the pedals has been published, see U.S. Pat. No. 7,204,788 of Andrews and U.S. Pat. No. 5,338,272 of Sweeney, III however, in most cases, the mechanism or system is relatively complex, requires tools and/or specialized knowledge, and is limited in the ability to move the pedals along positive, multiple positions and the like. It is important that the ability to change the location of the pedals be simple since the average age of surgery patients for knee surgery is in the 60's and 70's and thus the adjustment must be real easy for such persons to accomplish.
It would therefore be advantageous to have an exercise bike having a pedal adjustment system that would allow the patient to easily and positively move the location of the pedals along the crank arm to differing positions. It would be further advantageous to provide a pedal adjustment system having no need for special tools to carry out the adjustment process. It would be still further advantageous to have a pedal adjustment system that provides the ability to position either or both pedals individually at multiple positions along the crank arm and be positively locked into the desired position.
Accordingly, the present invention relates to a system for adjusting the location of pedals along the crank arm of a crank mechanism of an exercise bike in order to adjust the rotational radius of those pedals. The invention is shown and described as used with a recumbent exercise bike and the present invention is particularly useful with that type of exercise bike.
With the present pedal adjustment system, the pedals can be moved along the crank arm of a crank mechanism of an exercise bike to thereby adjust the throw or radius of rotational movement of the pedals about a main shaft of rotation.
The pedals can be located in a plurality of position along that crank arm, and at each selected location, there is a locking system that intermeshes a locking member on the crank arm and a locking member on a sleeve slide to which the pedal is affixed.
Once intermeshed, the locking members lock the pedals in the desired positions and that locked position is maintained by the use of a clamping device such as a thumb screw or knob that holds the locking members in that intermeshed condition. The thumb screw itself can be readily manipulated by the user without the need for special tools.
In an exemplary embodiment, one of the locking members can be a rack and the other a plurality of teeth that intermesh with the rack.
In another aspect of the present invention, there is commonly used during the rehabilitation of a knee, for example, a goniometer which measures the angle of the knee, that is, the angle between the upper leg and the lower leg. It is important to regain the flexibility of the leg to continue to improve that angle width and often the knee is stretched to a painful position in trying to maximize the angle that the patient is capable of attaining.
Accordingly, there is a system of the present invention that is built into or located proximate to the exercise bike that provides a continuous measurement of the angle of the knee while the patient is carrying out normal exercises on the bike.
To that end, the present invention includes a processor having an input of the patient's height, an input representative of the location of the seat on which the patient is resting and an input representative of the location of the pedal along the crank arm. With those parameters inputted to the processor, the processor can calculate the knee angle and there can be a display that lets the patient be aware of that angle as the exercise is being carried out.
These and other features and advantages of the present invention will become more readily apparent during the following detailed description taken in conjunction with the drawings herein.
Referring now to
The exercise bike 10 also includes a crank mechanism 26 that includes a main shaft, not shown in
Accordingly, as can now be seen, the user sits in the seat 14 with the user's leg extending to the pedal 30 to create the rotational motion with both of the pedals. The travel of that rotational movement is governed by the radius of the circle formed by the rotating pedal 30 and that radius or throw is the distance between the axis of rotation A of the main shaft rotating in the frame 12 and the location of the pedal 30.
Turning now to
Turning now to
That rack 38 can be formed on the crank arm 28 during the manufacture and fabrication of the crank arm 38 or can be affixed to the lower surface of a standard crank arm in order to retrofit the system of the present invention to an existing exercise bike. As will be later discussed, instead of a plurality of indentations 36 in the rack 38 or locking members, there can be at least one locking member formed as an indentation or projection located along the lower surface of the crank arm 28 consistent with the intent of the present invention.
Along a lower, upwardly facing surface 48 of the sleeve slide 40, there is also a plurality of locking members in the form of teeth 50 extending upwardly and which can be seen as meshing with the indentations 36 on the rack 38, thus prevents the sleeve slide 40 from moving along the crank arm 28. That meshing between the teeth 50 and the indentations 36 is maintained by a clamping device such as the thumb screw 42 that is threaded through the sleeve slide 40. As such, the user can tighten the thumb screw 42 to bring the teeth of the sleeve slide 40 into a fixed and locked engagement with the indentations 36 in the rack 38 to hold the pedal 30 in a fixed location along the crank arm 28. The term thumb screw will be used herein in the description, however, the term is intended to apply to any screw of clamping device that can be easily turned by an individual in making an adjustment to the pedal 30.
Turning to
Turning to
Turning next to
Turning briefly to
Turning to
Other components include the pedals 30 and 62 that are affixed to the sleeve slides 40, 64 respectively, by means such as threaded screws 68, 70 respectively.
In the use of the present invention to adjust the pedal movement, it is preferred that the pedal adjustment be undertaken when the pedal is located in its position furthest away from the user such that the rack 38 or 60 will be in a downwardly facing orientation i.e. the orientation of pedal 30 of
Accordingly, it can be seen that the present pedal adjustment system can be used to adjust the radius or throw of the rotational movement of the pedals in a positive manner and yet without the need for tools or the like.
Accordingly, as can now be seen, there is a least one locking member, and preferable two locking members, on the slide sleeve and a plurality of locking members on the crank arm or, alternatively, there can be at least one locking member on the crank arm and a plurality of locking members formed on the slide sleeve. Either locking member can comprise gear teeth or a rack into which the gear teeth intermesh.
Turning now to
As such, there is an angle X formed between the longitudinal axes of the upper leg 86 and the lower leg 88 and is the angle that is normally measure by a goniometer. The angle is indicative of the flexibility of the knee and thus the stage of rehabilitation of the knee following surgery. In
In any event, the angle X is measured to continually monitor the flexibility of the knee following surgery and is often a painful process to try to stretch the knee to achieve the maximum angle possible for the patient.
With the present invention, however, the angle X can be readily calculated and displayed to the patient or other persons on a continual, intermittent or “on demand” basis. The angle X is calculated automatically by use of a number of measured points, that is, the location of the seat 76, the location of the pedal 82 when in its back position and the height of the patient. The former two parameters can be determined by sensors and the height of the patient 74 can be inputted to a processor by the patient or attendant.
Accordingly, there is a seat position sensor 90 that senses and provides a signal indicative of the location of the seat 76 along the track 78. There is also a position sensor for the pedal 82 and may include a pedal sensor 92 that determines the location of the adjustable pedal 84 along the crank arm 28 (
With those three data points, a processor can calculate the angle X and display that angle by means of a display located on the display panel 16 (
Turning finally to
As such, with the three items of data, the processor 96 can calculate the angle X indicative of the flexibility of the knee of the patient and send that information to a display 98 to show that angle to the patient and/or to attending personnel to assess the rehabilitation of the patient.
Those skilled in the art will readily recognize numerous adaptations and modifications which can be made to the pedal adjusting system of the present invention which will result in an improved system to allow the adjustment of the throw or radius of rotational movement of the pedals of an exercise bike, yet all of which will fall within the scope and spirit of the present invention as defined in the following claims. Accordingly, the invention is to be limited only by the following claims and their equivalents.