Adjustable plaster ring cover

Information

  • Patent Grant
  • 7718893
  • Patent Number
    7,718,893
  • Date Filed
    Monday, July 21, 2008
    16 years ago
  • Date Issued
    Tuesday, May 18, 2010
    14 years ago
Abstract
A power distribution system has an electrical box configured to attach a power cable, a plaster ring releasably mounted to the box and one or more electrical devices installed into the ring. A pre-wired ground extends from a first end physically and electrically connected to a ground terminal on the electrical device. The plaster ring is movable between a closed position proximate the box and an open position distal the box. The pre-wired ground is configured as a lanyard so as to support the plaster ring as a wiring platform in the open position for connecting wires between the power cable and the electrical device or devices.
Description
BACKGROUND OF THE INVENTION

A power distribution system may comprise an electrical box, a plaster ring and an electrical device, such as an outlet or switch. During a roughing phase of construction, electrical boxes with attached plaster rings are mounted to wall studs at predetermined locations. A journeyman electrician routes power cables through building framing to the appropriate box. Then power cables are fed through openings in the rear or sides of the boxes and folded back inside. During a trim phase, electrical devices are mounted to the plaster rings.


SUMMARY OF THE INVENTION

Conventional electrical distribution systems consist of either prefabricated components customized for particular electrical distribution points within a building or individual components that must be planned for, ordered, allocated to building locations and then attached together and wired during installation at each electrical distribution point. Further, it is impractical to test each wired installation for conformance to construction standards.


A pre-wired power distribution system, in contrast, advantageously combines installation flexibility, convenience and verifiability. A combination electrical box, plaster ring, one or more electrical devices installed in the plaster ring and one or more pre-wired grounds between the electrical box and the electrical device or devices provides for a pre-tested ground path. In an embodiment, the electrical device is a wiring module configured to accept any of various functional modules. The pre-wired ground also functions as a lanyard between the electrical device and the electrical box, allowing the plaster ring to be pivoted to, and supported in, an open position to provide hands-free connection of power wires to the electrical device. This feature is particularly useful for wiring gang electrical boxes housing multiple electrical devices. In an embodiment, a ground bus bar mounted to the electrical box provides further flexibility by accommodating multiple grounds for power cables routed to the electrical box. In this manner, an electrical box, a plaster ring and wiring module or other electrical device or devices may be manufactured, assembled, distributed and/or installed as a pre-wired power distribution component, by itself or in combination with an adjustable mount.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-B are perspective views of a pre-wired power distribution system in an open position and a closed position, respectively;



FIG. 2 is a perspective view of a pre-wired power distribution system embodiment having a writing module with external push wire connectors;



FIG. 3 is a perspective view of a pre-wired power distribution system embodiment having a wiring module with internal push wire connectors;



FIG. 4A is a front perspective view of an embodiment of a wiring module with internal push wire connectors;



FIG. 4B is a rear perspective view of the wiring module of FIG. 4A; and



FIG. 5 is a perspective view of a pre-wired power distribution system embodiment having a box-mounted ground bus bar;



FIG. 6 is a front view of a modular integrated wiring system utilizing various embodiments of a universal electrical wiring component;



FIG. 7 is a front perspective exploded view of a universal electrical wiring component having modular electrical devices combined with an adjustable, modular mount;



FIG. 8 is a front perspective view of a floor bracket electrical wiring component;



FIG. 9 is a front perspective view of a stud bracket electrical wiring component;



FIG. 10 is a front perspective view of a box bracket electrical wiring component;



FIG. 11 is a front perspective view of an extended box bracket electrical wiring component;



FIG. 12 is an exploded perspective view of a junction box assembly;



FIG. 13 is an exploded perspective view of a floor bracket assembly;



FIG. 14 is an exploded perspective view of a stud bracket assembly;



FIG. 15 is an exploded perspective view of a box bracket assembly;



FIG. 16 is an exploded perspective view of an extended BOX bracket assembly;



FIG. 17 is an exploded perspective view of an adjustable plaster ring;



FIG. 18 is a perspective view of a junction box; and



FIGS. 19A-D are top, perspective, front and side views, respectively, of a support arm.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT


FIGS. 1A-B illustrate a pre-wired power distribution system 100 having an electrical box 120 configured to attach at least one power cable, an adjustable plaster ring 140, an electrical device 160 mounted to the plaster ring 140 and a ground lanyard 180 pre-wired between the electrical device 160 and the electrical box 120. The electrical box 160 can be any type known in the art.


In some embodiments, the electrical device 160 is a wiring module that is configured to connect to a source of electrical power via a plurality of cables (e.g., hot, neutral, and ground cables). The plurality of cables (not shown) are fed through the electrical box 120 and connected to a wiring portion of the wiring module, as disclosed herein. In some embodiments, once the wiring module is connected to power cables and fully installed within the electrical box 120, the wiring portion of the wiring module is substantially enclosed by the electrical box 120 and the adjustable plaster ring 140, and is inaccessible to users. The wiring module also includes a user-accessible portion that removably accepts a functional module (not shown) that provides a selected electrical power distribution function. For example, the functional module may be an outlet receptacle or a switch. The user-accessible portion of the wiring module includes shielded connectors, or sockets, that mate with the functional module. The shielded connectors help reduce the risk of electrical shock to users when a functional module is not installed in the wiring module. In FIG. 1B, the shielded connectors are concealed by a protective cover 161 that protects the connectors from foreign objects, for example, during a rough-in phase of construction. The functional module can be installed without accessing the wiring portion of the wiring module or the power cables.


In some embodiments, the electrical device 160 (e.g., a wiring module) is mounted to the adjustable plaster ring 140. The adjustable plaster ring provides for an adjustable distance between the electrical device 160 and the electrical box 120. For example, the adjustable plaster ring may include adjusting screws that can be turned to increase or decrease the distance between the electrical device 160 and the electrical box 120. In this way, the depth of the electrical device 160 within a wall can be adjusted to result in the desired fit with the wallboard.


One lanyard end 182 is connected to a box ground junction 122 and another lanyard end 184 is connected to an electrical device terminal 162. The plaster ring 140 can be releasably attached to the electrical box 120. The plaster ring 140 is movable between an open position FIG. 1A distal the electrical box 120 and a closed position FIG. 1B proximate the electrical box 120. The plaster ring 140 can be releasably attached to the electrical box 120 in the closed position. The ground lanyard 180 provides a ground path from the electrical device 160 to the electrical box and mechanically supports the plaster ring in the open position. In some embodiments, however, the ground lanyard 180 does not necessarily support the plaster ring in the open position.


In an embodiment, the ground lanyard 180 is a ground wire connected between a single point ground 222 (FIG. 2) on the electrical box 120 and a ground terminal 252 (FIG. 2) on the electrical device 160, as described in further detail with respect to FIGS. 2-3, below. In another embodiment, the ground lanyard 180 includes multiple ground wires connected between a ground bus bar 450 (FIG. 4) mounted on a multi-gang electrical box 420 (FIG. 4) and the ground terminals 462 (FIG. 4) of multiple electrical devices 460 (FIG. 4) mounted in a multi-gang plaster ring 440 (FIG. 4), as described in further detail with respect to FIG. 4, below. As described herein, the electrical devices 160 may be wiring modules that are configured to accept various functional modules. The electrical box 120 is adapted to utilize various adjustable or fixed stud brackets, and the plaster ring 140 may be adjustable. These aspects facilitate the positioning of the mounted electrical devices during wall installation of the ground wire supporting wiring assembly 100. With this combination of features, a pre-wired power distribution system provides a broadly adaptable electrical system component.


The connections between the ground lanyard 180 and the electrical box 120 can be formed using any type of connection known in the art. For example, a connection between the ground lanyard 180 and the electrical box 120 or the electrical device 160 may comprise an electrical screw terminal or a push-in connector. In some embodiments, the electrical screw terminal is treated with a threadlocker material once the connection is made to improve the mechanical reliability of the connection. The ground lanyard 180 can also be soldered or clamped to the electrical box 120 or the electrical device 160. Advantageously, in cases where the electrical device 160 is a wiring module, the connection between the ground lanyard 180 and the electrical box 120 or the electrical device 160 can be made substantially permanent because the wiring module need not be removed to replace an outlet receptacle, switch, or other similar functional module. In contrast, it would generally be undesirable to form a permanent ground connection between a conventional outlet receptacle or switch and an electrical box 120 because doing so may prevent the replacement of the conventional outlet receptacle or switch. The fact that the connections between the ground lanyard 180 and the electrical device 160 or the electrical box 120 can be made substantially permanent can also allow the connections to be made stronger (allowing the ground lanyard to support the weight of the electrical device 160 and adjustable plaster ring 140, as described herein) and more reliable, both from a mechanical and an electrical standpoint.


The pre-wired ground lanyard 180 can be advantageously tested at the manufacturer. In an embodiment, the ground lanyard 180 is subjected to a mechanical pull test and an electrical continuity test. In a particular embodiment, the pull-test has at least a 20 lb. force. The mechanical pull test and the electrical continuity test would otherwise be too cumbersome to perform on ground connections installed by an electrician at a worksite. However, since the ground connection between the electrical device 160 and the electrical box 120 is installed at the manufacturer, these tests can be performed more efficiently than can be done at a worksite. Moreover, these tests can be performed using equipment that is too expensive or bulky to use at a worksite where the ground connection might otherwise be installed. In some embodiments, however, the ground lanyard 180 is not pre-wired but is instead configured to be connected upon installation of the electrical device 160 within the electrical box 120.


Since the ground connection between the electrical device 160 and the electrical box 120 acts as a pull-tested lanyard 180, the plaster ring 140 can be supported in an open position (FIG. 1A) by the ground lanyard 180, advantageously allowing an electrician hands-free access to one or more electrical devices 160 so as to wire these devices to power cables routed to the electrical box 120. Upon wiring completion, the plaster ring 140 is moved to a closed position (FIG. 1B) and secured to the electrical box 120. Multiple electrical devices 160 can be pre-attached to the plaster ring 140 because doing so does not block access to the electrical box 120 or impede the wiring process. Further, the use of a ground bus bar as the electrical box ground junction 184 advantageously allows the ground wiring of one or more power cables to the bus bar without resorting to ad hoc pigtail junctions or the use of the electrical device connectors.



FIG. 2 illustrates a pre-wired power distribution system embodiment 200 having a wiring module 260 pre-wired with push-wire connectors 250. A ground wire 280 extends between the wiring module 260 and an electrical box 120. In some embodiments, the ground wire 280 includes a push-wire connector at some point along its length to be connected to a ground cable fed into the electrical box 120 along with other power distribution cables. The ground wire 280 has a first end 282 attached to a ground push-wire connector 252 and a second end 284 secured to a ground attachment point 222 in the interior of the electrical box 120. In some embodiments, the ground attachment point 222 is a screw terminal. The push-wire connectors 250 are connected to internal crimp wires of the wiring module 260 and adapted to accept power and ground wires from cables (not shown) routed to the electrical box 120. An electrician can easily and quickly attach the power wires to the appropriate push wire connectors 250 while the plaster ring 140 is supported by the ground wire 280.



FIG. 3 illustrates another pre-wired power distribution system embodiment 300 having a wiring module 360 with internal push-wire connectors 350. A ground wire 280 extends between the wiring module 360 and an electrical box 120. The ground wire 280 has a first end 282 attached to a ground push-wire connector 352 and a second end 284 secured to a ground attachment point 222 in the interior of the electrical box 120. The push-wire connectors 350 are adapted to accept power and ground wires from cables (not shown) routed to the electrical box 120.



FIG. 4A is a front perspective view of an embodiment of a wiring module 460 having internal push-wire connectors 407. The wiring module 460 has a mounting bracket 406 with an aperture 401 to mount the wiring module 460 to an adjustable plaster ring (e.g., 140) and an aperture 402 to attach a protective cover (e.g., 161) to the wiring module 460. The wiring module 460 also includes shielded connectors 403 for receiving a functional module (e.g., an outlet receptacle functional module or a switch functional module).



FIG. 4B is a rear perspective view of the wiring module 460. The wiring module 460 includes a screw terminal ground lanyard connection point 452. In other embodiments, the ground lanyard connection point is, for example, an internal push-wire connector, a soldered joint, or a clamped joint. The wiring module 460 also includes internal push-wire connectors 407 for receiving power cables (e.g., hot, neutral, and ground power cables) routed to an electrical box (e.g., 120). The internal push-wire connectors 407 can also be used for creating a ground connection between the wiring module 460 and an electrical box (e.g., 120). For example, the wiring module 460 could be mechanically and electrically coupled to an electrical box via a pre-wired ground lanyard (e.g., 180). The internal push-wire connectors 407 can be, for example, any type of push-in connector housed wholly or partially within the wiring module 460 for receiving power cables. In some embodiments, the internal push-wire connectors 407 are stab-in connectors. The wiring module 460 also includes a tab 405 that covers screw terminals that are in electrical contact with individual ones of the internal push-wire connectors 407. The screw terminals can be used as an alternative to the internal push-wire connectors 407 if desired.


The internal push-wire connectors 407 are particularly advantageous in situations where space within the electrical box 160 is limited or in any other setting where it is desirable to conserve space within the electrical box 160. This may be true, for example, in relatively shallow walls (e.g., walls measuring less than about 3″ from the outside edge of a wall stud to the back wall). The internal push-wire connectors 407 conserve space within the electrical box 160 (or allow for the usage of a shallower depth electrical box 160) because they do not include a length of wire between the wiring module and a connector as is the case for the embodiment illustrated in FIG. 2 having external push-wire connectors 250. While such external push-wire connectors 250 are desirable under some circumstances, the internal push-wire connectors of FIGS. 3-4 can result in space and cost savings due to the elimination of wire joining the connectors (e.g., 250) to the wiring module (e.g., 260). It should be understood that the wiring module 460 with internal push-wire connectors can be used with or without a pre-wired ground lanyard (e.g., 180).



FIG. 5 illustrates a pre-wired power distribution system embodiment 500 having a 3-gang electrical box 520, a 3-gang adjustable plaster ring 540, a ground bus bar 550 mounted directly to the electrical box 520, three wiring modules 560 attached to the plaster ring 540 and a multiple wire ground lanyard 580. The ground lanyard 580 extends between the bus bar 550 and ground terminals 562 on each of the wiring modules 560. The bus bar 550 is configured to accept additional ground wires from power cables routed to and from the electrical box 520. As such, the ground lanyard 580 supports the plaster ring 540 in the open position shown, providing a wiring platform for the electrician to wire all three wiring modules 560 as a unit without having to handle and hold each of the wiring modules individually during the wiring process.


Advantageously, the bus bar 550 is configured to allow the attachment of multiple ground wires 580 so as to provide ground connections for not only wiring modules, but also power cables routed in and out of the electrical box 520. The bus bar 550 has a plurality of sections 552 and individual terminals 551 within each section. In an embodiment, there is one section 552 corresponding to each of the wiring modules 560 and multiple terminals 551 in each section. Each of the sections can be in electrical contact or electrically isolated. In this manner, ground wiring capacity increases with the size and electrical device mounting capacity of the electrical box 520. Each terminal 551 is configured to accept a ground wire 580 from either a wiring module 560 or an attached power cable. In a 3-gang embodiment, the bus bar 550 has three sections corresponding to three wiring modules, and each section has four terminals configured to accept up to four ground wires, though other numbers of sections and terminals are also possible. The bus bar 550 advantageously eliminates the need for pigtail ground connections or the equivalent use of electrical device terminals. The bus bar 550 can be configured for use with external push wire connector wiring modules 260 (FIG. 2), internal push wire connector wiring modules 360 (FIG. 3) or any electrical devices having push-wire, screw terminal or similar wire connectors.


Although described and illustrated herein with respect to 1- and 3-gang embodiments, a pre-wired power distribution system can be configured for any number of electrical devices, including 2-gang, 4-gang, and other many-gang embodiments. A pre-wired power distribution system has been disclosed in detail in connection with various embodiments. These embodiments are disclosed by way of examples only and are not to limit the scope of the claims that follow. One of ordinary skill in art will appreciate many variations and modifications.



FIG. 6 illustrates a modular integrated wiring system 600 utilizing universal electrical wiring component embodiments 800-1100. A floor bracket component 800, a stud bracket component 900, a box bracket component 1000 and an extended box bracket 1100 are included, providing adaptability for different electrical power distribution designs. Each wiring component 800-1100 provides mounting flexibility by adjusting to various wall dimensions, stud configurations, and electrical distribution point locations. Specifically, each component 800-1100 has an adjustable depth into the wall, guaranteeing a flush finish with the wall surface at every electrical distribution point. In addition, the floor bracket component 800 provides an adjustable height. The stud bracket component 900 can be positioned at any height and provides an adjustable distance between studs. The box bracket component 1000 can be positioned at any height, and the extended box bracket component 1100 can be positioned at any height and at various locations between studs. Further, each wiring component 800-1100 accommodates a variety of functional modules, including various outlets, switches, GFCI devices, and motion detectors to name few. Advantageously, the color of the functional modules and even some functionality can be readily changed at anytime without rewiring, as described below. The resulting modular integrated wiring system 600 has the labor saving advantages of prefabrication with the design and installation flexibility of individually configured and wired components.


A universal electrical wiring component combining modular electrical devices and an adjustable, modular mount is described with respect to FIG. 7, below. A floor bracket component 800 is described in further detail with respect to FIG. 8, below. A stud bracket component 900 is described in further detail with respect to FIG. 9, below. A box bracket component 900 is described in further detail with respect to FIG. 9, below, and an extended box bracket component 1100 is described in further detail with respect to FIG. 11, below. Adjustable mounts are described in detail with respect to FIGS. 12-16, below.



FIG. 7 further illustrates a universal electrical wiring component 700 having an adjustable mount 705 combined with a wiring module 701. The adjustable mount 705 includes a bracket 707 and a box assembly 1200. The bracket 707 can be, for example, a vertically adjustable floor bracket 1300 (FIG. 13), a horizontally adjustable stud bracket 1400 (FIG. 14), a box bracket 1500 (FIG. 15), or an extended box bracket 1600 (FIG. 16). The box assembly 1200 is mounted to the bracket 707 and the wiring module 701 is mounted in the box assembly 1200. The wiring module 701 may be a regular wiring module 710 or a GFCI wiring module 720. The adjustable mount 705 is configured to position the wiring module 701 at any of various locations within a building wall. The wiring module 701 is configured to connect to a source of electrical power and to removably accept a functional module 703. Advantageously, the combination of adjustable mount and wiring module form a universal electrical wiring component that can implement a variety of electrical distribution points of an electrical system. For example, a universal electrical wiring component can accept various outlet modules 750-760 and can be adjusted to implement a wall outlet. As another example, a universal electrical wiring component can accept various switch modules 740 and can be adjusted to implement a switch outlet. A universal electrical wiring component 200 may be, for example, a floor bracket component 800 (FIG. 8), a stud bracket component 900 (FIG. 9), a box bracket component 1000 (FIG. 10) or an extended box bracket component 1100 (FIG. 11). A cover 704 may be used to protect a wiring module 701 from damage prior to functional module installation.



FIG. 8 illustrates a floor bracket component 800 having a wiring module 701 and an adjustable mount comprising a box assembly 1200 and a floor bracket 1300. In this embodiment, the floor bracket 1300 provides the wiring module 701 an adjustable height from the floor and the box assembly 1200 provides the wiring module 701 an adjustable distance from the box assembly 1200 for a flush position with a wall surface.



FIG. 9 illustrates a stud bracket component 900 having a wiring module 701 and an adjustable mount comprising a box assembly 1200 and a stud bracket 1400. In this embodiment, the stud bracket 1400 provides the wiring module 701 an adjustable distance between studs and the box assembly 1200 provides the wiring module 701 an adjustable distance from the box assembly 1200 for a flush position with a wall surface.



FIG. 10 illustrates a box bracket component 1000 having a wiring module 701 and an adjustable mount comprising a box assembly 1200 and a box bracket 1500. In this embodiment, the box bracket 1500 allows positioning of the wiring module 701 along a vertical stud. Also, the box assembly 1200 provides the wiring module 701 an adjustable distance from the box assembly 1200 for a flush position with a wall surface.



FIG. 11 illustrates an extended box bracket component 1100 having a wiring module 701 and an adjustable mount comprising a box assembly 1200 and an extended box bracket 1600. In this embodiment, the extended box bracket 1600 allows vertical positioning of the wiring module 701 along a stud and horizontal positioning between studs. Also, the box assembly 1200 provides the wiring module 701 an adjustable distance from the box assembly 1200 for a flush position with a wall surface.



FIG. 12 illustrates a box assembly 1200 having a junction box 1800, an adjustable plaster ring 1700 and a support arm 1900. The plaster ring 1700 removably attaches to the junction box 1800 and a wiring module 701 (FIG. 7) attaches to the plaster ring 1700. The plaster ring provides the wiring module 701 (FIG. 7) with an adjustable distance from the junction box 1800, as described in detail with respect to FIG. 17. The junction box 1800 advantageously has an attached ground wire that can be quickly connected to a wiring module 701 (FIG. 7). The plaster ring 1700 has slotted fastener apertures so that the plaster ring 1700 along with an attached wiring module can be removed from, and reattached to, the junction box 1800 by merely loosening and tightening, respectively, the fasteners. The support arm 1900 attaches to the back of the junction box to provide support against an inside wall surface, as described in further detail with respect to FIGS. 19A-D, below.



FIG. 13 illustrates a floor bracket 1300 having an open front 1301 and ruled sides 1310. The floor bracket 1300 has tabs 1320 for attaching the bracket 1300 to one or both of a floor joist or a wall stud. Side grooves 1330 allow fasteners to attach the junction box 1800 at an adjustable height from the floor. Conduit supports 1340 are adapted for attachment to conduits running to the junction box 1800. The plaster ring 1700 is attached to the box 1800 through the open front 1301 so that the plaster ring 1700 can be removed from the box 1800 without removing the box 1800 from the bracket 1300.



FIG. 14 illustrates a stud bracket 1400 having a horizontal bar 1401 and ends 1403. The ends 1403 are folded perpendicularly to the bar 1401 and adapted to secure the bracket 1400 horizontally between wall studs. The bar 1401 has grooves 1410 and a slot 1420 that extend horizontally to proximate both ends 1403 of the bracket 1400. The grooves 1410 are adapted to slideably retain corresponding box tongues 1812 (FIG. 18). The slot 1420 is centered between the grooves 1410 and accommodates a fastener that secures the junction box 1800 to the bracket 1400 while allowing the box to slideably adjust in position along the bar 1401. The plaster ring 1700 is attached to the box 1800 and can be removed from the box 1800 without removing the box 1800 from the bracket 1400.



FIG. 15 illustrates a box bracket 1500 having a stud mounting face 1501 and a box mounting face 1503. The stud mounting face 1501 is disposed perpendicular to the box mounting face 1503 and is adapted to fasten to a wall stud. Either side of the junction box 1800 attaches to the box mounting face 1503. The box mounting face 1503 has a keyhole slots 1511 allowing the junction box 1800 to fasten and unfasten to the bracket 1500 without removing the fasteners 1520. The stud mounting face 1501 has a plurality of mounting holes 1610 to accommodate fasteners that allow the junction box 1800 to be positioned along a stud.



FIG. 16 illustrates an extended box bracket 1600 having an extended stud mounting face 1601 and a box mounting face 1603. The box mounting face 1603 is disposed perpendicular to the extended stud mounting face 1601 and is adapted to fasten to the junction box 1800. The extended stud mounting face 1601 is adapted to fasten to a wall stud. The extended stud mounting face 1601 has a plurality of mounting holes 1610 spaced along the length of the bracket 1600 to accommodate fasteners that allows the junction box 1800 to be position vertically along a stud and horizontally between studs.



FIG. 17 further illustrates an adjustable plaster ring 1700 having a base ring 1710, an insert ring 1720 and adjusting screws 1730. The insert ring 1720 is slideably retained by the base ring 1710 and secured to the base ring 1710 by the adjusting screws 1730. The insert ring 1720 is adapted to mount a wiring module and to adjust the wiring module position relative to the base ring 1710 in response to turning of the screws 1730. The base ring 1710 has keyhole slots 1714 adapted to accommodate fasteners that attach the plaster ring 1700 to a junction box. The keyhole slot 1714 allows the plaster ring 1700 to fasten and unfasten to the Junction box without removing the fasteners.



FIG. 18 further illustrates a junction box 1800 having a ground wire 1810, a tongue 1812 and knockouts 1814. The ground wire 1810, being pre-wired to the box, advantageously saves a fabrication step on the job site. Further, the ground wire 1810 is configured to insert into a push-wire connector on a pre-wired wiring module, providing a plug-in function module with a path to ground. The tongue 1812 stabilizes the box within a groove on a stud bracket, if used. The knockouts 1814 provide attachment points for power cable conduits.



FIGS. 19A-D further illustrate a support arm 1900 adapted to attach to a back face of the junction box 1800 (FIG. 18) and provide support against an inside wall surface. In particular, the support arm 1900 has an attachment section 1901 and a support section 1902 extending generally perpendicularly from one end of the attachment section 1901. The attachment section is generally planar having an inside face 1904 that is disposed against the junction box 1800 and an opposite outside face 1905 that is disposed distal the junction box 1800. The support section 1902 has a support face 1907 that is disposed against an inside wall surface. The attachment section 1901 has an adjustment slot 1910, a fastener hole 1920, and a plurality of bending slots 1930 distributed along and extending perpendicularly across the adjustment slot 1910. The attachment section 1901 is configured to bend along one of the bending slots 1930 so as to provide a variable length support extending generally normal to the junction box back face. The support arm 1900 is held to the box 1800 with a fastener that is slideable along the adjustment slot 1910, providing an adjustable support arm position.


A universal electrical wiring component has been disclosed in detail in connection with various embodiments. These embodiments are disclosed by way of examples only and are not to limit the scope of the claims that follow. One of ordinary skill in the art will appreciate many variations and modifications.

Claims
  • 1. An apparatus for use in an electrical distribution system, the apparatus comprising: an adjustable ring configured to be mounted to an electrical box, wherein the adjustable ring comprises an open front face that provides access to the interior of the electrical box;an electrical wiring module within the interior of the electrical box, the electrical wiring module comprising one or more conductors that couple the electrical wiring module to one or more power cables, the electrical wiring module further comprising one or more connectors disposed thereon that are configured to electrically couple to a functional module;an adjustment device configured to vary the depth of at least a portion of the adjustable ring with respect to the electrical box, such that the functional module will be in alignment with the wall surface when the functional module is installed in the electric box and is connected to the electrical wiring module; anda protective cover configured to substantially cover the open front face of the adjustable ring, wherein the protective cover comprises at least two apertures aligned with the adjustment device, the apertures being configured to permit access to the adjustment device without removal of the protective cover.
  • 2. The apparatus of claim 1, wherein the adjustment device comprises a screw.
  • 3. The apparatus of claim 1, wherein the adjustable ring comprises a mounting portion for mechanically coupling to an electrical device to be mounted within the electrical box.
  • 4. The apparatus of claim 3, wherein the adjustable ring is configured to provide an adjustable distance between the electrical device and the electrical box.
  • 5. The apparatus of claim 1, wherein the protective cover comprises a plate.
  • 6. The apparatus of claim 5, wherein the protective cover is generally rectangular.
  • 7. The apparatus of claim 6, wherein the two apertures are located at opposite corners of the generally rectangular protective cover.
  • 8. An electrical wiring method comprising: placing an electrical wiring module within the interior of the electrical box, the electrical wiring module comprising one or more conductors that couple the electrical wiring module to one or more power cables, the electrical wiring module further comprising one or more connectors disposed thereon that are configured to electrically couple to a functional module;mounting an adjustable ring to an electrical box, wherein the adjustable ring comprises: an open front face that provides access to the interior of the electrical box; andan adjustment device configured to vary the depth of at least a portion of the adjustable ring with respect to the electrical box, such that the functional module will be in alignment with the wall surface when the functional module is installed in the electric box and is connected to the electrical wiring module;covering the open front face of the adjustable ring with a protective cover having at least two apertures formed therein;accessing the adjustment device through the apertures formed in the protective cover; andadjusting the depth of at least a portion of the adjustable ring without removing the protective cover.
  • 9. The electrical wiring method of claim 8, wherein accessing the adjustment device comprises inserting a tool through the apertures formed in the protective cover.
  • 10. The electrical wiring method of claim 8, wherein the adjustment devices comprises a screw.
  • 11. The electrical wiring method of claim 8, wherein the apertures formed in the protective cover are aligned with the adjustment device.
  • 12. The electrical wiring method claim 8, further comprising coupling an electrical device to the adjustable ring.
  • 13. The electrical wiring method of claim 8, further comprising removing the protective cover after having adjusted the depth of at least a portion of the adjustable ring.
  • 14. An item of hardware for use with an electrical distribution system, comprising: a protective cover configured to substantially cover an open front face of an adjustable ring mounted to an electrical box, wherein an electrical wiring module is positioned within the interior of the electrical box, the electrical wiring module comprising one or more conductors that couple the electrical wiring module to one or more power cables, the electrical wiring module further comprising one or more connectors disposed thereon that are configured to electrically couple to a functional module, wherein the protective cover comprises at least two apertures aligned with an adjustment device for adjusting the depth of the adjustable ring relative to the electrical box, such that the functional module will be in alignment with the wall surface when the functional module is installed in the electric box and is connected to the electrical wiring module, and wherein the apertures are configured to permit access to the adjustment device without removal of the protective cover.
  • 15. The item of hardware of claim 14, wherein the protective cover comprises a generally rectangular plate.
  • 16. The item of hardware of claim 15, wherein the two apertures are located near opposite corners of the generally rectangular protective cover.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 11/829,796 filed on Jul. 27, 2007, and entitled “PRE-WIRED POWER DISTRIBUTION SYSTEM,” which claims priority from U.S. Provisional Application No. 60/833,966 filed Jul. 29, 2006 and entitled “Pre-wired Power Distribution System,” each of which is incorporated by reference herein in its entirety. Wiring modules and corresponding functional modules are described in U.S. Pat. No. 6,884,111 entitled Safety Module Electrical Distribution System, issued Apr. 26, 2005; U.S. Pat. No. 6,341,981 entitled Safety Electrical Outlet And Switch System, issued Jan. 29, 2002; and U.S. Pat. No. 6,894,221 entitled Safety Outlet Module, issued May 17, 2005. Modular electrical devices, electrical boxes and adjustable mounts are described in U.S. patent application Ser. No. 10/924,555 entitled Universal Electrical Wiring Component, filed Aug. 24, 2004. A wiring support platform is described in U.S. patent application Ser. No. 11/108,005 entitled Hinged Wiring Assembly, filed Apr. 16, 2005. All of the above-referenced patents and patent applications are hereby incorporated herein by reference.

US Referenced Citations (213)
Number Name Date Kind
723866 Hart Mar 1903 A
776855 La Har Dec 1904 A
949123 Klein Feb 1910 A
1171914 Wright Feb 1916 A
1328224 Benjamin Jan 1920 A
2163201 Kalencik Jun 1939 A
2189251 Potter Feb 1940 A
2433917 McCartney Jan 1948 A
2447597 Reed Aug 1948 A
2477803 Huber Aug 1949 A
2524701 Grill Oct 1950 A
2908743 Premoshis Oct 1959 A
2969518 Slater Jan 1961 A
3189077 Willis, Jr. et al. Jun 1965 A
3214726 Cardenas et al. Oct 1965 A
3317881 Setecka May 1967 A
3467941 Martin Sep 1969 A
3489985 Martin Jan 1970 A
3510822 Patterson May 1970 A
3588786 Alfiero Jun 1971 A
3609647 Castellano Sep 1971 A
3654663 Algotsson Apr 1972 A
3710287 Eckert Jan 1973 A
3732524 Reed et al. May 1973 A
3868161 Frantz Feb 1975 A
3879101 McKissic Apr 1975 A
3930704 Dekanic Jan 1976 A
3972498 Paskert Aug 1976 A
4103125 Marrero Jul 1978 A
4105884 Damsky Aug 1978 A
4117258 Shanker Sep 1978 A
4148536 Petropoulsos et al. Apr 1979 A
4165443 Figart et al. Aug 1979 A
4166934 Marrero Sep 1979 A
4179175 Farnworth et al. Dec 1979 A
4196521 Hutchinson et al. Apr 1980 A
4230386 Farnworth et al. Oct 1980 A
4263472 Maheu Apr 1981 A
4343411 Chesnut et al. Aug 1982 A
4372634 Ritchie et al. Feb 1983 A
4403824 Scott Sep 1983 A
4427864 Oster Jan 1984 A
4445739 Wooten May 1984 A
4485282 Lee Nov 1984 A
4493517 Hillary Jan 1985 A
4599485 Smolik Jul 1986 A
4600258 Hu Jul 1986 A
4605270 Aslizadeh Aug 1986 A
4607906 Munroe Aug 1986 A
4612412 Johnston Sep 1986 A
4617613 Rice Oct 1986 A
4626052 Rumble Dec 1986 A
4627675 Taylor et al. Dec 1986 A
4634015 Taylor Jan 1987 A
4640564 Hill Feb 1987 A
4645089 Horsley Feb 1987 A
4664457 Suchy May 1987 A
4722693 Rose Feb 1988 A
4747506 Stuchlik, III May 1988 A
4750890 Dube et al. Jun 1988 A
4780088 Means Oct 1988 A
4784614 Sadigh-Behzadi Nov 1988 A
4798916 Engel et al. Jan 1989 A
4808127 Swanic Feb 1989 A
4842551 Heimann Jun 1989 A
4871893 Slovak et al. Oct 1989 A
4873469 Young et al. Oct 1989 A
4880950 Carson et al. Nov 1989 A
4914265 Mongeau Apr 1990 A
D308045 Counts et al. May 1990 S
4952164 Weber et al. Aug 1990 A
D310814 Rosenbaum Sep 1990 S
4967990 Rinderer Nov 1990 A
4972045 Primeau Nov 1990 A
4988840 Carson et al. Jan 1991 A
D316250 Mongeau Apr 1991 S
5012043 Seymour Apr 1991 A
5030119 Lowe Jul 1991 A
5042673 McShane Aug 1991 A
5092787 Wise et al. Mar 1992 A
5098046 Webb Mar 1992 A
5178555 Kilpatrick et al. Jan 1993 A
5209444 Rinderer May 1993 A
5245507 Ericksen Sep 1993 A
D341125 Miller Nov 1993 S
5288041 Webb Feb 1994 A
5289934 Smith et al. Mar 1994 A
5293097 Elwell Mar 1994 A
5297973 Gorman Mar 1994 A
5330137 Olivia Jul 1994 A
5342993 Siems Aug 1994 A
5386959 Laughlin et al. Feb 1995 A
5397929 Hogarth et al. Mar 1995 A
5399806 Olson Mar 1995 A
5415564 Winter et al. May 1995 A
5448011 Laughlin Sep 1995 A
5466164 Miyazaki et al. Nov 1995 A
5486121 Miller Jan 1996 A
5488121 O'Lenick, Jr. Jan 1996 A
5500487 Leon Mar 1996 A
5516068 Rice May 1996 A
5526952 Green Jun 1996 A
5551884 Burkhart, Sr. Sep 1996 A
5608196 Hall et al. Mar 1997 A
5611701 Hahn Mar 1997 A
5613874 Orlando et al. Mar 1997 A
5625531 Padilla et al. Apr 1997 A
5639991 Schuette Jun 1997 A
D380452 Mix et al. Jul 1997 S
D384643 Nierlich et al. Oct 1997 S
5730617 Araki et al. Mar 1998 A
5741153 Schwer Apr 1998 A
5773757 Kenney et al. Jun 1998 A
5775935 Barna Jul 1998 A
5785551 Libby Jul 1998 A
5786551 Thangavelu Jul 1998 A
5807139 Volansky et al. Sep 1998 A
D399495 Bachschmid Oct 1998 S
5885088 Brennan et al. Mar 1999 A
5906497 Pham et al. May 1999 A
5925850 Park Jul 1999 A
5931325 Filipov Aug 1999 A
D415472 Kelso et al. Oct 1999 S
5967354 Whitehead et al. Oct 1999 A
5980279 Muller Nov 1999 A
5998747 Kelso et al. Dec 1999 A
6029581 Daoud Feb 2000 A
6036516 Byrne Mar 2000 A
D430114 Bachschmid et al. Aug 2000 S
6098939 He Aug 2000 A
6201187 Burbine Mar 2001 B1
6209836 Swanson Apr 2001 B1
6231358 Kerr, Jr. et al. May 2001 B1
6259351 Radosavljevic et al. Jul 2001 B1
6309248 King Oct 2001 B1
6311229 Burchard et al. Oct 2001 B1
6341981 Gorman Jan 2002 B1
6371790 Huang Apr 2002 B1
6392140 Yee et al. May 2002 B1
D461775 Littrell et al. Aug 2002 S
6441304 Currier et al. Aug 2002 B1
6461189 Koh Oct 2002 B1
6465735 May Oct 2002 B2
6484979 Medlin, Jr. Nov 2002 B1
6485336 Zebermann et al. Nov 2002 B1
6492591 Metcalf Dec 2002 B1
6530806 Nelson Mar 2003 B2
D472883 Harvey Apr 2003 S
6590155 Vrame et al. Jul 2003 B2
6617511 Schultz Sep 2003 B2
6623296 Okamoto Sep 2003 B2
6642450 Hsiao Nov 2003 B1
6648678 Kanekko Nov 2003 B1
6653566 Petak et al. Nov 2003 B2
6686540 Compagnone, Jr. Feb 2004 B2
6700062 Allen, Jr. Mar 2004 B1
6718674 Caveney et al. Apr 2004 B2
6730845 Criniti et al. May 2004 B1
6747206 Law Jun 2004 B1
6765146 Gerardo Jul 2004 B1
6767245 King Jul 2004 B2
6770814 Shotey et al. Aug 2004 B2
6774307 Kruse et al. Aug 2004 B2
6803521 Vrame Oct 2004 B2
6805567 Chapman et al. Oct 2004 B2
6820760 Wagner et al. Nov 2004 B2
6830477 Vander Vorste et al. Dec 2004 B2
6840785 Drane Jan 2005 B2
6843680 Gorman Jan 2005 B2
6850159 Mudge Feb 2005 B1
6863561 Gorman Mar 2005 B2
6867370 Compagnone, Jr. Mar 2005 B2
6870099 Schultz et al. Mar 2005 B1
6875922 Petak et al. Apr 2005 B1
6884111 Gorman Apr 2005 B2
6906260 Grendahl Jun 2005 B2
6908334 Huang Jun 2005 B2
6923663 Oddsen et al. Aug 2005 B2
6925850 Comer et al. Aug 2005 B2
6956169 Shotey et al. Oct 2005 B1
6967284 Gretz Nov 2005 B1
6986676 Tronolone et al. Jan 2006 B1
7052313 Gorman May 2006 B2
7071414 Kim Jul 2006 B2
7081009 Gorman Jul 2006 B2
7081010 Gorman Jul 2006 B2
7083466 Hwang Aug 2006 B1
7273392 Fields Sep 2007 B2
7312396 Gorman Dec 2007 B1
7323638 Radosavljevic Jan 2008 B1
7357652 Arenas et al. Apr 2008 B1
7390965 Hartwig Jun 2008 B2
7410072 Wegner et al. Aug 2008 B2
7442874 Compagnone, Jr. Oct 2008 B2
7468486 Yan Dec 2008 B2
7495170 Dinh et al. Feb 2009 B2
20020185296 Schultz et al. Dec 2002 A1
20030178218 Shotey et al. Sep 2003 A1
20030189043 Wegner et al. Oct 2003 A1
20030205654 Petak et al. Nov 2003 A1
20030213801 Bradley et al. Nov 2003 A1
20040048507 Hage Mar 2004 A1
20040129444 Adams et al. Jul 2004 A1
20050001123 Cheatham et al. Jan 2005 A1
20050067180 Dinh Mar 2005 A1
20050067546 Dinh Mar 2005 A1
20050176278 Cheatham et al. Aug 2005 A1
20050224249 Wegner et al. Oct 2005 A2
20050250378 Gorman Nov 2005 A1
20060021780 Hill Feb 2006 A1
20060065510 Kiko et al. Mar 2006 A1
20070072486 Gorman Mar 2007 A1
20070072487 Gorman Mar 2007 A1
Foreign Referenced Citations (1)
Number Date Country
2381040 May 2000 CN
Related Publications (1)
Number Date Country
20090020306 A1 Jan 2009 US
Provisional Applications (1)
Number Date Country
60833966 Jul 2006 US
Continuations (1)
Number Date Country
Parent 11829796 Jul 2007 US
Child 12176828 US