In self-service terminals, note dispensing and receiving pockets present convenience to customers by allowing them to place a bundle of notes in the pocket for deposit without use of an envelope. Pockets also allow for tendering and presenting notes to customers with mitigated environmental risks, such as wind blowing notes around. Pockets can also conceal notes that are tendered and dispensed to help with customer security. However, experience has shown that some customers are reluctant to put their hand inside the cavity of a pocket out of concern a shutter may close thereon. Further, certain terminal placements present accessibility concerns as the inside of the pocket, and even the pocket in the entirety, may not be visible (i.e., when seated in a wheelchair). Thus, despite the benefits provided at terminals by pockets, current pockets present other issues for at least some customers.
Various embodiments herein include a pocket to receive tendered notes and to dispense notes from a terminal, such as an automated teller machine. The pocket may include a shutter, a lifter opposite the shutter, a pusher plate between and perpendicular to the shutter and lifter, and a ceiling clamp. The pocket also includes a controller causes the terminal to perform actions when dispensing notes including moving the ceiling clamp to an open position and providing an output triggering dispensing of notes into the pocket. The actions further include moving the ceiling clamp to a closed position, moving the pusher plate to bias notes present within the pocket against the ceiling clamp and raising the lifter from a lower position to an upper position thereby lifting notes present between the pusher plate and the ceiling clamp. The shutter is then opened to expose and dispense the notes.
Terminals, such as automated teller machines (ATMs), self-service checkouts (SSCOs), and other self-service terminals (SSTs) that utilize currency recyclers often include a pocket, or cavity, within which notes are received and dispensed, such as ATM deposits and withdrawals, respectively. Note visibility and protrusion are strong predictors of customer usability as visibility enables customers of all eye-heights to know notes have been dispensed and protrusion allows all people to grasp the notes. At the same time, protrusion prevents customers from having to insert a hand inside the cavity as discussed above.
The various embodiments illustrated and described herein present an adjustable pocket device for note dispensing and receiving and methods of operation thereof.
In the following detailed description, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific embodiments in which the inventive subject matter may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice them, and it is to be understood that other embodiments may be utilized and that structural, logical, and electrical changes may be made without departing from the scope of the inventive subject matter. Such embodiments of the inventive subject matter may be referred to, individually and/or collectively, herein by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept if more than one is in fact disclosed.
The following description is, therefore, not to be taken in a limited sense, and the scope of the inventive subject matter is defined by the appended claims.
The functions or algorithms that control operation of the terminals and associated devices therein including the adjustable pocket device for note dispensing and receiving described herein are implemented in hardware, software or a combination of software and hardware in one embodiment. The software comprises computer executable instructions stored on computer readable media such as memory or other type of storage devices. Further, described functions may correspond to modules, which may be software, hardware, firmware, or any combination thereof. Multiple functions are performed in one or more modules as desired, and the embodiments described are merely examples. The software is executed on a digital signal processor, ASIC, microprocessor, or other type of processor operating on a system, such as a personal computer, server, a router, or other device capable of processing data including network interconnection devices.
Some embodiments implement the functions in two or more specific interconnected hardware modules or devices with related control and data signals communicated between and through the modules, or as portions of an application-specific integrated circuit. Thus, the exemplary process flow is applicable to software, firmware, and hardware implementations.
The method 400 includes receiving 402 at least one note to dispense within a pocket formed by a shutter, a pusher plate, a ceiling clamp when lowered, and a lifter. The method 400 further includes lowering 404 the ceiling clamp to close the pocket and moving 406 the pusher plate from a lower position to an upper position to hold the at least one note between an upper surface of the pusher plate and a lower surface of the ceiling clamp. The method 400 may then move 408 the shutter to an open position. Subsequently the method 400 includes raising 410 the lifter from lowered position to a raised position thereby lifting the at least one note to expose at least a portion of the at least one note to enable the at least one note to be manually removed from between the pusher plate and the ceiling clamp. In other embodiments, the lifting is instead or also performed by conveying belts or wheels that disposed on a surface of one or both of the ceiling clamp and pusher plate that are inward facing to the pocket.
In some embodiments of the method 400, lowering 404 the ceiling clamp includes rotating the ceiling clamp along an upper, proximal edge to move an opposite, distal edge to a lower position proximate to the lifter in the lowered position. In another embodiment, a wall of the pocket formed by the ceiling clamp when in the lowered position is instead open when the ceiling clamp is in a raised position. In such embodiments, the wall when open exposes a mechanism that places the at least one note in the pocket. This mechanism that places the at least one note in the pocket is also a note picker to pick notes from the pocket.
In some other embodiments, the lifter includes a spine along a proximal edge and a plurality of fingers extending outward perpendicularly from the proximal edge with distal ends of the fingers. Also, the pusher plate may include a plural number of voids formed therein that are equal in number and located according to the number and location of the plurality of fingers of the lifter such that the plurality of fingers fit and move within the number of voids when the pusher plate is moved between the lower and upper positions and when the lifter is raised and lowered.
In some embodiments, the pocket may also include one or both of a light and a camera. When present, the light illuminates when the shutter opens such that a customer may better see inside the pocket. In these and some other embodiment that include a camera, the camera captures a view of the inside of the pocket and that view is presented on a display of the terminal. This view can be when the pocket is open and, in some embodiments, even at some times when the pocket is closed to provide a customer of notes being added to or removed from the pocket.
In some embodiments, as will be discussed later, the shutter may take different forms. As such, opening and closing the shutter may be different in various embodiments, such as rotating the pocket, opening two portions of the pocket to provide easier access or viewing, and the like. Further, in some embodiments, some portions of the pocket may be transparent, such as the shutter and even other areas such as a front lip area, to enable customers to view inside the pocket. Some such examples are illustrated in
Returning to the computer 710, memory 704 may include volatile memory 706 and non-volatile memory 708. Computer 710 may include or have access to a computing environment that includes a variety of computer-readable media, such as volatile memory 706 and non-volatile memory 708, removable storage 712 and non-removable storage 714. Computer storage includes random access memory (RAM), read only memory (ROM), erasable programmable read-only memory (EPROM) and electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technologies, compact disc read-only memory (CD ROM), Digital Versatile Disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium capable of storing computer-readable instructions.
Computer 710 may include or have access to a computing environment that includes input 716, output 718, and a communication connection 720. The input 716 may include one or more of a touchscreen, touchpad, mouse, keyboard, camera, one or more device-specific buttons, one or more sensors integrated within or coupled via wired or wireless data connections to the computer 710, and other input devices. The computer 710 may operate in a networked environment using a communication connection 720 to connect to one or more remote computers, such as database servers, web servers, and other computing device. An example remote computer may include a personal computer (PC), server, router, network PC, a peer device or other common network node, or the like. The communication connection 720 may be a network interface device such as one or both of an Ethernet card and a wireless card or circuit that may be connected to a network. The network may include one or more of a Local Area Network (LAN), a Wide Area Network (WAN), the Internet, and other networks. In some embodiments, the communication connection 720 may also or alternatively include a transceiver device, such as a BLUETOOTH® device that enables the computer 710 to wirelessly receive data from and transmit data to other BLUETOOTH® devices.
Computer-readable instructions stored on a computer-readable medium are executable by the processing unit 702 of the computer 710. A hard drive (magnetic disk or solid state), CD-ROM, and RAM are some examples of articles including a non-transitory computer-readable medium. For example, various computer programs 725 or apps, such as one or more applications and modules implementing one or more of the methods illustrated and described herein or an app or application that executes on a mobile device or is accessible via a web browser, may be stored on a non-transitory computer-readable medium.
It will be readily understood to those skilled in the art that various other changes in the details, material, and arrangements of the parts and method stages which have been described and illustrated in order to explain the nature of the inventive subject matter may be made without departing from the principles and scope of the inventive subject matter as expressed in the subjoined claims.