The present disclosure relates to digital weapon sights, and more particularly to an adjustable-power data rail on a modular digital weapon sight.
Weapons commonly include digital weapon sights for aiming. The weapon sight provides the shooter with a sight picture representative of where a projectile fired from the weapon will strike. Some weapons include modular weapon sights. Modular weapon sights allow for attachment of peripheral modules to the weapon sight. A peripheral module can be powered by the weapon sight to which it is attached, based on a fixed voltage that the weapon sight can provide. However, each peripheral module can have a unique efficiency profile, meaning one peripheral module may require to be, or operate best when, powered by a particular input voltage. This voltage may be different for different peripheral modules that can be attached to the weapon sight. It can therefore be necessary to limit the peripheral modules that can be attached to a weapon sight to peripheral modules that can operate using the fixed voltage that the weapon sight can provide.
Such conventional methods and systems have generally been considered satisfactory for their intended purpose. However, there is still a need in the art for improved digital weapon sights, weapon assemblies having digital weapon sights, and methods of powering peripheral modules attached to a digital weapon sight. The present disclosure provides a solution for this need.
The purpose and advantages of the below described illustrated embodiments will be set forth in and apparent from the description that follows. Additional advantages of the illustrated embodiments will be realized and attained by the devices, systems and methods particularly pointed out in the written description and claims hereof, as well as from the appended drawings.
To achieve these and other advantages and in accordance with the purpose of the illustrated embodiments, in one aspect, disclosed is a digital sight for a weapon. The digital sight includes an adjustable power supply (APS) configured to supply power, a sight body, a sight interface, and a controller. The sight interface is configured for mechanically coupling with a cooperating peripheral interface of a peripheral for fixing the peripheral to the digital sight. The sight interface is fixed to the sight body and includes a sight power conductor connected to the APS for receiving power supplied by the APS. The sight power conductor is further configured to be coupled with a peripheral power conductor of the peripheral interface for providing power from the adjustable power supply to the peripheral. The controller is disposed in communication with a non-volatile memory, wherein the controller, upon execution of the instructions is configured to receive a data communication having an optimal power indication from the peripheral and based on the optimal power indication, control the APS to adjust the power supplied by the APS to the sight power conductor.
In accordance with embodiments, the power provided by the APS to the sight power conductor can have a first power level before receiving the optimal power indication, and in response to the controller controlling the APS, the APS can adjust the power level of the power supplied to the sight power conductor to have a second power level different from the first power level.
In embodiments, the controller can be powered by power having a third power level supplied by the APS.
In embodiments, the optimal power indication can be received from the peripheral via a connector of the sight interface that can be configured for data communication with a peripheral connector of the peripheral interface.
In embodiments, the sight interface can mechanically couple with the cooperating peripheral interface for removably fixing the peripheral to the digital sight.
In embodiments, the digital sight can include a sensor for sensing at least one of images and pulses, and a processing system configured to process the sensed at least one of images and pulses.
In embodiments, the APS can include a potentiometer, and controlling the APS can include controlling the potentiometer.
In embodiments, the APS can include a resistor divider, and controlling the APS can include controlling selection of circuitry of the resistor divider.
In embodiments, the controller, upon execution of the instructions can be further configured to determine when a short circuit condition exists in the peripheral and control the APS to adjust the power supplied by the APS to the sight power conductor in response to a determination that a short circuit condition exists.
In another aspect, a method of adjusting power supplied to a peripheral that is configured to be mounted to a digital weapon sight is disclosed. The method includes mechanically fixing the peripheral to the digital weapon sight, adjustably supplying power, controlling the adjustment for supplying power to supply power having a first power level to the peripheral, receiving an optimal power indication from the peripheral, and based on the optimal power indication, controlling the adjustment for supplying power to supply power having a second power level to the peripheral.
In embodiments, the first power level can be different than the second power level.
In embodiments, the method can further include detecting that the peripheral has been mounted to the digital weapon sight. Controlling the adjustment for supplying power to supply power having the first power level to the peripheral can be performed in response to detecting that the peripheral has been mounted to the digital weapon sight.
In embodiments, mechanically fixing the peripheral to the digital weapon sight can include removably mechanically fixing the peripheral to the digital weapon sight.
In embodiments, the method can further include sensing at least one of images and pulses and processing the sensed at least one of images and pulses.
In embodiments, controlling the adjustment for supplying power can include controlling a regulation controller.
In embodiments, controlling the adjustment for supplying power can include controlling selection of circuitry of a resistor divider.
In embodiments, the method can further include determining when a short circuit condition exists in the peripheral and controlling the adjustment for supplying power in response to a determination that a short circuit condition exists.
In a further aspect of the disclosure, a peripheral for mounting on a digital sight of a weapon is provided. The peripheral includes a peripheral body, circuitry, a peripheral interface, and a controller. The peripheral interface is configured for providing a data connection with the digital sight and for mechanically coupling with a cooperating sight interface. The peripheral interface is fixed to the peripheral body and has a peripheral power conductor configured to be coupled with a sight power conductor of the sight interface for receiving adjustably supplied power from the digital sight. The controller is disposed in communication with a non-volatile memory, wherein the controller, upon execution of the instructions is configured to access an optimal power supply level for operation of the circuitry, and send an indication of the optimal power level via data connection to the digital sight.
In embodiments, accessing the optimal power supply level can be performed in response to first receiving power via the adjustably supplied power.
In embodiments, the circuitry can include an over-voltage protection circuit that detects an over-voltage condition and alerts the controller upon detection of an over-voltage condition, and the controller, upon execution of the instructions, can be further configured to indicate the over-voltage condition in the indication of the optimal power level.
These and other features of the systems and methods of the subject disclosure will become more readily apparent to those skilled in the art from the following detailed description of the preferred embodiments taken in conjunction with the drawings.
So that those skilled in the art to which the subject disclosure appertains will readily understand how to make and use the devices and methods of the subject disclosure without undue experimentation, embodiments thereof will be described in detail herein below with reference to certain figures, wherein:
For purposes of explanation and illustration, and not limitation, a partial view of an exemplary embodiment of a digital weapon sight in accordance with the disclosure is shown in
Referring to
Peripheral 106 has a peripheral body 107 with one or more peripheral mounts 108 (shown in
In accordance with certain embodiments an imaging sensor 140 is supported within digital weapon sight 102. In certain embodiments, imaging sensor 140 includes an imaging sensor of a camera, such as in infrared or an infrared sub-band camera. Furthermore a data display device 160 can be disposed within the digital weapon sight 102. Data display device 160 can display data to a user, such as data that was sensed by imaging sensor 140 and processed for display.
It is contemplated that digital weapon sight 102 can be a modular weapon sight arranged to allow for removable fixation of one or more peripherals, such as peripheral 106, which are configured for providing different types of data to digital weapon sight 102. Digital weapon sight 102 can be as described in U.S. Patent Application Publication No. 2017/0122706 A1, filed on Nov. 2, 2016, the contents of which are incorporated herein by reference in their entirety. Examples of suitable digital weapon sights include MDOG® and MADOG® digital weapon sights, available from N2 Imaging Systems, LLC. of Irvine, Calif.
The disclosure encompasses a digital weapon sight 102, a peripheral 106, a weapon sight assembly when the peripheral 106 is mounted to the digital weapon sight 102, a method performed by the digital weapon sight 102, a method performed by the peripheral 106, and a method performed by the digital weapon sight 102 and peripheral 106 when assembled as a weapon sight assembly.
With reference to
Sight mechanical mount 104 and peripheral mechanical mount 108 can physically mate with one another to securely and removably fix the peripheral 106 to the digital weapon sight 102. Additionally, when mated, sight power conductor 105 couples with peripheral power conductor 109, which allows power to be provided by the digital weapon sight 102 to the peripheral 106.
Digital weapon sight 102 further includes a sight connector 122 and peripheral 106 further includes a peripheral connector 120. Sight connector 122 and peripheral connector 120 are configured to enable data communication between the digital weapon sight 102 and the peripheral 106. Sight connector 122 and peripheral connector 120 can include physical (e.g., wires, pins, traces) and/or wireless couplings (e.g., for near-field communication, optical communication). For example, sight connector 122 and peripheral connector 120 can removably physically mate, such as using a Pogo® pad-type connector. Sight connector 122 and peripheral connector 120 can physically mate with one another when peripheral 106 is removably fixed to digital weapon sight 102.
Sight mechanical mount 104 and sight connector 122 can be included together in a sight interface 115. Peripheral mechanical mount 108 and peripheral connector 120 can be included in a peripheral interface 119. Sight interface 115 and peripheral interface 119 can mate with one another to securely and removably fix the peripheral 106 to the digital weapon sight 102. When sight interface 115 and peripheral interface 119 mate, sight mechanical mount 104 and peripheral mechanical mount 108 can be aligned to physically mate with one another, and sight connector 122 and peripheral connector 120 can be aligned to enable data and electrical communication there between. A rail of digital weapon sight 102 can include one or more sight interfaces 115 that can be used to removably fix a peripheral 106 to respective sight interfaces 115.
The sensor 110 of the peripheral 106 is disposed in communication with a sensor processing module 124, such as for providing acquired sensor data via data path 36. Sensor processing module 124 is disposed in communication with peripheral connector 120 and is configured to route sensor data to sight 102 via data connector 120. In certain embodiments sensor 110 includes a camera. The camera can be a visible light camera, an infrared camera, or an infrared sub-band camera such as a near infrared (NIR) sub-band or a short-wave infrared (SWIR) sub-band camera, wherein sensor data includes image data acquired using light incident upon sensor 110 within the visible waveband, infrared waveband, or infrared sub-band. In accordance with certain embodiments sensor 110 can include a laser range finder, wherein sensor data includes range data. It is also contemplated that sensor 110 can include an illuminator, such as visible light illuminator, infrared illuminator, or infrared sub-band illuminator.
Peripheral 106 includes a peripheral controller 126 and a non-volatile peripheral memory 128. The peripheral controller 126 can include, for example, a microcontroller, application specific integrated circuit (ASIC), field programmable gate array (FPGA), programmable system on a chip (PSOC), system on a chip (SOC), hardware, firmware, software, and/or logic circuits, for example, and without limitation. The peripheral controller 126 can also include a user interface and/or a communication interface (not shown) for communicating with other modules of the peripheral 106 and with the peripheral connector 120.
Peripheral controller 126 may be disposed in communication with peripheral memory 128 and sensor processing module 124 for operative connection there through with sensor 110. Peripheral memory 128 includes a non-transitory medium having recorded thereon an optimal power indication 132 and a plurality of program modules 130 that include instructions. In embodiments, the optimal power indication 132 and a plurality of program modules 130 may be configured within peripheral controller 126. The instructions, when read by peripheral controller 126, cause peripheral controller 126 to execute certain actions. For example, the instructions can cause peripheral controller 126 to control sensor 110, e.g., to acquire sensor data, or to communicate with a sight controller 146 of the digital weapon sight 102 via peripheral connector 120 and sight connector 122, such as to transmit the optimal power indication 132 to the sight controller 146. The peripheral controller 126, when executing instructions 130, is configured to access optimal power indication 132 and pass this data to digital weapon sight 102 through a data bus 38, which has conductive connections to peripheral connector 120. Peripheral connector 120 passes the data via sight connector 122 to the sight controller 146. By methods previously explained by various proposed embodiments, the controller 146 adjusts the APS 130 to a level as close as possible to the level specified in the data held by optimal power indication 132.
As will be appreciated by those of skill in the art in view of the present disclosure, use of peripheral memory 128 to retain optimal power indication 132 enables the optimal power indication 132 to be retained within and travel with peripheral 106 following a commissioning calibration and without thereafter requiring power from a battery to retain optimal power indication 132.
Peripheral 106 can optionally include power protection conditioning module 134 that includes circuits that can provide power protection and or signal conditioning for power bus 121. Power bus 121 is used to provide power from power conductor 109 to sensor processing module 124, peripheral controller 126, and sensor 110.
Digital weapon sight 102 provides power from an adjustable power supply (APS) 150 via a first sight power bus 151 to sight conductor 105. The power is received by peripheral conductor 109, via which the power can be protected and/or conditioned by power protection/conditioning module 134 and delivered via peripheral power bus 121 to components of peripheral 106. The adjustable power supply 150 also supplies power to various components of the digital weapon sight 102 via a second sight power bus 153. In embodiments, the digital weapon sight 102 can deliver power having a first power level via first sight power bus 151 to the peripheral 106 and power having a second power level to the other components of the digital weapon sight 102 via the second sight power bus 153.
Imaging sensor 140 is configured for acquiring image data of scene 22 (shown in
Sight controller 146 can include, for example, a microcontroller, application specific integrated circuit (ASIC), field programmable gate array (FPGA), programmable system on a chip (PSOC), system on a chip (SOC), hardware, firmware, software, and/or logic circuits, for example, and without limitation. The sight controller 146 can also include a user interface and/or a communication interface (not shown) for communicating with other modules of the digital weapon sight 102 and with the sight connector 122.
Sight controller 146 is disposed in communication with image sensor processing module 142 and imaging sensor 140 for operative connection with imaging sensor 140. Sight controller 146 is further disposed in communication with sight connector 122 for receiving optimal power indication 132 from peripheral 106 via peripheral connector 120. Sight controller 146 is further disposed in communication with the adjustable power supply 150 for adjusting the level of power output by the adjustable power supply 150 via first sight bus 151 to the peripheral 106. Sight controller 146 can further receive sensor data acquired by peripheral sensor 110 via peripheral connector 120 and sight connector 122. Sight controller 146 is also disposed in communication with a non-volatile sight memory 148 and display 160.
Sight memory 148 includes a non-transitory medium having recorded thereon a plurality of program module 154 that include instructions. The instructions, when read by sight controller 146, cause sight controller 146 to execute operations. For example, the instructions can cause sight controller 146 to control imaging sensor 140, e.g., to acquire image data, or to communicate with a peripheral controller 126 of the peripheral 106 via sight connector 122 and peripheral connector 120, such as to request the optimal power indication 132 to the sight controller 146. As will be appreciated by those of skill in the art in view of the present disclosure, use of sight memory 148 to retain optimal power indication 132 enables the optimal power indication 132 to be retained within and travel with the digital weapon sight 102 following a commissioning calibration and without thereafter requiring power from a battery to retain optimal power indication 132.
The optimal power indication 132 can be delivered from the peripheral 106 to the digital weapon sight 102 in either a push or pull scenario. For example, in a push scenario, the peripheral 106 can send the optimal power indication 132 to the digital weapon sight 102 without being requested by the digital weapon sight 102. For example, the peripheral controller 126 can retrieve the optimal power indication 132 from peripheral memory 128 and send the optimal power indication 132 at periodic intervals or in response to an event, such as upon detecting by the peripheral controller 126 that the peripheral a power signal has been received via peripheral connector 120 (e.g., via sight connector 122 from the adjustable power supply).
In an example pull scenario, the sight controller 146 can send a request for the optimal power indication 132 to the peripheral controller 126, such as at periodic intervals or in response to an event, such as upon detecting that a peripheral 106 has been coupled to sight connector 122.
In accordance with either a push or pull scenario, when a peripheral 106 is mounted to the digital weapon sight 102, the adjustable power supply 150 supplies a standard level of power to sight connector 122 for provision of standard power to the peripheral 106. The power is delivered to the peripheral 106 via first sight power bus 151 and sight conductor 105. Once the peripheral 106 receives standard power, peripheral 106 can communicate with the digital weapon sight 102. Peripheral controller 126 provides the optimal power indication 132 to sight controller 146, using either a push or pull method. The sight controller 146 controls the adjustable power supply 150 using the optimal power indication 132 to output power along the first sight power bus 151 having a power level that is based on the optimal power indication 132.
In embodiments, the sight controller 146 may be further configured to determine when a short circuit condition exists in the peripheral 106 or within peripheral power conductor 109, sight power conductor 105, or sight interface 115, using short circuit detection capabilities of electronics within the APS 150. The sight controller 146 is further configured to control the APS 150 to adjust the power supplied by the APS 150 to the sight power conductor 105 in response to a determination that a short circuit condition exists.
In embodiments, the power protection/conditioning module 134 of the peripheral 106 can detect an over-voltage condition and alerts the peripheral controller 126 upon detection of an over-voltage condition. The peripheral controller 126 can be configured to indicate the over-voltage condition in the optimal power indication 132.
With reference now to
Aspects of the present disclosure are described above with reference to flow diagram illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the disclosure. It will be understood that individual blocks of the flow diagram illustrations and/or block diagrams, and combinations of blocks in the flow diagram illustrations and/or block diagrams, can be implemented by computer program instructions (e.g., 130 or 154). These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flow diagram and/or block diagram block or blocks.
These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flow diagram and/or block diagram block or blocks.
The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational operations to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flow diagram and/or block diagram block or blocks.
As will be appreciated by those of skill in the art in view of the present disclosure, storage of the optimal power indication by the non-volatile memory of the peripheral, and provision of the optimal power indication by the peripheral to the digital weapon sight allows each peripheral to operate efficiently using optimal power for its unique efficiency profile. This can minimize power drawn by the peripheral from the digital weapon sight. When a peripheral can be powered based on its optimal power indication, the peripheral does not need a particular design that accommodates the particular input voltage that the digital weapon sight uses. A digital weapon sight will also be compatible with a larger selection of peripherals, including peripherals that were not designed to accommodate that particular digital weapon sight.
While the apparatus and methods of the subject disclosure have been shown and described with reference to preferred embodiments, those skilled in the art will readily appreciate that changes and/or modifications may be made thereto without departing from the scope of the subject disclosure.
Number | Name | Date | Kind |
---|---|---|---|
2452592 | Meyer | Nov 1948 | A |
2627659 | Murr | Feb 1953 | A |
2901750 | McMurry | Sep 1959 | A |
2901751 | Gales et al. | Sep 1959 | A |
2908943 | Miller | Oct 1959 | A |
3320619 | Lastnik et al. | May 1967 | A |
3413656 | Vogliano et al. | Dec 1968 | A |
3419334 | Hubbard | Dec 1968 | A |
3594062 | Disley | Jul 1971 | A |
3640635 | Von Hollen | Feb 1972 | A |
3669523 | Edwards | Jun 1972 | A |
4044399 | Morton | Aug 1977 | A |
4183646 | Tsunefuji | Jan 1980 | A |
4584776 | Shepherd | Apr 1986 | A |
4601540 | Karning et al. | Jul 1986 | A |
4605281 | Hellewell | Aug 1986 | A |
4698489 | Morley | Oct 1987 | A |
4758719 | Sasaki et al. | Jul 1988 | A |
4786966 | Hanson et al. | Nov 1988 | A |
4792206 | Skuratovsky | Dec 1988 | A |
4840451 | Sampson et al. | Jun 1989 | A |
5005213 | Hanson et al. | Apr 1991 | A |
5035472 | Hansen | Jul 1991 | A |
5125394 | Chatenever et al. | Jun 1992 | A |
5128807 | Blackmon | Jul 1992 | A |
5140151 | Weiner et al. | Aug 1992 | A |
5303606 | Kokinda | Apr 1994 | A |
5303688 | Chiuminatta et al. | Apr 1994 | A |
5359675 | Siwoff | Oct 1994 | A |
5448161 | Byerley, III et al. | Sep 1995 | A |
5463495 | Murg | Oct 1995 | A |
5513440 | Murg | May 1996 | A |
5535053 | Baril et al. | Jul 1996 | A |
5584137 | Teetzel | Dec 1996 | A |
5651081 | Blew et al. | Jul 1997 | A |
5653034 | Bindon | Aug 1997 | A |
5668904 | Sutherland et al. | Sep 1997 | A |
5687271 | Rabinowitz | Nov 1997 | A |
5711104 | Schmitz | Jan 1998 | A |
5847753 | Gabello et al. | Dec 1998 | A |
5881449 | Ghosh et al. | Mar 1999 | A |
5903996 | Morley | May 1999 | A |
5946132 | Phillips | Aug 1999 | A |
5949565 | Ishida | Sep 1999 | A |
5953761 | Jurga et al. | Sep 1999 | A |
5956444 | Duda et al. | Sep 1999 | A |
6020994 | Cook | Feb 2000 | A |
6057966 | Carroll et al. | May 2000 | A |
6200041 | Gaio et al. | Mar 2001 | B1 |
6272692 | Abraham | Aug 2001 | B1 |
6311576 | Pletschet | Nov 2001 | B1 |
6327381 | Rogina et al. | Dec 2001 | B1 |
6369941 | Zadravec | Apr 2002 | B2 |
6381081 | Ford | Apr 2002 | B1 |
6404961 | Bonja et al. | Jun 2002 | B1 |
6456497 | Palmer | Sep 2002 | B1 |
6519890 | Otterman | Feb 2003 | B1 |
6560029 | Dobbie et al. | May 2003 | B1 |
6574053 | Spinali | Jun 2003 | B1 |
6615531 | Holmberg | Sep 2003 | B1 |
6690866 | Bonja et al. | Feb 2004 | B2 |
6714708 | McAlpine et al. | Mar 2004 | B2 |
6807742 | Schick et al. | Oct 2004 | B2 |
6898192 | Chheda et al. | May 2005 | B2 |
6901221 | Jiang et al. | May 2005 | B1 |
7016579 | Militaru et al. | Mar 2006 | B2 |
7062796 | Dixon | Jun 2006 | B1 |
D524785 | Huang | Jul 2006 | S |
7069685 | Houde-Walter | Jul 2006 | B2 |
7096512 | Blair | Aug 2006 | B2 |
7128475 | Kesler | Oct 2006 | B2 |
7132648 | Ratiff et al. | Nov 2006 | B2 |
7166812 | White et al. | Jan 2007 | B2 |
7171776 | Staley, III | Feb 2007 | B2 |
7194012 | Mason et al. | Mar 2007 | B2 |
7210262 | Florence et al. | May 2007 | B2 |
7210392 | Greene et al. | May 2007 | B2 |
7219370 | Teetzel et al. | May 2007 | B1 |
7278734 | Jannard et al. | Oct 2007 | B2 |
7292262 | Towery et al. | Nov 2007 | B2 |
7298941 | Palen et al. | Nov 2007 | B2 |
7319557 | Tai | Jan 2008 | B2 |
7369302 | Gaber | May 2008 | B2 |
7409792 | Narcy et al. | Aug 2008 | B2 |
7437848 | Chang | Oct 2008 | B2 |
7462035 | Lee et al. | Dec 2008 | B2 |
7488294 | Torch | Feb 2009 | B2 |
7552559 | Day | Jun 2009 | B2 |
7609467 | Blanding et al. | Oct 2009 | B2 |
7612956 | Blanding et al. | Nov 2009 | B2 |
7627975 | Hines | Dec 2009 | B1 |
7649550 | Ishiyama et al. | Jan 2010 | B2 |
7676137 | Schick et al. | Mar 2010 | B2 |
7690849 | Scharf et al. | Apr 2010 | B2 |
7701493 | Mauritzson | Apr 2010 | B2 |
7705855 | Brown Elliott | Apr 2010 | B2 |
7710654 | Ashkenazi et al. | May 2010 | B2 |
7730820 | Vice et al. | Jun 2010 | B2 |
7740499 | Willey et al. | Jun 2010 | B1 |
7744286 | Lu et al. | Jun 2010 | B2 |
7787012 | Scales et al. | Aug 2010 | B2 |
7795574 | Kennedy et al. | Sep 2010 | B2 |
7800852 | Blanding et al. | Sep 2010 | B2 |
7827723 | Zaderey et al. | Nov 2010 | B1 |
7832023 | Crisco | Nov 2010 | B2 |
7842922 | Leneke et al. | Nov 2010 | B2 |
7899332 | Shindou et al. | Mar 2011 | B2 |
7911687 | Scholz | Mar 2011 | B2 |
7916156 | Brown Elliott et al. | Mar 2011 | B2 |
7933464 | Zhang et al. | Apr 2011 | B2 |
7952059 | Vitale et al. | May 2011 | B2 |
7972067 | Haley et al. | Jul 2011 | B2 |
7990523 | Schlierbach et al. | Aug 2011 | B2 |
8014679 | Yamazaki | Sep 2011 | B2 |
8063934 | Donato | Nov 2011 | B2 |
8067735 | King et al. | Nov 2011 | B2 |
8082688 | Elpedes et al. | Dec 2011 | B2 |
8085482 | Frankovich et al. | Dec 2011 | B2 |
8093992 | Jancic et al. | Jan 2012 | B2 |
8112185 | Wu | Feb 2012 | B2 |
8153975 | Hollander et al. | Apr 2012 | B2 |
8225542 | Houde-Walter | Jul 2012 | B2 |
8253105 | Warnke et al. | Aug 2012 | B1 |
8312667 | Thomas et al. | Nov 2012 | B2 |
8336776 | Horvath et al. | Dec 2012 | B2 |
8337036 | Soto et al. | Dec 2012 | B2 |
8350796 | Tomizawa et al. | Jan 2013 | B2 |
8375620 | Staley, III | Feb 2013 | B2 |
D677298 | Hallgren | Mar 2013 | S |
8411346 | Sapir | Apr 2013 | B2 |
8488969 | Masarik | Jul 2013 | B1 |
8531592 | Teetzel et al. | Sep 2013 | B2 |
8532490 | Smith et al. | Sep 2013 | B2 |
8656628 | Jock et al. | Feb 2014 | B2 |
8717392 | Levola | May 2014 | B2 |
8773766 | Jannard et al. | Jul 2014 | B2 |
8776422 | Dodd et al. | Jul 2014 | B2 |
8781273 | Benjamin et al. | Jul 2014 | B2 |
8826583 | Kepler et al. | Sep 2014 | B2 |
8849379 | Abreu | Sep 2014 | B2 |
8886046 | Masarik | Nov 2014 | B2 |
8908045 | Stewart | Dec 2014 | B2 |
8923703 | Masarik | Dec 2014 | B2 |
8928878 | Jaeschke et al. | Jan 2015 | B2 |
8942632 | Shen | Jan 2015 | B2 |
8963573 | Achkir et al. | Feb 2015 | B2 |
9042736 | Masarik | May 2015 | B2 |
9052153 | Oh et al. | Jun 2015 | B2 |
9057583 | Matthews et al. | Jun 2015 | B2 |
9069001 | Braman et al. | Jun 2015 | B2 |
9113061 | Morley | Aug 2015 | B1 |
9225419 | Masarik | Dec 2015 | B2 |
9310163 | Bay | Apr 2016 | B2 |
9316462 | Varshneya | Apr 2016 | B2 |
9319143 | El-Ahmadi et al. | Apr 2016 | B2 |
9335122 | Choiniere | May 2016 | B2 |
9366504 | Hester et al. | Jun 2016 | B2 |
9373277 | Sagan | Jun 2016 | B2 |
9389677 | Hobby et al. | Jul 2016 | B2 |
9429391 | Walker | Aug 2016 | B2 |
9438774 | Masarik | Sep 2016 | B2 |
9466120 | Maryfield et al. | Oct 2016 | B2 |
9506725 | Maryfield et al. | Nov 2016 | B2 |
9516202 | Masarik et al. | Dec 2016 | B2 |
9593913 | Wright et al. | Mar 2017 | B1 |
9615004 | Masarik | Apr 2017 | B2 |
9622529 | Teetzel et al. | Apr 2017 | B2 |
9658423 | Gustafson et al. | May 2017 | B2 |
9696111 | Saadon | Jul 2017 | B2 |
9705605 | Masarik | Jul 2017 | B2 |
9769902 | Cain et al. | Sep 2017 | B1 |
9823043 | Compton et al. | Nov 2017 | B2 |
9861263 | Kwan et al. | Jan 2018 | B2 |
9897411 | Compton et al. | Feb 2018 | B2 |
9910259 | Armbruster et al. | Mar 2018 | B2 |
9921028 | Compton et al. | Mar 2018 | B2 |
9934739 | Hogan | Apr 2018 | B2 |
9948878 | Simolon et al. | Apr 2018 | B2 |
9995901 | Petersen | Jun 2018 | B2 |
10003756 | Masarik et al. | Jun 2018 | B2 |
10024631 | Portoghese et al. | Jul 2018 | B2 |
10036869 | Fahr et al. | Jul 2018 | B2 |
10095089 | Po et al. | Oct 2018 | B2 |
10113837 | Masarik et al. | Oct 2018 | B2 |
10151564 | Galli | Dec 2018 | B2 |
10190848 | VanBecelaere | Jan 2019 | B2 |
10309749 | Hamilton | Jun 2019 | B2 |
10379135 | Maryfield et al. | Aug 2019 | B2 |
20020027690 | Bartur et al. | Mar 2002 | A1 |
20040031184 | Hope | Feb 2004 | A1 |
20050058444 | Watanabe et al. | Mar 2005 | A1 |
20050114710 | Cornell et al. | May 2005 | A1 |
20050225575 | Brown Elliott et al. | Oct 2005 | A1 |
20050232512 | Luk et al. | Oct 2005 | A1 |
20050254126 | Lin et al. | Nov 2005 | A1 |
20050268519 | Pikielny | Dec 2005 | A1 |
20060165413 | Schemmann et al. | Jul 2006 | A1 |
20070003562 | Druilhe | Jan 2007 | A1 |
20070035626 | Randall et al. | Feb 2007 | A1 |
20070213586 | Hirose et al. | Sep 2007 | A1 |
20070257944 | Miller et al. | Nov 2007 | A1 |
20080263752 | Solinsky et al. | Oct 2008 | A1 |
20080309586 | Vitale | Dec 2008 | A1 |
20080317474 | Wang et al. | Dec 2008 | A1 |
20090052023 | Winker et al. | Feb 2009 | A1 |
20090181729 | Griffin, Jr. et al. | Jul 2009 | A1 |
20100027943 | Armani et al. | Feb 2010 | A1 |
20100149073 | Chaum et al. | Jun 2010 | A1 |
20100225673 | Miller et al. | Sep 2010 | A1 |
20100266245 | Sabo | Oct 2010 | A1 |
20100308999 | Chornenky | Dec 2010 | A1 |
20100328420 | Roman | Dec 2010 | A1 |
20110030264 | Davidson et al. | Feb 2011 | A1 |
20110041377 | Thomas et al. | Feb 2011 | A1 |
20110067288 | Hakansson et al. | Mar 2011 | A1 |
20110145981 | Teetzel | Jun 2011 | A1 |
20110187563 | Sanders-Reed | Aug 2011 | A1 |
20110213664 | Osterhout et al. | Sep 2011 | A1 |
20110214082 | Osterhout et al. | Sep 2011 | A1 |
20110239354 | Celona et al. | Oct 2011 | A1 |
20120030985 | Mauricio et al. | Feb 2012 | A1 |
20120033195 | Tai | Feb 2012 | A1 |
20120097741 | Karcher | Apr 2012 | A1 |
20120159833 | Hakanson et al. | Jun 2012 | A1 |
20120182417 | Everett | Jul 2012 | A1 |
20120182610 | O'Hara et al. | Jul 2012 | A1 |
20120192476 | Compton et al. | Aug 2012 | A1 |
20120212414 | Osterhout et al. | Aug 2012 | A1 |
20120238208 | Bienas et al. | Sep 2012 | A1 |
20120255213 | Panos | Oct 2012 | A1 |
20120311910 | Mironichev et al. | Dec 2012 | A1 |
20120317706 | Lebel et al. | Dec 2012 | A1 |
20120320340 | Coleman, III | Dec 2012 | A1 |
20120327247 | Mironichev et al. | Dec 2012 | A1 |
20130016215 | Bitar et al. | Jan 2013 | A1 |
20130033746 | Brumfield | Feb 2013 | A1 |
20130036646 | Rubac et al. | Feb 2013 | A1 |
20130061509 | Allen | Mar 2013 | A1 |
20130072120 | Wu | Mar 2013 | A1 |
20130088604 | Hamrelius et al. | Apr 2013 | A1 |
20130167425 | Crispin | Jul 2013 | A1 |
20130188943 | Wu | Jul 2013 | A1 |
20130215395 | Li | Aug 2013 | A1 |
20140007485 | Castejon, Sr. | Jan 2014 | A1 |
20140104449 | Masarik et al. | Apr 2014 | A1 |
20140260748 | Traver | Sep 2014 | A1 |
20140285882 | Gotz et al. | Sep 2014 | A1 |
20150016817 | Hara et al. | Jan 2015 | A1 |
20150101234 | Priest et al. | Apr 2015 | A1 |
20150226613 | Bauer et al. | Aug 2015 | A1 |
20150282549 | Lebel et al. | Oct 2015 | A1 |
20150316351 | Choiniere | Nov 2015 | A1 |
20150375865 | Fischer et al. | Dec 2015 | A1 |
20160033234 | Swift et al. | Feb 2016 | A1 |
20160069640 | Pretorius | Mar 2016 | A1 |
20160161735 | Armbruster et al. | Jun 2016 | A1 |
20160265880 | Maryfield | Sep 2016 | A1 |
20160327365 | Collin et al. | Nov 2016 | A1 |
20170010073 | Downing | Jan 2017 | A1 |
20170078022 | Masarik et al. | Mar 2017 | A1 |
20170153713 | Niinuma et al. | Jun 2017 | A1 |
20170237919 | Lamesch | Aug 2017 | A1 |
20170302386 | Masarik | Oct 2017 | A1 |
20180106568 | Hedeen et al. | Apr 2018 | A1 |
20180232952 | Hiranandani et al. | Aug 2018 | A1 |
20180246135 | Pan et al. | Aug 2018 | A1 |
20180302576 | Masarik et al. | Oct 2018 | A1 |
20180328698 | Miller | Nov 2018 | A1 |
20190033039 | Masarik et al. | Jan 2019 | A1 |
20190056198 | Pautler | Feb 2019 | A1 |
20190094981 | Bradski et al. | Mar 2019 | A1 |
20190166174 | Moseman | May 2019 | A1 |
20190222771 | Hedeen et al. | Jul 2019 | A1 |
20190346235 | Sidelkovsky | Nov 2019 | A1 |
20190353461 | Neal et al. | Nov 2019 | A1 |
20190353462 | Neal | Nov 2019 | A1 |
20190376764 | Hammond | Dec 2019 | A1 |
20190377171 | Hammond | Dec 2019 | A1 |
20200014887 | Moseman et al. | Jan 2020 | A1 |
20200018566 | Tubb | Jan 2020 | A1 |
20200051481 | Masarik et al. | Feb 2020 | A1 |
20200053303 | Vaklev et al. | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
202057884 | Nov 2011 | CN |
204730844 | Oct 2015 | CN |
204944509 | Jan 2016 | CN |
106612141 | May 2017 | CN |
0 176 169 | Apr 1986 | EP |
2 722 632 | Apr 2014 | EP |
2 812 749 | Dec 2014 | EP |
3 172 524 | May 2017 | EP |
3 205 974 | Aug 2017 | EP |
3 239 754 | Nov 2017 | EP |
2162654 | Feb 1986 | GB |
H07-295682 | Nov 1995 | JP |
WO 2005121688 | Dec 2005 | WO |
WO 2016014655 | Jan 2010 | WO |
WO 2013080058 | Jun 2013 | WO |
WO 2013102869 | Jul 2013 | WO |
WO 2013119983 | Aug 2013 | WO |
WO 2014062725 | Apr 2014 | WO |
WO 2014150076 | Sep 2014 | WO |
WO 2019222422 | Nov 2019 | WO |
WO 2019222426 | Nov 2019 | WO |
Entry |
---|
Aebi, V. et al., “EBAPS: Next Generation, Low Power, Digital Night Vision”, Presented at the OPTRO 2005 International Symposium, May 10, 2005, pp. 1-10, Paris, France, in 10 pages. |
Ackerman, S., “It Only Took the Army 16 Years and 2 Wars to Deploy this Network”,Wired.com, Jun. 28, 2012, in 7 pages. URL: http://www.wired.com/dangerrom/2012/06/army-data-network-war/all/. |
Armstrong, S. C., “Project Manager Soldier Weapons Program Overview NDIA”, May 15, 2012, in 38 pages. |
Schott—Glass Made of Ideas, GBPS-MC-GOF-Demo, dated Jan. 2006, pp. S.1-S.8, in 8 pages. |
Sklarek, W., “High Data Rate Capabilities of Multicore Glass Optical Fiber Cables, 22 FGT ‘Otische Polymerfasern’”, dated Oct. 25, 2006, in 19 pages. URL: http://www.pofac.de/downloads/itgfg/fgt2.2/FGT2.2_Munchen_Sklarek_GOF-Buendel. |
Tao, R. et al., “10 Gb/s CMOS Limiting Amplifier for Optical links”, Proceedings of the 29th European Solid-State Circuits Conference, Sep. 16-18, 2013, pp. 285-287, Estoril, Portugal, in 3 pages. |
Zhu, Z. et al., “AR-Weapon: Live Augmented Reality Based First-Person Shooting System”, 2015 IEEE Winter Conference on Applications of Computer Vision, Feb. 2015, in 8 pages. |
PCT Application No. PCT/US2019/055711 International Search Report and Written Opinion dated Dec. 19, 2019, in 10 pages. |
U.S. Appl. No. 13/674,895, filed Nov. 12, 2012, titled Intrapersonal Data Communication System, listing David Michael Masarik as an inventor, in 95 pages, and its entire prosecution history. |
Number | Date | Country | |
---|---|---|---|
20200141700 A1 | May 2020 | US |