The present disclosure relates to the field of prosthetics, and more particularly, to an adjustable prosthetic device for an artificial or residual limb.
Amputees commonly use prosthetic devices to improve their mobility and associated quality of life. Various types of prosthetic devices are available for amputees, including prosthetic limbs such as artificial feet and hands. Such artificial limbs are secured to a wearer to restore the impaired or lost functionality of the amputee's residual limbs. These prosthetic devices serve as replacement limbs so the amputee can maintain a normal quality of life. The ability to achieve full use of a prosthetic limb is an important factor in both the physical and mental rehabilitation of an amputee.
Conventional prosthetic limbs are sometimes enclosed in a cosmesis or cover to improve their aesthetic appeal. The cosmesis for an artificial foot serves as a cosmetic casing that provides the appearance of a natural looking foot for the lower limb amputee. The artificial limb can be provided with an authentic look by incorporating natural skin color and texture to the cosmesis for mimicking that of the amputee. This provides a natural appearance so it is not noticeable that an amputee is wearing a prosthesis.
The cosmesis can protect the prosthesis and any of its components from wear and tear caused by the environment, increasing the life of the prosthesis. Using a cosmesis can prevent dirt and debris from interfering with the mechanical components of the prosthetic limb. Further, the cosmesis may be available as either a part of a prosthesis, or as a separate attachment for a prosthesis.
Using a foot cosmesis can help an amputee achieve a normal appearance when out in public. Typical foot cosmetic covers, however, can disadvantageously be limited in the flexibility and versatility they provide in allowing the amputee to don different conventional footwear, such as sneakers or boots. The repeated frictional contact between the footwear and the cosmesis during donning and doffing can cause wear on the cosmesis damaging it. This not only results in inconvenient frequent replacement of the cosmesis, but it also further adds to the cost for the amputee to constantly fix or replace the damaged cosmesis. There is a substantial need for a cosmesis for an artificial foot capable of providing easy and quick donning and doffing of footwear.
Most common cosmetic covers are form-fitted over an artificial limb, or use adhesive or suction to bond the cover to the limb. Such covers can be costly to provide a desired fit. These covers are generally only made to fit a specific artificial or residual limb. For instance, if the amputee replaces a particular artificial limb, then the cover will also likely need to be replaced with the artificial limb.
Conventional covers may be molded from synthetic material, such as foam rubber. These covers are often bonded to an artificial limb by an adhesive inserted into the hollow space inside the cover. Adhesives have disadvantages. If the artificial limb requires repair or readjustment, the adhesion surface of the cover should be cut open to gain access to the artificial limb. There is a greater possibility of damaging the artificial limb if the cover requires replacement.
Separating an adhesively bonded cover from an artificial limb can be difficult and time consuming. Even when an adhesively bonded cover is successfully removed from an artificial limb, it's difficult to reapply additional adhesive to the cover for reattachment to the limb. This may diminish the cover's cosmetic effect. There is a clear need for a non-permanent way of securing a cosmesis to an artificial limb.
Other cosmetic covers commonly utilize a snap-on or press-fit connection for securing to an artificial limb. Although such a connection may seem easy for a user to snap the cover into place, it provides no way to make donning or doffing a shoe any easier since the cover remains the same size when attached. A snap-on connection provides no way for a user to adjustably tighten or loosen the cover onto the artificial limb as desired.
Form-fitting cosmetic covers are not universally accepted onto all artificial limbs. Properly fitting and securing a prosthetic device to an amputee is often difficult because artificial limbs and residual limbs can be various shapes and sizes—and various size covers may be needed. This lack of versatility prohibits such covers from fitting onto numerous existing prosthetic limbs.
Many conventional covers have a tendency to become loose while being worn throughout the day. Without sufficiently securing a cosmesis to an artificial foot, the frictional contact between the artificial foot and the cosmesis can cause wear on the cosmesis over time, especially at high stress contact points. This can cause the amputee having to frequently replace or repair the damaged cosmesis increasing the cost to the amputee. There is a substantial need for a cosmesis that can easily and quickly be selectively adjusted for proper fitting, such as for allowing a user to tighten the cosmesis as needed.
According to an embodiment of the disclosure, a prosthetic device includes a resilient body having a predetermined shape configuration. The resilient body defines a first surface and a second surface opposed to the first surface and separated by a wall thickness. An adjustment device connects to the resilient body, and at least one elongate element engages at least one of the first and second surfaces. The at least one elongate element has a first end received by the adjustment device such that the adjustment device is arranged to regulate tension in the at least one elongate element.
The prosthetic device is arranged for being adjusted into different shape configurations to accommodate different needs, such as for donning a foot cosmesis into a shoe or providing addition sealing means in a brim attachment for a prosthetic socket. Tensioning of the at least one elongate element by the adjustment device urges the resilient body to collapse or compress into a contracted configuration. Release of tension of the at least one elongate element allows the resilient body to revert to the predetermined shape configuration.
At least one guide may be provided on one of the first or second surfaces through which the at least one elongate element extends. The at least one guide may be on the first surface which may be defined as an interior surface of the resilient body. The interior surface delimits a cavity of the resilient body. The at least one guide may be a channel located only along an upper portion of the resilient body. A lower portion of the resilient body may be not compressed or collapsed upon tensioning of the elongate element, and generally locally retain the predetermined shape configuration. A segment of the at least one elongate element may be anchored to the at least one guide such that tensioning of the at least one elongate element pulls from the segment and toward the adjustment device.
Additional means may be connected to the at least one elongate element to facilitate return of the resilient body to the predetermined shape configuration. A spring, bar or other spring-type element may be connected or attached to the at least one elongate element to assist in releasing tension in the at least one elongate element. The tension may be released by the adjustment device by unlocking unidirectional tensioning of the adjustment device. The adjustment device may be a dial tensioning device arranged to incrementally wind and tension the at least one elongate element, a linear ratchet or other suitable devices allowing for locking unidirectional and release of an elongate element.
The resilient body defines an opening through the thickness of which the at least one elongate element extends between the first and second surfaces. The at least one elongate element may extend through a network of guides located along the first surface and arranged in a pattern to urge collapse of the resilient body into the contracted configuration. The network of guides may be arranged so the lower portion remains in the predetermined shape configuration, such as being without any guides.
When the prosthetic device is a foot cosmesis, the resilient body is arranged to receive a prosthetic foot at least in the lower portion. The network of guides may be located in the upper portion such that the contracted configuration of the resilient body results in collapsing of the upper portion over the lower portion and the prosthetic foot.
In another embodiment, the prosthetic device is a brim attachment for attaching to a proximal end of a hard prosthetic socket arranged for being worn by limb amputee. At least one guide is on the brim attachment and an adjustment device and elongate element are provided for urging the brim attachment toward the residual limb upon tensioning of the elongate element. A network of guides may be provided on the brim attachment and the hard socket itself to better tighten the brim attachment against the residual limb.
A frictional feature may be disposed on one of the first and second surfaces for maintaining the shape of the resilient body in the contracted configuration. The frictional feature may have greater frictional properties than the one of the first and second surfaces upon which it is located. The frictional feature may be at a fold portion of the resilient body. The frictional feature may be only on the one of the first and second surfaces at an upper portion thereof.
The prosthetic device may be employed as part of a prosthesis system. A lower leg prosthesis system includes a prosthetic foot, a foot cosmesis having a resilient body with an inner cavity arranged for receiving the prosthetic foot. The resilient body has a predetermined shape configuration, and the resilient body defines an inner surface delimiting the inner cavity and an outer surface opposed to the inner surface and separated by a wall thickness. An adjustment device connects to the resilient body, and at least one elongate element engages at least one of the inner and outer surfaces. The at least one elongate element has a first end received by the adjustment device such that the adjustment device is arranged to regulate tension in the at least one elongate element. Tensioning of the at least one elongate element by the adjustment device urges the resilient body to collapse or compress into a contracted configuration. Release of tension of the at least one elongate element allows the resilient body to revert to the predetermined shape configuration.
The at least one elongate element may extend through at least one guide along the one of the inner and outer surfaces to urge collapse of the resilient body into the contracted configuration. The resilient body defines dorsal and plantar portions. The foot cosmesis may be arranged for placement of the prosthetic foot in the lower portion. The at least one guide is in the dorsal portion such that the contracted configuration of the resilient body results in collapsing of the dorsal portion over the plantar portion and the prosthetic foot.
A method for modifying the shape of a prosthetic device comprises the steps of tensioning of the at least one elongate element by the adjustment device to urge the resilient body to collapse or compress into a contracted configuration, and releasing tension of the at least one elongate element to allow the resilient body to revert to the predetermined shape configuration. The tension in the at least one elongate element may be maintained by incremental locking as the adjustment device is regulated.
According to the embodiments, an adjustable prosthetic device is provided that enables easy and quick donning and doffing of a prosthetic device, such as a prosthetic foot and its placement in a shoe, or assuring sealing of a brim attachment. The solutions provided by the embodiments offer a non-permanent way of securing a cosmesis to an artificial limb, and enable versatility in size by which they are secured due to incremental tensioning and contraction of the prosthetic device. The adjustment device provides quick and easy selective adjustment for proper fitting, such as for allowing a user to tighten the cosmesis or brim attachment as needed.
The numerous other advantages, features and functions of embodiments of an adjustable prosthetic device and related concepts will become readily apparent and better understood in view of the following description and accompanying drawings. The following description is not intended to limit the scope of the prosthetic device, but instead merely provides exemplary embodiments for ease of understanding.
The drawing figures are not necessarily drawn to scale, but instead are drawn to provide a better understanding of the components thereof, and are not intended to be limiting in scope, but to provide exemplary illustrations. The figures illustrate exemplary configurations of an adjustable prosthetic device, and in no way limit the structures or configurations of the adjustable prosthetic device according to the present disclosure.
A better understanding of different embodiments of the invention may be had from the following description read in conjunction with the accompanying drawings in which like reference characters refer to like elements.
While the disclosure is susceptible to various modifications and alternative constructions, certain illustrative embodiments are shown in the drawings and are described below in detail. It should be understood, however, there is no intention to limit the disclosure to the embodiments disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, combinations, and equivalents falling within the spirit and scope of the disclosure.
It will be understood that, unless a term is defined to possess a described meaning, there is no intent to limit the meaning of such term, either expressly or indirectly, beyond its plain or ordinary meaning.
Any element in a claim that does not explicitly state “means for” performing a specified function, or “step for” performing a function is not to be interpreted as a “means” or “step” clause as specified in 35 U.S.C. §112, paragraph 6.
For ease of understanding the disclosed embodiments of an adjustable prosthetic device, the anterior and posterior portions of the prosthetic device may be described independently. Anterior and posterior portions of the prosthetic device function together to support and stabilize anatomical portions of the wearer of the device.
As used herein, the term “proximal” has its ordinary meaning and refers to a location next to or near the point of attachment or origin or a central point, or located toward the center of the body. Likewise, the term “distal” has its ordinary meaning and refers to a location situated away from the point of attachment or origin or a central point, or located away from the center of the body. The term “posterior” also has its ordinary meaning and refers to a location behind or to the rear of another location. Lastly, the term “anterior” has its ordinary meaning and refers to a location ahead of or to the front of another location.
The terms “rigid” and “flexible” and “resilient” may be used herein to distinguish characteristics of portions of certain features of the prosthetic device. The term “rigid” should denote that an element of the device is generally devoid of flexibility. Within the context of members that are “rigid,” it should indicate that they do not lose their overall shape when force is applied, and they may break if bent with sufficient force. The term “flexible” should denote that features are capable of repeated bending such that the features may be bent into retained shapes or the features do not retain a general shape, but continuously deform when force is applied. The term “resilient” is similarly intended to denote that features can bend or being deformed, but can also return to their original shape.
According to an embodiment of the adjustable prosthetic device, as illustrated in
Using the foot cosmesis 10 advantageously provides a way for an amputee to improve the aesthetic appearance of a prosthetic foot. The foot cosmesis 10 is generally shaped, sized and/or configured to imitate the appearance of a natural human foot. Certain covers also preferably include appendages to appear more realistic. A foot cosmesis may include toes, while a hand cosmesis may include fingers. The cosmesis may be used on a prosthetic device which may have discrete appendages already formed on it.
The cosmesis may have the color and texture of the amputee's natural skin so that the cosmesis looks like a normal limb. The foot cosmesis 10 may have a length and width substantially the same as that of a natural human foot, and is preferably sized as a natural human foot of the amputee for whom the cosmesis is intended for. The cosmesis 10 is shaped to resemble a natural foot, and includes at least a dorsal region 12, a plantar region 14, a heel or posterior region 16, a toe or anterior region 17, and an ankle region 18. The toe region 17 may be provided with slits formed between each toe for mimicking a more life-like appearance.
The cosmesis 10 further includes an inner cavity 20 delimited by an inner surface 26 and shaped, sized and/or configured to receive a prosthetic foot 48 capable of attaching to a socket of a lower limb amputee to form part of a lower leg prosthesis. Use of the cosmesis may also advantageously protect the prosthesis and any of its components from the environment, and increase the functional lifespan of the prosthesis. Exemplary materials and constructions for the footplate 48 are described in U.S. Pat. No. 7,771,488, granted Aug. 10, 2010, U.S. Pat. No. 6,280,479, granted Aug. 28, 2001, U.S. Pat. No. 5,993,488, granted Nov. 30, 1999, and U.S. Pat. No. 5,800,569, granted Sep. 1, 1998, all of which are herein incorporated by reference.
The cosmesis is preferably fabricated from a flexible and resilient material capable of providing an auxiliary cushioning support. The cosmesis 10 may comprise such resilient materials as natural or synthetic rubber, urethane foam, plastics, or other similar materials. It should be appreciated that the flexible material can accommodate repetitive movement at its joint portions, i.e. at the toe or ankle portion of the foot cover, to avoid creating excessive wrinkling or wear and tear at those locations.
It can be difficult and time consuming for an amputee to don footwear to a cosmesis secured on a prosthetic foot. It is likewise difficult to doff such footwear from the cosmesis. The frictional wear and tear endured by the cosmesis during donning and doffing of footwear can cause the cosmesis to be torn. The cosmesis 10 provides a safe way of allowing quick and easy insertion of the cosmesis and its attached prosthetic foot into footwear. Further, the cosmesis 10 provides a safe way to quickly and easily remove the cosmesis and its attached prosthetic foot from the footwear.
An adjustment device 30 may preferably be mounted to the cosmesis 10 or on an area stably secured to the cosmesis. It should be appreciated that the adjustment device 30 is on an area easily accessible to the user, especially during use when footwear is being donned or doffed. It may be desired to place the adjustment device 30 at a location on or near the outer periphery of the ankle portion 18. A preferred placement of the adjustment device 30 would allow the user to quickly access it on the fly. The arrangement of the adjustment device preferably allows the user to access it through clothing
The adjustment device 30 includes one or more elongate elements 32 and is arranged to regulate the length of a segment of the elongate element 32 extending from the adjustment device 30. The at least one elongate element 32 may comprise a pair of segments arranged to extend from opposed sides, such as lateral and medial sides, of the adjustment device 30. These segments transversely extend across the width of the foot cosmesis and are aided by guide members 24 along either the interior or exterior side of its dorsal section 12.
The adjustment device may be secured to other components of the foot prosthesis, either permanently or removably. Alternatively, the adjustment device can be removably attached to the cosmesis.
As illustrated in
The guide members 24 may be adhesively bonded, molded or otherwise constructed to provide channels or other suitable structure for cooperating with the elongate element and the cosmesis. The guide members may be located within the cosmesis to provide a more realistic appearance, but may be provided along the exterior of the cosmesis as considered necessary. In this embodiment, an outlet 52 is provided through the thickness 36 of the cosmesis 10 through which the elongate element 32 extends to the adjustment device 30.
The guide members may be arranged in a network of guide members 24 arranged at localized areas of the cosmesis in a pattern 54. For example, the guide members may be located between the heel and toe portions 16, 17 along only the upper or dorsal portion 12 of the cosmesis 10. In this arrangement, the dorsal portion 12 is arranged to collapse upon tensioning of the at least one elongate element, whereas the lower or plantar portion 14 is generally maintained in the predetermined shape configuration.
In the depicted embodiment of
While the path of the elongate element is shown in
The at least one elongate element may be provided within the thickness 36 of the cosmesis and extend through a plurality of channels formed within the thickness 36. Alternatively, the at least one elongate element may extend through channels located on one of the inner or outer surfaces 26, 34 of the cosmesis 10, in a similar manner discussed in relation to
The adjustment device may be dial tensioning device provided by BOA Technology Inc., or an adjustment device described in U.S. Pat. No. 7,198,610, granted Apr. 7, 2007, and U.S. patent application publication no. 2009/0287128, published Nov. 19, 2009, which are incorporated herein by reference. Alternatively, the adjustment device may be a linear ratchet as taught in U.S. patent application publication no. 2006/0135900, published Jun. 22, 2006, and incorporated herein by reference. Other adjustment devices known to one having ordinary skill in the art may be used that provide locking unidirectional tensioning and release of an elongate element.
The adjustment device 30 may include a housing and a circular knob rotatably mounted thereto. The knob may be rotatable to wind an end of the elongate element 32 into the housing, providing tension to the elongate element. This tension reduces the slack in the elongate element 32 and correspondingly increases the desired level of tightness applied to the cosmesis 10. It should be appreciated that the adjustment device 30 may alternatively be operated to decrease the tension applied to the elongate member to increase its amount of slack, and correspondingly decrease the level of tightness applied to the cosmesis.
The adjustment device may attach to the inside of the foot cosmesis, either directly or to a mount on either side of the cover. A guide rack on or inside the top of the cosmesis may be necessary to enable the cosmesis to fold correctly when the adjustment device is used to tension the elongate element. The elongate element may extend transversely across the width of the foot cover, longitudinally, and/or at various angles along the foot cover.
As previously described, the foot cosmesis 10 is preferably constructed of a flexible material to allow for the cosmesis to be flexed similar to a natural foot. The cosmesis may be constructed from polyurethane foam, although other forms are considered such as polyurethane solid and EVA foam, or other elastomeric materials. The resiliency of the material allows the interior cavity 20 of the cosmesis to transform from an expanded state to a collapsed state, and back to its original expanded state.
Specifically, using the adjustment device 30 to tighten the elongate element 32 results in an increase in tension applied to the elongate element across a width of the dorsal region 12. This tension causes the dorsal region 12 to collapse, thus altering the shape of the cosmesis as illustrated in
Various reinforcement patches or zones may be used or incorporated into the cover to improve wear resistance. Variable material thickness and reinforcements may be employed for correctly folding the foot cover and cosmesis as a whole.
Decreasing the volume of the interior cavity 20, and shrinking the size of the cosmesis, makes insertion of the cosmesis into footwear easier since it reduces or eliminates frictional contact between the footwear and the cosmesis. This also helps prevent the cosmesis from sustaining unnecessary wear and tear, especially at high stress contact points.
Upon properly fitting the collapsed cosmesis inside the footwear, the adjustment device 30 can relieve the tension applied to the elongate element 32. By providing enough slack to the elongate element, the resiliency of the cosmesis material allows the volume within the interior cavity 20 to increase expanding the cosmesis back to its original non-collapsed state. Increasing the size of the cosmesis while it is inserted inside the footwear causes the corresponding expansion of the inner cavity to create a proper fit with the footwear. It should be appreciated that to provide the user with sufficient walking stability, the fully expanded cosmesis is preferably sized to properly fit within most footwear such that free play between the cosmesis and the footwear is minimal.
Since the adjustment device 30 both tightens and loosens the elongate element 32, it may further assist tightening/loosening the cosmesis directly to the prosthetic foot. This provides an easy way for a user to tighten the cosmesis if it becomes loose while wearing it during a day. As previously described, such quick and easy adjustment to the fit of the cosmesis on a prosthetic device can advantageously be accomplished quickly. Improved tightening of the cosmesis over a prosthetic foot shields it from contact with dirt and other debris. Sufficiently securing the cosmesis to an artificial foot helps reduce or eliminate the repeated frictional contact between the artificial foot and the cosmesis.
Referring to
An exemplary surface roughness 38 may be a tacky and high friction area achieved by a film, layer or discrete friction materials. Alternatively, the surface roughness can be a hook and loop type material that can engage with itself when folded or rubbed against opposed surfaces.
The surface roughness 38 is provided at least along the outer surface 34 so that where the cover folds when the adjustment device 30 tightens the elongate element 32, the cover 10 can be slid easily into a shoe with folded portions 40 of the cover 10 holding to one another without slippage. When the elongate element 32 is released, the surface roughness 38 provides high friction areas arranged for gripping the interior surface 50 of a shoe 46, as shown in
The expanded configuration of the cosmesis 10, as in
The return to the predetermined shape may be facilitated by adding a spring 44, as in
An example of a socket, as is readily understood by the skilled artisan in prosthetics, is described in U.S. Pat. No. 7,438,843, granted Oct. 21, 2008, the entirety of which is incorporated herein by reference. The liner may be formed under any of the following U.S. Pat. No. 6,136,039, granted Oct. 24, 2000, U.S. Pat. No. 6,626,952, granted Sep. 30, 2003, and U.S. Pat. No. 7,118,602, granted Oct. 10, 2006, each of which is incorporated by reference in its entirety. The liner may create a seal between the socket and the liner, as disclosed in U.S. Pat. No. 8,097,043, granted Jan. 17, 2012 and incorporated by reference in its entirety.
The adjustment device 150 secures to the socket 130 and includes at least one elongate element wherein the example shows two elongate elements 152, 154 coupled to the adjustment device 150 and extending about the cuff section 110. The elongate elements 152, 154 may be routed through guides or channels 156, 158 either formed by the cuff section 110 in which the channels are molded in the thickness of the cuff section 110, or formed along a surface of the cuff section 110 by material of the cuff section 110, as depicted in
Channels 156, 158 may be separate from the cuff section 110 and secured along an outer or inner surface of the cuff section 110. A guide 160 may direct the elongate elements 152, 154 to the adjustment device 150. The guide and channels may be continuous in that they extend generally circumferentially about the brim attachment and socket, or alternatively may be comprised of a plurality of segments through which the elongate element extends.
Each channel may be arranged to permit sliding of the at least one elongate element and it is preferred there is sufficient material of the cuff section to enable circumferential tensioning by the elongate element. It is also preferable that the channel evenly distributes pressure to avoid pressure points brought by the elongate element over the liner. When in a relaxed position, the seal element 120 functions as a seal around a liner 600 inserted into the socket 130, and may be improved by the location of the channel relative to the seal.
The embodiment of
The adjustment device 150 may be secured to the socket 130 or to the cuff section 110, although
At least one channel or other suitable means may be provided along at least a side of the socket where the brim has a minimum height for providing additional support and counterforce from the hard socket structure relative to the brim structure which is substantially flexible and resilient. As shown in
Once a seal has been established a vacuum can be created between the inner walls of the socket 130 and the liner 600. One will understand that creating a vacuum within the socket 130 can provide a wearer of the prosthetic limb with improved proprioception and volume control. In view of the above disclosure, one will understand that the brim attachment can also easily release a vacuum created by the seal element 120. A vacuum can be released by pulling the cuff section 110 outward or otherwise reflecting the cuff section 110. Once the cuff section 110 is reflected such that the adjustment device 150 and the at least one elongate element 152, 154 is detensioned, the vacuum can be released and a liner 600 and residual limb can easily be removed from the socket 130.
The brim attachment of
Although the embodiments have been disclosed in certain exemplary embodiments and examples, it therefore will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. It is intended that the present invention disclosed should not be limited by the particular disclosed embodiments described above.
Number | Name | Date | Kind |
---|---|---|---|
37282 | Engelbrecht et al. | Jan 1863 | A |
51593 | Jewett | Dec 1865 | A |
366494 | Marks | Jul 1887 | A |
470431 | Marks | Mar 1892 | A |
1066605 | Hanger | Jul 1913 | A |
1144681 | Apgar | Jun 1915 | A |
1893853 | Tullis | Jan 1933 | A |
2070093 | Roe | Feb 1937 | A |
2229728 | Eddels | Jan 1941 | A |
2634424 | O'Gorman | Apr 1953 | A |
2669728 | Ritchie | Feb 1954 | A |
3793749 | Gertsch et al. | Feb 1974 | A |
3808644 | Schoch | May 1974 | A |
3889664 | Heuser et al. | Jun 1975 | A |
3926182 | Stabholz | Dec 1975 | A |
4128903 | Marsh et al. | Dec 1978 | A |
4161042 | Cottingham et al. | Jul 1979 | A |
4261081 | Lott | Apr 1981 | A |
4268922 | Marsh et al. | May 1981 | A |
4300245 | Saunders | Nov 1981 | A |
4433456 | Baggio | Feb 1984 | A |
4459709 | Leal et al. | Jul 1984 | A |
4551932 | Schoch | Nov 1985 | A |
4555830 | Petrini et al. | Dec 1985 | A |
4574500 | Aldinio et al. | Mar 1986 | A |
4616524 | Bidoia | Oct 1986 | A |
4619657 | Keates et al. | Oct 1986 | A |
4620378 | Sartor | Nov 1986 | A |
4631839 | Bonetti et al. | Dec 1986 | A |
4631840 | Gamm | Dec 1986 | A |
4633599 | Morell et al. | Jan 1987 | A |
4654985 | Chalmers | Apr 1987 | A |
4660300 | Morell et al. | Apr 1987 | A |
4660302 | Arieh et al. | Apr 1987 | A |
4680878 | Pozzobon et al. | Jul 1987 | A |
4719670 | Kurt | Jan 1988 | A |
4719709 | Vaccari | Jan 1988 | A |
4719710 | Pozzobon | Jan 1988 | A |
4741115 | Pozzobon | May 1988 | A |
4748726 | Schoch | Jun 1988 | A |
4760653 | Baggio | Aug 1988 | A |
4783293 | Wellershaus et al. | Nov 1988 | A |
4799297 | Baggio et al. | Jan 1989 | A |
4802291 | Sartor | Feb 1989 | A |
4811503 | Iwama | Mar 1989 | A |
4841649 | Baggio et al. | Jun 1989 | A |
4842608 | Marx et al. | Jun 1989 | A |
4872879 | Shamp | Oct 1989 | A |
4884760 | Baggio et al. | Dec 1989 | A |
4921502 | Shamp | May 1990 | A |
4938775 | Morgan | Jul 1990 | A |
4961544 | Bidoia | Oct 1990 | A |
4988360 | Shamp | Jan 1991 | A |
5042177 | Schoch | Aug 1991 | A |
5062225 | Gorza | Nov 1991 | A |
5065481 | Walkhoff | Nov 1991 | A |
5092321 | Spademan | Mar 1992 | A |
5108456 | Coonan, III | Apr 1992 | A |
5117567 | Berger | Jun 1992 | A |
5133777 | Arbogast et al. | Jul 1992 | A |
5152038 | Schoch | Oct 1992 | A |
5157813 | Carroll | Oct 1992 | A |
5177882 | Berger | Jan 1993 | A |
5181331 | Berger | Jan 1993 | A |
5183036 | Spademan | Feb 1993 | A |
5201773 | Carideo, Jr. | Apr 1993 | A |
5201775 | Arbogast et al. | Apr 1993 | A |
5246464 | Sabolich | Sep 1993 | A |
5249377 | Walkhoff | Oct 1993 | A |
5312669 | Bedard | May 1994 | A |
5319868 | Hallenbeck | Jun 1994 | A |
5325613 | Sussmann | Jul 1994 | A |
5327662 | Hallenbeck | Jul 1994 | A |
5365947 | Bonutti | Nov 1994 | A |
5424782 | Aoki | Jun 1995 | A |
5433648 | Frydman | Jul 1995 | A |
5437619 | Malewicz et al. | Aug 1995 | A |
5477593 | Leick | Dec 1995 | A |
5502902 | Sussmann | Apr 1996 | A |
5503543 | Laghi | Apr 1996 | A |
5529575 | Klotz | Jun 1996 | A |
5545231 | Houser | Aug 1996 | A |
5571209 | Brown, Sr. | Nov 1996 | A |
5599288 | Shirley et al. | Feb 1997 | A |
5638588 | Jungkind | Jun 1997 | A |
5647104 | James | Jul 1997 | A |
5653766 | Naser | Aug 1997 | A |
5669116 | Jungkind | Sep 1997 | A |
5685830 | Bonutti | Nov 1997 | A |
5718925 | Kristinsson et al. | Feb 1998 | A |
5728165 | Brown, Sr. | Mar 1998 | A |
5732483 | Cagliari | Mar 1998 | A |
5737854 | Sussmann | Apr 1998 | A |
5800569 | Phillips | Sep 1998 | A |
5819378 | Doyle | Oct 1998 | A |
5824111 | Schall et al. | Oct 1998 | A |
5848979 | Bonutti et al. | Dec 1998 | A |
5885509 | Kristinsson | Mar 1999 | A |
5888215 | Roos et al. | Mar 1999 | A |
5888217 | Slemker | Mar 1999 | A |
5891061 | Kaiser | Apr 1999 | A |
5934599 | Hammerslag | Aug 1999 | A |
5993488 | Phillips | Nov 1999 | A |
6136039 | Kristinsson et al. | Oct 2000 | A |
6159248 | Gramnas | Dec 2000 | A |
6202953 | Hammerslag | Mar 2001 | B1 |
6206932 | Johnson | Mar 2001 | B1 |
6256798 | Egolf et al. | Jul 2001 | B1 |
6267390 | Maravetz et al. | Jul 2001 | B1 |
6280479 | Phillips | Aug 2001 | B1 |
6289558 | Hammerslag | Sep 2001 | B1 |
6368357 | Schon et al. | Apr 2002 | B1 |
6413232 | Townsend et al. | Jul 2002 | B1 |
6416074 | Maravetz et al. | Jul 2002 | B1 |
6497028 | Rothschild et al. | Dec 2002 | B1 |
6500210 | Sabolich et al. | Dec 2002 | B1 |
6502577 | Bonutti | Jan 2003 | B1 |
6503213 | Bonutti | Jan 2003 | B2 |
6557177 | Hochmuth | May 2003 | B2 |
6626952 | Janusson et al. | Sep 2003 | B2 |
6643954 | Voswinkel | Nov 2003 | B2 |
6689080 | Castillo | Feb 2004 | B2 |
6711787 | Jungkind et al. | Mar 2004 | B2 |
6769155 | Hess et al. | Aug 2004 | B2 |
6770047 | Bonutti | Aug 2004 | B2 |
6793682 | Mantelmacher | Sep 2004 | B1 |
6827653 | Be | Dec 2004 | B2 |
6921377 | Bonutti | Jul 2005 | B2 |
6942703 | Carstens | Sep 2005 | B2 |
6991657 | Price, Jr. | Jan 2006 | B1 |
D519637 | Nordt et al. | Apr 2006 | S |
D520141 | Nordt et al. | May 2006 | S |
D521644 | Nordt et al. | May 2006 | S |
7094212 | Karason et al. | Aug 2006 | B2 |
7105122 | Karason | Sep 2006 | B2 |
7118602 | Bjarnason | Oct 2006 | B2 |
7128724 | Marsh | Oct 2006 | B2 |
7134224 | Elkington et al. | Nov 2006 | B2 |
7172714 | Jacobson | Feb 2007 | B2 |
7198610 | Ingimundarson et al. | Apr 2007 | B2 |
7207126 | Gantier | Apr 2007 | B2 |
7235059 | Mason et al. | Jun 2007 | B2 |
7240414 | Taylor, Sr. | Jul 2007 | B2 |
7281341 | Reagan et al. | Oct 2007 | B2 |
7288116 | Ikeda | Oct 2007 | B2 |
7306573 | Bonutti | Dec 2007 | B2 |
7331126 | Johnson | Feb 2008 | B2 |
7344567 | Slemker | Mar 2008 | B2 |
7402147 | Allen | Jul 2008 | B1 |
7402265 | Jacobson | Jul 2008 | B2 |
7404804 | Bonutti | Jul 2008 | B2 |
7416565 | Al-Turaikl | Aug 2008 | B1 |
7438698 | Daiju | Oct 2008 | B2 |
7438843 | Asgeirsson | Oct 2008 | B2 |
7488349 | Einarsson | Feb 2009 | B2 |
7513018 | Koenig et al. | Apr 2009 | B2 |
7591050 | Hammerslag | Sep 2009 | B2 |
7600660 | Kasper et al. | Oct 2009 | B2 |
7617573 | Chen | Nov 2009 | B2 |
7618386 | Nordt, III et al. | Nov 2009 | B2 |
7618389 | Nordt, III et al. | Nov 2009 | B2 |
7640680 | Castro | Jan 2010 | B1 |
7670306 | Nordt, III et al. | Mar 2010 | B2 |
7699797 | Nordt, III et al. | Apr 2010 | B2 |
7704219 | Nordt, III et al. | Apr 2010 | B2 |
7727284 | Warila | Jun 2010 | B2 |
7771488 | Asgeirsson et al. | Aug 2010 | B2 |
7806842 | Stevenson et al. | Oct 2010 | B2 |
7818899 | Dinndorf | Oct 2010 | B2 |
7857776 | Frisbie | Dec 2010 | B2 |
7862621 | Kloos et al. | Jan 2011 | B2 |
7867286 | Einarsson | Jan 2011 | B2 |
7878998 | Nordt, III et al. | Feb 2011 | B2 |
7887500 | Nordt, III et al. | Feb 2011 | B2 |
7922680 | Nordt, III et al. | Apr 2011 | B2 |
7950112 | Hammerslag et al. | May 2011 | B2 |
7954204 | Hammerslag et al. | Jun 2011 | B2 |
7985192 | Sheehan et al. | Jul 2011 | B2 |
7993296 | Nordt, III et al. | Aug 2011 | B2 |
8002724 | Hu et al. | Aug 2011 | B2 |
8007544 | Jonsson et al. | Aug 2011 | B2 |
8038635 | Dellanno | Oct 2011 | B2 |
8038637 | Bonutti | Oct 2011 | B2 |
8088320 | Bedard | Jan 2012 | B1 |
8091182 | Hammerslag et al. | Jan 2012 | B2 |
8097043 | Egilsson | Jan 2012 | B2 |
8123818 | Bjarnason et al. | Feb 2012 | B2 |
8303527 | Joseph | Nov 2012 | B2 |
8308815 | McCarthy | Nov 2012 | B2 |
8323353 | Alley et al. | Dec 2012 | B1 |
8414658 | Johnson et al. | Apr 2013 | B2 |
20020077703 | Johnson | Jun 2002 | A1 |
20020095750 | Hammerslag | Jul 2002 | A1 |
20020099450 | Dean, Jr. et al. | Jul 2002 | A1 |
20030093882 | Gorza et al. | May 2003 | A1 |
20030181990 | Phillips | Sep 2003 | A1 |
20030204938 | Hammerslag | Nov 2003 | A1 |
20050081339 | Sakabayashi | Apr 2005 | A1 |
20050160627 | Dalgaard et al. | Jul 2005 | A1 |
20050247813 | Kovacevich et al. | Nov 2005 | A1 |
20050273025 | Houser | Dec 2005 | A1 |
20050284003 | Dalgaard et al. | Dec 2005 | A1 |
20060009860 | Price, Jr. | Jan 2006 | A1 |
20060015980 | Nordt, III et al. | Jan 2006 | A1 |
20060015988 | Philpott et al. | Jan 2006 | A1 |
20060020237 | Nordt, III et al. | Jan 2006 | A1 |
20060026732 | Nordt, III et al. | Feb 2006 | A1 |
20060026733 | Nordt, III et al. | Feb 2006 | A1 |
20060026736 | Nordt, III et al. | Feb 2006 | A1 |
20060030802 | Nordt, III et al. | Feb 2006 | A1 |
20060030803 | Nordt, III et al. | Feb 2006 | A1 |
20060030804 | Nordt, III et al. | Feb 2006 | A1 |
20060030805 | Nordt, III et al. | Feb 2006 | A1 |
20060030806 | Nordt, III et al. | Feb 2006 | A1 |
20060070164 | Nordt, III et al. | Apr 2006 | A1 |
20060070165 | Nordt, III et al. | Apr 2006 | A1 |
20060135900 | Ingimundarson et al. | Jun 2006 | A1 |
20060156517 | Hammerslag et al. | Jul 2006 | A1 |
20060174516 | Peruzzo | Aug 2006 | A1 |
20060185357 | Kovacevich et al. | Aug 2006 | A1 |
20060202077 | Kovacevich et al. | Sep 2006 | A1 |
20060202078 | Kovacevich et al. | Sep 2006 | A1 |
20070004993 | Coppens et al. | Jan 2007 | A1 |
20070039085 | Kovacevich et al. | Feb 2007 | A1 |
20070078523 | Kholwadwala et al. | Apr 2007 | A1 |
20070152379 | Jacobson | Jul 2007 | A1 |
20070169378 | Sodeberg et al. | Jul 2007 | A1 |
20080034459 | Nordt, III et al. | Feb 2008 | A1 |
20080039757 | Nordt, III et al. | Feb 2008 | A1 |
20080039764 | Nordt, III et al. | Feb 2008 | A1 |
20080039765 | Nordt, III et al. | Feb 2008 | A1 |
20080039767 | Nordt, III et al. | Feb 2008 | A1 |
20080060167 | Hammerslag et al. | Mar 2008 | A1 |
20080060168 | Hammerslag et al. | Mar 2008 | A1 |
20080066272 | Hammerslag et al. | Mar 2008 | A1 |
20080066345 | Hammerslag et al. | Mar 2008 | A1 |
20080066346 | Hammerslag et al. | Mar 2008 | A1 |
20080083135 | Hammerslag et al. | Apr 2008 | A1 |
20080091132 | Bonutti | Apr 2008 | A1 |
20080269914 | Coppens et al. | Oct 2008 | A1 |
20080319362 | Joseph | Dec 2008 | A1 |
20090030353 | Bonutti et al. | Jan 2009 | A1 |
20090076625 | Groves et al. | Mar 2009 | A1 |
20090090026 | Mosher | Apr 2009 | A1 |
20090105844 | Ortiz | Apr 2009 | A1 |
20090287128 | Ingimundarson et al. | Nov 2009 | A1 |
20100030344 | Hansen et al. | Feb 2010 | A1 |
20100036300 | Sheehan et al. | Feb 2010 | A1 |
20100036505 | Hassler | Feb 2010 | A1 |
20100082116 | Johnson et al. | Apr 2010 | A1 |
20100121464 | Mantelmacher | May 2010 | A1 |
20100139057 | Soderberg et al. | Jun 2010 | A1 |
20100191348 | Kettwig et al. | Jul 2010 | A1 |
20100268139 | Garth | Oct 2010 | A1 |
20100274364 | Pacanowsky et al. | Oct 2010 | A1 |
20100299959 | Hammerslag et al. | Dec 2010 | A1 |
20110035027 | McCarthy | Feb 2011 | A1 |
20110046528 | Stevenson et al. | Feb 2011 | A1 |
20110071647 | Mahon | Mar 2011 | A1 |
20110082402 | Oddou et al. | Apr 2011 | A1 |
20110098618 | Fleming | Apr 2011 | A1 |
20110114635 | Sheehan | May 2011 | A1 |
20110144554 | Weaver, II et al. | Jun 2011 | A1 |
20110178448 | Einarsson | Jul 2011 | A1 |
20110184326 | Ingimundarson et al. | Jul 2011 | A1 |
20110197362 | Chella et al. | Aug 2011 | A1 |
20110232837 | Ottleben | Sep 2011 | A9 |
20110266384 | Goodman | Nov 2011 | A1 |
20110320010 | Vo | Dec 2011 | A1 |
20120010547 | Hinds | Jan 2012 | A1 |
20120022667 | Accinni et al. | Jan 2012 | A1 |
20120029404 | Weaver, II et al. | Feb 2012 | A1 |
20120041567 | Cornell | Feb 2012 | A1 |
20120095570 | Marquette | Apr 2012 | A1 |
20120101417 | Joseph | Apr 2012 | A1 |
20120101597 | Bache | Apr 2012 | A1 |
20120143077 | Sanders et al. | Jun 2012 | A1 |
20120253475 | Kelley et al. | Oct 2012 | A1 |
20120271210 | Galea et al. | Oct 2012 | A1 |
20120271433 | Galea et al. | Oct 2012 | A1 |
20120283846 | Janssen et al. | Nov 2012 | A1 |
20130123940 | Hurley et al. | May 2013 | A1 |
20130218297 | Nordman, Jr. | Aug 2013 | A1 |
20130245785 | Accini et al. | Sep 2013 | A1 |
20150018973 | Rana | Jan 2015 | A1 |
20150051711 | Egilsson et al. | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
2 112 789 | Aug 1994 | CA |
2 114 387 | Aug 1994 | CA |
577 282 | Jul 1976 | CH |
612 076 | Jul 1979 | CH |
624 001 | Jul 1981 | CH |
2 341 658 | Mar 1974 | DE |
38 22 113 | Jan 1990 | DE |
93 15 776.2 | Feb 1995 | DE |
295 03 552.8 | Apr 1995 | DE |
199 45 045 | Mar 2001 | DE |
100 57 286 | May 2002 | DE |
0 201 051 | Nov 1986 | EP |
0 393 380 | Sep 1992 | EP |
0 589 233 | Mar 1994 | EP |
0 614 624 | Sep 1994 | EP |
0 614 625 | Sep 1994 | EP |
0 589 232 | Nov 1995 | EP |
0 693 260 | Sep 1998 | EP |
0 651 954 | Feb 1999 | EP |
1 236 412 | Sep 2002 | EP |
1 433 447 | Jun 2004 | EP |
2 177 294 | Nov 1973 | FR |
2 399 811 | Mar 1979 | FR |
127 451 | Jun 1919 | GB |
3031760 | Dec 1996 | JP |
2004-016732 | Jan 2004 | JP |
2004-041666 | Feb 2004 | JP |
9116019 | Oct 1991 | WO |
9503720 | Feb 1995 | WO |
9703581 | Feb 1997 | WO |
9812994 | Apr 1998 | WO |
0053045 | Sep 2000 | WO |
2004110197 | Dec 2004 | WO |
2007016983 | Feb 2007 | WO |
2007035875 | Mar 2007 | WO |
2008116025 | Sep 2008 | WO |
2009093020 | Jul 2009 | WO |
2012021823 | Feb 2012 | WO |
2013071308 | May 2013 | WO |
Entry |
---|
Hikari, Giken. Derwent abstract of JP3170433. Sep. 15, 2011. A43B23/02. |
“Rollerblade TFS Skate Laces AERO”, http://www.inlinewarehouse.com/viewlarge.html?PCODE=TFS, retrieved on Jan. 7, 2010, 1 page. |
“Rollerblade TFS Skate Laces MICRO”, http://www.inlinewarehouse.com/viewlarge.html?PCODE=MILC, retrieved on Jan. 7, 2010, 1 page. |
International Search Report from International Application No. PCT/US2011/057043, Jan. 27, 2012. |
Otto Bock Quality for Life: Initial and Interim Prostheses [Retrieved from Internet on Feb. 11, 2013], <URL:http://www.ottobockus.com/cps/rde/xbcr/ob—us—en/08cat—4.pdf>. Published in Prosthetics Lower Extremities 2008, see contents page <URL:http://www.ottobockus.com/cps/rde/xbcr/ob—us—en/08cat—1.pdf> pp. 24-31. |
International Search Report from International Application No. PCT/US2013/048675, Oct. 9, 2013. |
Manual: “Socket Evaluation System with the Rapid Adjustment Pylon, Owner's Manual and Operating Insturctions”, [retrieved from the internet on May 22, 2014], <URL:http://www.fillauer.com>; 4 pages. |
International Search Report and Written Opinion from Corresponding International PCT Application No. PCT/US2015/031468, Jul. 28, 2015. |
Number | Date | Country | |
---|---|---|---|
20150328018 A1 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
62000154 | May 2014 | US |