The invention relates to a coaxial cavity resonator, the resonance frequency of which can be adjusted.
Cavity resonators are generally used in communications networks for making filters, especially when the power of the signal to be transferred is relatively large. This is due to the fact that losses caused by such resonator filters are small, which means only a slight attenuation of the effective signal. Additionally their response characteristics are easy to control and set even according to strict specifications.
In most filters, both the location and width of the pass band of the filter is meant to be fixed. In some filters the width of the pass band of the filter is meant to be constant, but the location of the pass band must be possible to select from within a certain total area. Thus an adjustment possibility for moving the pass band is needed in the filter in addition to the basic tuning.
The structure of a coaxial cavity resonator, or shorter a coaxial resonator, comprises an internal conductor, an external conductor consisting of the side walls, a bottom and a lid. The bottom and the lid are in galvanic contact with the external conductor, and all three together form a closed resonator casing. Usually the lower end of the internal conductor is galvanically connected to the bottom and the upper end is in the air, whereby the transmission wire formed by the resonator is short-circuited in its lower end and open in its upper end.
The adjustment of the resonance frequency of the resonator is usually based on the fact that the capacitance between the internal conductor and the lid is changed, whereby also the electric length and resonance frequency of the resonator change. Metallic tunings screws placed in the lid of the resonator are generally used as adjustment parts. When turning the screw its distance from the internal conductor of the resonator changes, as a result of which the capacitance between the internal conductor and the lid changes. A disadvantage with using tuning screws is that the screw accessories increase the number of parts of the filter and the threaded screw holes mean an increase in work stages and thus an increase in manufacturing costs. Additionally the electric contact in the threads can deteriorate over time, which causes changes in the tuning and an increase in losses in the resonator. In high capacity filters there is also a danger of breakthrough, if the tip of the screw is close to the end of the internal conductor. The tuning thus takes time and is relatively expensive.
U.S. Pat. No. 6,255,922 presents a resonator, which has a moveable piece for adjusting the resonance frequency, which piece is made from a non-conductive material, which piece is moved inside a resonator piece made from a ceramic material. The structure is quite complicated, and it is not able to provide very large adjustments in the resonance frequency.
U.S. Pat. No. 7,474,176 introduces a cavity resonator, where the size of the internal conductor of the resonator is changed by moving an adjustment piece inside the internal conductor with a screw arrangement penetrating the resonator. This structure is also complicated and only able to make fine adjustments in the resonance frequency.
An object of the invention is a solution by which the drawbacks relating to the prior art can be considerably reduced. The objects are attained with a resonator which is characterised by what is presented in the independent claim. Some advantageous embodiments of the invention are presented in the dependent claims.
One main aspect of the invention is that a movement of an adjustment piece in the coaxial resonator first decreases the resonance frequency and then slowly increases it. This is achieved in the following manner: The moveable adjustment member of the resonator comprises a vertical conductive stem and a conductive cap as an expansion thereof. The adjustment member can be moved downwards so that its stem and the fixed internal conductor connected to the bottom of the resonator go within each other. The adjustment mechanism further comprises a conductive upper plate isolated from the adjustment member, which upper plate is in the resonator casing at a defined distance from the adjustment member, above it. The adjustment member and the upper plate are attached to a dielectric support member, which extends through the lid of the resonator to above the casing. The adjustment member, the upper plate and the support member thus form an adjustment piece, which is moved with the aid of the support members. The upper plate extends in the horizontal plane almost to the walls of the resonator cavity, whereby its lower surface defines the effective height of the cavity.
The stem of the adjustment member and the internal conductor of the resonator can be within each other, so that the internal conductor has a hollow wherein the stem partly goes or so that the stem has a hollow, wherein the internal conductor partly goes. In one embodiment both the stem and the internal conductor have a hollow. The hollow in the thinner part is cylindrical and the hollow in the thicker part forms a groove with a ring-like cross-section, wherein the thinner part fits. A galvanic isolation remains between the stem and the internal conductor, which can be ensured by coating at least a part of the surfaces of the stem or the internal conductor with a dielectric substance.
It is an advantage of the invention that a structure in accordance thereto provides a very wide adjustment area for the resonance frequency. Additionally the resonance frequency can within different sectors of this wide area be adjusted precisely. It is further an advantage of the invention that the Q value of a resonator in accordance thereto is high over the entre frequency adjustment area. It is further an advantage of the invention that the set resonance frequency is stable and does thus not change significantly over time. It is also an advantage of the invention that the structure in accordance thereto is simple, whereby the manufacturing costs remain relatively low.
In the following, the invention will be described in detail. In the description, reference is made to the appended drawings, in which
The resonator 100 further comprises a moveable adjustment piece 120, which comprises a conductive adjustment member 103, 104, a conductive upper plate 105 and a dielectric support member 111. The adjustment member has a stem 103, which is vertical, i.e. in the direction of the axis of the wall pipe, and a cap 104 as an expansion thereof. The upper plate is in the resonator casing at a defined distance from the cap of the adjustment member, above it. The adjustment member and the upper plate are attached to the dielectric support member 111, which extends through the lid of the resonator to above the casing. The adjustment piece 120 is moved in the vertical direction with the aid of the support member 111 from outside the casing. The stem, the cap and the upper plate are in this example cylindrical. The upper plate 105 extends in the horizontal plane in every direction almost to the walls of the resonator, whereby its lower surface defines the effective height of the resonator cavity. The diameter of the cap is in this example smaller than the diameter of the upper plate. More commonly the cross-sectional surface area of the cap can be smaller than the cross-sectional surface are of the upper plate.
The internal conductor 101 has an upwards-opening cylindrically shaped hollow 115, the diameter of which is slightly larger than the diameter of the stem 103 and the axis of which is the same as the axis of the stem. Therefore the stem can go at least partly into the hollow in the internal conductor, when the adjustment piece is moved downwards. The outer surface of the stem or the inner surface of said hollow or both may have a dielectric coating 130 to ensure that the stem and the internal conductor do not come into galvanic contact with each other.
a)-3(e) show the adjustment piece 120 in five different positions. In
From the diagram can be seen that the total adjustment area of the resonance frequency is very wide, about 750-2500 MHz. The resonance frequency is at its largest in point 4a, i.e. when the adjustment piece is in the upper position. When moving from there to point 4b the resonance frequency decreases relatively slowly to a value of about 2150 MHz. This means that in the upper adjustment area 2150-2500 MHz in question, the resonance frequency can be set precisely. When moving from point 4b to point 4c the resonance frequency decreases relatively quickly to a value of about 940 MHz. This is because the stem 103 of the adjustment member thus gets closer to the internal conductor 101, reaching the level, when the capacitance between the internal conductor and the walls of the casing increases quickly, which results in an increase in the electric length of the resonator. When moving from point 4c to point 4d the resonance frequency still decreases, but it slows down and reaches its minimum value of about 750 MHz in point 4d. After point 4d the resonance frequency starts to increase again, increasing slowly to a value of about 875 MHz when moving from point 4d to point 4e. The turn in the resonance frequency is due to the fact that when the stem of the adjustment member enters the fixed internal conductor the adjustment member is functionally altered into a part of the internal conductor, and the length of this extended ‘internal conductor’ is decreased as the adjustment piece moves further downward. Additionally the upper plate 105 makes the resonance cavity smaller as it is lowered down, which also causes an increase in the resonance frequency.
The slow change in the resonance frequency in the lower adjustment area 750-875 MHz in question means that the resonance frequency can be set precisely at the desired value.
Further as in
The difference to the structure shown in
A second difference to the structure shown in
In order to ensure the galvanic separation of the stem 603 and the internal conductor 601, there may be a dielectric coating for example on the outer surface of the stem and on the surface of its hollow or on the inner surface of the outer part of the internal conductor and on the surface of the conductor pole 617.
a)-8(d) show the adjustment piece 620 in four different positions. In
From the diagram can be seen that the total adjustment area of the resonance frequency is about 810-2610 MHz. The resonance frequency is at its largest in point 9a, i.e. when the adjustment piece is in the upper position. When moving from there to point 9b the resonance frequency decreases to a value of about 2130 MHz. When moving from point 9b to point 9c the resonance frequency decreases further to a value of about 810 MHz. The decrease is also in this example due to the fact that the stem 603 of the adjustment member gets closer to the internal conductor 601, whereby the capacitance of the internal conductor to the walls of the casing increases via the cap 604, which results in an increase in the electric length of the resonator. The diameter of the cap is here almost the same as the diameter of the upper part of the cavity, wherefore the cap has a relatively strong capacitive coupling to the resonator casing. The adjustment member is thus in practice grounded, when the casing is called a signal ground. The decrease in the resonance frequency is the quickest when the lower end of the stem comes relatively close to the upper end of the internal conductor. When the lower surface of the stem reaches the level of the upper surface of the internal conductor, the cap of the adjustment member has already moved into the wider middle part of the cavity, whereby its coupling to the casing weakens. This results in that the decrease in the resonance frequency ceases, and the minimum frequency of 810 MHz is reached in said point 9c.
After point 9c the resonance frequency again starts to increase, slowly rising to a value of about 950 MHz when arriving at point 9d, i.e. the bottom position of the adjustment piece. The turn in the resonance frequency is also in this example due to the fact that when the stem of the adjustment member enters the fixed internal conductor the adjustment member is functionally altered into a part of the internal conductor, and the length of this extended ‘internal conductor’ is decreased as the adjustment piece moves further downward. The above-described design of the internal conductor and stem means that the capacitive coupling between them is remarkably strong immediately as the lower end of the stem enters the hollow of the internal conductor. Additionally the upper plate 605 makes the resonance cavity smaller as it is lowered down, which also causes an increase in the resonance frequency. The upper plate has this effect during the entire movement of the adjustment piece, but in the end stage it has a greater importance.
The above-described structure results in that if the dimensioning of the resonator is otherwise the same as in
A resonator according to
The definitions “horizontal”, “vertical”, “lower”, “upper”, “downwards” and “upwards” in this description and claims refer to the position of the resonator, where the lid and the bottom of its casing are in a horizontal position, the lid being higher, and these definitions have nothing to do with the use position of the resonator.
Some embodiments of the invention have been described above. The invention is not limited to the embodiments just described, for example the resonator and its adjustment parts do not need to have a cylindrical shape. The inventive idea may be applied in different ways.
Number | Date | Country | Kind |
---|---|---|---|
20115557 | Jun 2011 | FI | national |