A typical toilet typically includes a tank fill valve and a bowl fill valve or a refill valve with a secondary emitter provided by a flexible hose that provides refill to the bowl via the standing drain. Such valves (and/or other throughways) may provide essentially the same rate of fill.
In most applications, the capacity of the tank and the bowl of a toilet are not equal. Thus, with equal fill rates, the bowl will typically overflow while the tank is filled, causing excessive water usage. Existing solutions may require users to perform extensive installation procedures (e.g., by cutting hoses) and thus may not be removed without requiring repair or replacement the original components. In addition, existing solutions may not be reusable.
Many other applications (e.g., water bottle transport, hydration pack flow, irrigation, etc.) may require adjustable flow regulators.
Thus there exists a need for a reusable adjustable flow regulator that is easy to install and adjust and may be reused without affecting previous installations.
Some embodiments provide a way to regulate flow along a flexible fluid passageway. A flow regulator may include multiple flexible hinges, compression surfaces, and a locking element. The regulator may be able to be applied to a flexible hose or tube to restrict fluid flow through the hose or tube. The regulator may be able to be removed from the hose and reused.
The regulator may be formed from a single piece of flexible plastic. The locking element may include a protruding point and an associated set of locking receptacles or notches that run along a member of the regulator. The locking element may be positioned along the set of receptacles such that a first flexible hinge, coupled to the compression surfaces, is closed. The compression surfaces may thus engage and restrict flow through the flexible tube.
A second flexible hinge may be coupled to a member that includes the set of locking receptacles and a release lever. The second hinge may be opened using the release lever such that the set of locking receptacles disengages the locking element. Thus, the regulator may be released from the fluid passageway and reused.
The regulator may include a pair of hose guards that protrude from the compression surfaces. Such hose guards may hold a hose or tube in place along the compression surfaces as the regulator is applied to the hose or tube. In addition, the hose guards may retain the hose or tube in place after the regulator has been locked onto the hose or tube.
The preceding Summary is intended to serve as a brief introduction to various features of some exemplary embodiments. Other embodiments may be implemented in other specific forms without departing from the scope of the disclosure.
The novel features of the disclosure are set forth in the appended claims. However, for purpose of explanation, several embodiments are illustrated in the following drawings.
The following detailed description describes currently contemplated modes of carrying out exemplary embodiments. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of some embodiments, as the scope of the disclosure is best defined by the appended claims.
Various inventive features are described below that can each be used independently of one another or in combination with other features. Broadly, some embodiments generally provide ways to regulate or restrict flow along flexible fluid pathways.
A first exemplary embodiment provides an adjustable flow regulator that includes a first flexible hinge and a locking element.
A second exemplary embodiment provides a flow regulation clamp that includes a locking element, a flexible hinge coupled to the locking element, and first and second compression surfaces, each surface coupled to the flexible hinge.
A third exemplary embodiment provides an adjustable clamp that includes a locking element, a plurality of locking receptacle, first and second flexible hinges, and first and second compression surfaces.
The regulator 100 may be formed from an appropriate material and/or combination of materials (e.g., plastic, rubber, etc.). In some embodiments, the regulator may be formed from a single piece of plastic. Such a regulator may be generated using a laser cutting process, a compression molding process, and/or other appropriate manufacturing processes. The regulator may be formed in various other appropriate ways (e.g., using a mold).
The first flexible hinge 110 may be a section of the regulator 100 of appropriate rigidity and thickness that the hinge is able to be manipulated from a range of positions from fully opened as shown in
Each compression surface 120 may be able to be applied to a hose or other appropriate flexible fluid passageway. Thus, in the open position of
The locking element 130 may be able to engage the locking notches 140 in a variety of positions along the range of motion of the regulator 100. In this example, the locking element 130 is an extending point that runs along the full depth of the regulator 100. Different embodiments may include various different locking elements and/or combinations of locking elements (e.g., a releasable zip tie clamp, a point and tooth clamp, a radial clamp, etc.).
Each of the set of locking notches 140 may be an inverted point, as shown, that is capable of receiving and securing the locking element 130. Different embodiments may include different numbers of receptacles 140, and/or differently spaced receptacles along the range of motion of the regulator 100. The type of receptacle 140 may be associated with the type of locking element 130 (e.g., zip tie teeth, radial clamp, etc.). The notches 140 may be coupled to the protruding release lever 160 along a member that extends from hinge 150.
The second flexible hinge 150 may be similar to the first flexible hinge and may allow the set of notches 140 to move as appropriate, as the locking element 130 is positioned along the notches 140 in order to provide a desired amount of flow regulation. Some embodiments may allow flow to be completely stopped (e.g., as during use with a wearable hydration pack).
The locking element 130 may be released from the notches 140, and the regulator 100 returned to the open position, by applying lateral pressure to the lever 160 along path 320, or otherwise dislodging the locking element 130 from the receptacles 140, as appropriate (e.g., by pressing a lever associated with a reusable zip tie, performing rotary manipulation of a radial clamp element, etc.).
Each hose guard may be a protruding bulbous or globular finger that extends out from one end of each compression surface 120. The hose guards may be shaped such that the regulator 400 is able to be placed in a fully clamped position (i.e., the hose guards do not impede the range of motion of the hinge 110). Different embodiments may include differently shaped guards.
As shown, the guards 410 prevent the hose from slipping out of the regulator 400 as the regulator is clamped down on the hose. In addition, the guards 410 prevent the hose from moving after the regulator has been locked onto the hose.
In the examples of
One of ordinary skill in the art will recognize that the regulator of
Other example applications may include, for instance, use as a water bottle (and/or other transportable object) carabiner, use as a regulator for a wearable hydration system (e.g., a backpack including a drinking water reservoir), use as a regulator for hydration systems associated with a greenhouse and/or hydroponic applications.
Different applications may include differently-sized regulators, appropriate for the size of the flow pathway to be regulated. For instance, a regulator for a toilet application may be roughly one and one-quarter inches by three-quarters of an inch by three-sixteenths of an inch. In some embodiments, the thickness of the regulator may be one-eighth inch or less, such that the regulator is able to be sent though postal mail.
The foregoing relates to illustrative details of exemplary embodiments and modifications may be made without departing from the scope of the disclosure as defined by the following claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 14/862,137, filed on Sep. 22, 2015.
Number | Date | Country | |
---|---|---|---|
Parent | 14862137 | Sep 2015 | US |
Child | 15241049 | US |