Adjustable rotating guides for spider or elevator

Information

  • Patent Grant
  • 7448456
  • Patent Number
    7,448,456
  • Date Filed
    Wednesday, February 1, 2006
    18 years ago
  • Date Issued
    Tuesday, November 11, 2008
    16 years ago
Abstract
The present invention provides a method and apparatus for gripping one or more tubulars, which may include casing, during a tubular handling operation, drilling operation, and/or drilling with casing operation. The gripping apparatus comprises a housing having a bore extending therethrough and one or more gripping members which extend radially within the bore to grippingly engage a tubular or casing when activated. Adjustable guides attached to a portion of the gripping apparatus facilitate rotational movement of the casing during the drilling operation when the gripping members of the gripping apparatus are deactivated.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


Embodiments of the present invention generally relate to an apparatus and method for handling tubulars and drilling with tubulars to form a wellbore. More particularly, embodiments of the present invention relate to drilling with casing. Even more particularly, embodiments of the present invention relate to a gripping apparatus for supporting casing for use in a drilling with casing operation.


2. Description of the Related Art


In conventional well completion operations, a wellbore is formed to access hydrocarbon-bearing formations by the use of drilling. In drilling operations, a drilling rig is disposed above the subterranean formation where the access will be formed. A rig floor of the drilling rig is the surface from which casing strings, cutting structures, and other supplies are lowered to form a subterranean wellbore lined with casing. A hole is formed in a portion of the rig floor above the desired location of the wellbore. The axis that runs through the center of the hole formed in the rig floor is well center.


Drilling is accomplished by utilizing a drill bit that is mounted on the end of a drill support member, commonly known as a drill string. To drill within the wellbore to a predetermined depth, the drill string is often rotated by a top drive or rotary table on the drilling rig. After drilling to a predetermined depth, the drill string and drill bit are removed and a section of casing is lowered into the wellbore.


Often, it is necessary to conduct a pipe handling operation to connect sections of casing to form a casing string or to connect sections of tubular to form a tubular string. The pipe handling operation to connect sections of casing may be used to produce a casing string which extends to the drilled depth. Pipe handling operations require the connection of casing sections to one another to line the wellbore with casing. To threadedly connect the casing strings, each casing section may be retrieved from its original location (e.g., a rack beside the drilling platform) and suspended above well center so that each casing section is in line with the casing section previously disposed within the wellbore. The threaded connection is made up by a device which imparts torque to one casing section relative to the other, such as a power tong or a top drive. The casing string formed of the two casing sections is then lowered into the previously drilled wellbore.


It is common to employ more than one string of casing in a wellbore. In this respect, the well is drilled to a first designated depth with a drill bit on a drill string. The drill string is removed. Sections of casing are connected to one another and lowered into the wellbore using the pipe handling operation described above to form a first string of casing longitudinally fixed in the drilled out portion of the wellbore. Next, the well is drilled to a second designated depth through the first casing string, and a second, smaller diameter string of casing comprising casing sections is hung off of the first string of casing. This process is typically repeated with additional casing strings until the well has been drilled to total depth. In this manner, wellbores are typically formed with two or more strings of casing.


The handling of casing strings has traditionally been performed with the aid of a spider along with an elevator. Spiders and elevators are used to grip the casing strings at various stages of a pipe handling operation. Typically, spiders include a plurality of slips circumferentially surrounding the exterior of the casing string. The slips are housed in what is commonly referred to as a “bowl”. The bowl is regarded to be the surfaces on the inner bore of the spider. The inner sides of the slips usually carry teeth formed on hard metal dies for engaging the pipe string. The exterior surface of the slips and the interior surface of the bowl have opposing engaging surfaces which are inclined and downwardly converging. The inclined surfaces allow the slip to move vertically and radially relative to the bowl. In effect, the inclined surfaces serve as a camming surface for engaging the slip with the casing string. Thus, when the weight of the casing string is transferred to the slips, the slips will move downwardly with respect to the bowl. As the slips move downward along the inclined surfaces, the inclined surfaces urge the slips to move radially inward to engage the casing string. In this respect, this feature of the spider is referred to as “self tightening.” Further, the slips are designed to prohibit release of the casing string until the casing string load is supported by another means such as the elevator.


In the making up or breaking out of casing string and/or tubular string connections, the spider is typically used for securing the casing string or tubular string in the wellbore. Additionally, an elevator suspended from a rig hook is used in tandem with the spider. The elevator may include a self-tightening feature similar to the one in the spider. In operation, the spider remains stationary while securing the casing string in the wellbore. The elevator positions a casing string section above the casing string for connection. After completing the connection, the elevator pulls up on the casing string to release the casing string from the slips of the spider. Freed from the spider, the elevator may now lower the casing string into the wellbore. Before the casing string is released from the elevator, the spider is allowed to engage the pipe string again to support the casing string. After the load of the casing string is switched back to the spider, the elevator may release the casing string and continue the makeup process.


As an alternative to the conventional method, drilling with casing is a method often used to place casing strings within the wellbore. This method involves attaching a cutting structure in the form of a drill bit to the lower end of the same string of casing which will line the wellbore. Drilling with casing is often the preferred method of well completion because only one run-in of the working string into the wellbore is necessary to form and line the wellbore for each casing string.


Drilling with casing is typically accomplished using a top drive powered by a motor because the top drive is capable of performing both functions of imparting torque to the casing string to make up the connection between casing strings during pipe handling operations and drilling the casing string into the formation. FIG. 1 shows two exemplary gripping apparatuses 100, 200 used in a typical drilling with casing operation. Connected to a drilling rig 105 is a traveling block 115 suspended by wires 150 from draw works 120. A top drive 110 with an elevator 200 connected thereto is suspended from the traveling block 115. The elevator 200 typically is connected to the top drive 110 by bails 125. A motor 140 is the part of the top drive 110 used to rotate a first and second casing string 210, 130 when drilling with casing or to rotate the second casing string 130 when connecting the second casing string 130 to the first casing string 210 which has been previously located within a wellbore 180. Located within a rig floor 135 of the drilling rig 105 is a rotary table 145 into which the spider 100 can be placed. The spider 100 and the elevator 200 are both used to grippingly and rotationally support casing strings 210, 130 axially at various stages of a typical operation; therefore, both the spider 100 and the elevator 200 are deemed “gripping apparatuses” for purposes of the present invention.


Current spiders and elevators useable in drilling with casing operations are capable of either being actuated to grippingly engage the casing string to prevent rotational or axial movement of the casing string or, in the alternative, of being unactuated to release the casing string completely to allow axial and rotational movement of the casing string while the casing string is drilled into the formation. Because only these two positions are possible with current gripping apparatuses, problems occur when using the gripping apparatuses while drilling with casing. When performing a drilling with casing operation with the current spiders or elevators in the unactuated position, the casing string is not centered within the wellbore while drilling because the casing string is not supported along its diameter and thus is free to move within the wellbore while drilling. Furthermore, because the casing string is loose inside the gripping apparatus, the slips of the gripping apparatus often contact the outer diameter of the casing string being rotated while drilling and can cause damage to the casing string. When the slips contact the outer diameter of the casing string, damage may also result to the slips. Additionally, the rotational movement is hindered in the current gripping apparatus by any contact of the casing string with parts of the gripping apparatus.


There is therefore a need for a gripping apparatus useful during a drilling with casing operation. There is a further need for a gripping apparatus which is capable of accommodating more than one pipe size so that the casing is centered on the well center while drilling with casing. There is an even further need for a gripping apparatus which allows the casing string to freely rotate while preventing damage to the casing and positioning the casing over the well center during a drilling with casing operation.


SUMMARY OF THE INVENTION

Embodiments of the present invention generally provide a gripping apparatus for supporting a casing. In one aspect, the apparatus includes a housing having a longitudinal opening extending therethrough and one or more gripping members which, when the gripping apparatus is actuated, move radially toward the casing to contact the casing. In another aspect, the apparatus may include one or more guides to facilitate movement of the casing within the housing of the gripping apparatus. The one or more guides may be positioned around the opening in a manner capable of centering the pipe. The one or more guides may be adjustable radially within the opening to accommodate different sizes of casing.


In another embodiment, the one or more guides may comprise one or more rolling members in the vertical position, wherein the one or more rolling members are positioned so that an axis of the rolling members is parallel to an axis of the longitudinal opening so that the rolling members are capable of imparting a rolling motion along the inner diameter of the casing while the casing is rotated. The rolling members may be adjustable between the parallel position and a position wherein the axis of the rolling members is perpendicular to the axis of the casing. In another aspect, the rolling members may be adjustable to a position between the parallel position and the perpendicular position.


Providing guides with rolling members in the vertical position allows the casing to be rotated to drill with the casing without contacting the one or more gripping members with the casing. Furthermore, the guides of the present invention allow the casing to be centered within the gripping apparatus and the wellbore for the drilling with casing operation or the casing lowering operation.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.



FIG. 1 is a side view of a typical drilling rig with a top drive, spider, and elevator.



FIG. 2 is a downward, side view of a gripping apparatus according to the present invention.



FIG. 3 is a sectional view of the guides located within the gripping apparatus of FIG. 2.



FIG. 4 is a sectional view of the guides of FIG. 2.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT


FIG. 2 shows an exemplary gripping apparatus 100 which can be used with guides 80 of the present invention. It is understood that the guides 80 are useable with any gripping apparatus 100, 200, including but not limited to elevators and spiders, which are used in a drilling with casing operation, a pipe handling operation, or a conventional drilling operation. As shown in FIG. 2, the gripping apparatus 100 is a flush mounted spider disposable within a rotary table 145, as shown in FIG. 1, although the following description may also be applied to an elevator 200. The gripping apparatus 100 has a body 10 with any number of body sections 11, 12, preferably two body sections 11, 12 as shown, for housing one or more gripping members 20 and a cover assembly 15 for the body 10. A flange 30 may be formed on an upper portion of the body sections 11, 12 for connection to the cover assembly 15.


The body 10 of the gripping apparatus 100 may be formed by pivotally coupling two body sections 11, 12 with one or more connectors 35. Connectors 35 may be used to couple the two body sections 11, 12 together upon placement in the rotary table 145. The connectors 35 may be hinges disposed on both sides of each body section 11, 12. Alternatively, the body sections 11, 12 may be hinged on one side and selectively locked together on the other side. A gap 37 exists between each connector 35 on body section 11 for mating with its respective connector 35 formed on body section 12. Likewise, a gap 37 exists between each connector 35 on body section 12 for mating with its respective connector 35 formed on body section 11. A hole 38 is formed through each connector 35 to accommodate at least one connecting member such as a pin 40. The holes 38 in the connectors 35 are substantially aligned so that the pin 40 may be disposed through the holes 38 to secure the two body sections 11, 12 together to form the body 10.


A bowl 25 extends vertically through a lower portion of the body 10 to house the gripping members 20. The bowl 25 is a progressive recess along an inner wall of the body sections 11, 12. The progressive recess of the bowl 25 creates an inclined portion of the inner wall, which mates with the back of the gripping members 20. The gripping members 20 preferably comprise a slip assembly comprised of slips for engaging the casing string 210 and/or 130 upon activation.


The body 10 of the gripping apparatus 100 is covered by the cover assembly 15, which may also have two or more separate sections placed above the respective body sections 11, 12. If the cover assembly 15 is sectioned in this way, the cover assembly 15 may open and close along with the body 10 of the gripping apparatus 100. The sections of the cover assembly 15 form a hole whose center generally coincides with the center of the body 10. The cover assembly 15 has holes 5 which extend therethrough to mate with holes 7 through the body 10. One or more connecting members such as pins 6 are placed through the holes 5 and the holes 7 to rotationally and axially fix the cover assembly 15 relative to the body 10.



FIG. 3 shows one section of the cover assembly 15 of the gripping apparatus 100 of FIG. 2. For each section of the cover assembly 15, there is at least one guide 80. Preferably, the gripping apparatus 100 has three guides 80 radially spaced substantially equally apart along the center of the cover assembly 15. Preferably, the guides 80 are attached below the top of the cover assembly 15.



FIGS. 3 and 4 depict the guides 80, which preferably comprise rollers 84 and are oriented at least substantially vertically with respect to the cover assembly 15 and generally parallel to the axis of the wellbore 180 (as shown in FIG. 1), so that their rolling motion is generally parallel to the diameter of the cover assembly 15. A connecting member such as a pin 86 extends from each of the rollers 84 so that each end of the pin 86 resides within a clevis 82 disposed therearound.


Preferably, the guides 80 are adjustable radially inward and outward from the cover assembly 15 to accommodate various casing string 210, 130 sizes. To this end, the clevis 82 may include a shaft 88 insertable into a mounting device 90 for attachment to the cover assembly 15. The shaft 88 may be adjustable within the mounting device 90 to radially extend or contract the rollers 80 with respect to the mounting device 90 so that the gripping apparatus 100 is useable with various casing string sizes (diameters). The shaft 88 may be adjusted to extend or retract the rollers 84 manually, hydraulically, by a fluid-operated piston/cylinder assembly, by means of a solenoid arrangement, or any other suitable mechanism. Further, such adjustment mechanism may be integrated with a fluidic or electric control system to facilitate remote control and position monitoring. The guides 80 may be adjusted radially inward or outward so that each guide is the same distance from the cover assembly 15. In the alternative, if the three guides 80 are used (or at least multiple guides 80), the guides 80 may be adjusted radially inward or outward so that one of the guides 80 is at a distance from the cover assembly 15 greater than the distance between the two remaining guides 80 and the cover assembly 15. The guides 80 may be adjusted to exist at different distances from the cover assembly 15, for example, to accommodate a casing string which is to be inserted into the gripping apparatus 100 which is not in line with the central axis of the gripping apparatus 100.


In another aspect of the present invention, the guides 80 may be adjustable between the vertical position with respect to the cover assembly 15, as shown in FIGS. 2-4, and the horizontal position with respect to the cover assembly 15 wherein the rolling motion of the rollers is along the length of an inserted casing string 210, 130. A pivoting mechanism may connect the shaft 88 to the spider 100 so that the rollers 84 along with the shaft 88 are pivotable between the vertical position and the horizontal position with respect to the gripping apparatus 100, according to the operation which is conducted. The rollers 84 may also be pivoted to a position in between the vertical and the horizontal position, so that the rollers 84 are at an angle with respect to the gripping apparatus 100. The angled position may be desirable while rotating the casing string 210, 130 while simultaneously lowering the casing string 210, 130 within the gripping apparatus 100 so that the rollers 84 accommodate the movement of the casing string 210, 130 and roll more easily along the outer diameter of the casing string 210, 130.


In operation, the spider 100 is flush mounted in the rotary table 145, as shown in FIG. 1. The orientation of the guides 80 is adjusted to accommodate the incoming first casing string 210 axially and rotationally. For example, if the operation performed involves merely lowering the first casing string 210 into the wellbore 180 without drilling, the rollers 84 may be oriented horizontally with the axis of the rollers 84 being perpendicular to the axis of the wellbore 180 so that their rolling motion is along the length of the casing string 210 as it is inserted into the wellbore 180. Orienting the rollers 84 horizontally permits axial longitudinal movement of the first casing string 210 within the wellbore 180, while essentially preventing rotational movement of the first casing string 210 within the wellbore 180. In the alternative, if the operation performed involves drilling with the first casing string 210, the guides 80 may be oriented vertically with the axis of the rollers 84 parallel to the axis of the wellbore 180 so that their rolling motion is along the diameter of the first casing string 210 as it is rotated. Rollers 84 oriented in this fashion permit the first casing string 210 to rotate within the wellbore 180 while the first casing string 210 is simultaneously being lowered into the wellbore 180. Both positions of the rollers 84 facilitate movement of the first casing string 210 within the body 10 and aid in centering the first casing string 210 within the gripping assembly 100. The rollers 84 may also be oriented to exist between the horizontal and vertical position.


The rollers 84 may also be adjusted radially outward or inward from the gripping apparatus 100 to accommodate the diameter of the first casing string 210. The shaft 88 of the clevis 82 moves through the mounting device 90 to adjust the rollers 84 radially. The shaft 88 may be moved through the mounting device 90 manually or by fluid pressure contacting an end of the shaft 88 opposite the clevis 82.


After any adjustments to the gripping apparatus 100 are accomplished, the first casing string 210 may be retrieved from its original location, such as a rack (not shown), and if necessary through a v-door (not shown) of the drilling rig 105 by the elevator 200. The elevator 200 comprises a clamp (not shown) with one or more gripping members such as slips (not shown) which grippingly engage the first casing string 210, preferably below a coupling (not shown) threaded onto the upper portion of the first casing string 210. It is contemplated that the first casing string 210 may alternatively be grippingly engaged at any other location on the first casing string 210 than the coupling. The first casing string 210 may comprise one section of casing or may comprise any number of casing sections connected, preferably threaded together.


After the first casing string 210 is connected to a lower end of the top drive 110, the first casing string 210 is lowered into the wellbore 180 while simultaneously rotating. The first casing string 210, which preferably has an earth removal member such as a cutting structure (not shown) (preferably a drill bit) disposed at its lower end to drill the wellbore 180, is lowered into the wellbore 180 by cables 150 traveling through the draw works 120. Because the gripping members 20 are initially unactuated and in a retracted position within the bowl 25, the first casing string 210 is allowed to move downward through the spider 100. At the same time that the first casing string 210 is moving downward, the first casing string 210 may be rotated by the motor 140 of the top drive 110 so that the cutting structure located at the lower end of the first casing string 210 drills into a formation 215 below the drilling rig 105 to form the wellbore 180. While the first casing string 210 is rotating, the draw works 120, cables 150, traveling block 115, top drive 110, and elevator 200 resist the torque imparted by the top drive 110, and therefore are rotationally fixed. As the first casing string 210 is drilled into the formation 215 by the top drive 110, the gripping members 20 of the spider 100 remain unactuated so that they do not engage the outer diameter of the first casing string 210. As such, the first casing string 210 is allowed to move downward to form the wellbore 180. Furthermore, because the rollers 84 are previously oriented vertically, the first casing string 210 is allowed to rotate with respect to the wellbore 180 as well as with respect to the body 10 of the spider 100, so that a drilling with casing operation may be performed through the spider 100.


After the first casing string 210 is drilled into the formation 215 to the desired depth so that an upper portion of the first casing string 210 still exists above the rig floor 135, the spider 100 is activated so that the gripping members 20 engage the upper portion of the first casing string 210 and prevent the first casing string 210 from further downward movement into the wellbore 180. The gripping members 20 are activated to move along the incline of the bowl 25 to grip the first casing string 210. The gripping members 20 may be urged along the incline of the bowl 25 by a piston and cylinder assembly, as shown in co-pending U.S. application Ser. No. 10/207,542, filed Jul. 29, 2002 (incorporated by reference above), or, in the alternative, may be moved along the incline by the weight of the first casing string 210 upon the gripping members 20. In either instance, the incline of the bowl 25 causes the gripping members 20 to move radially toward the outer diameter of the first casing string 210 to contact the first casing string 210 and hinder further downward movement of the first casing string 210 within the wellbore 180.


After the spider 100 stops the first casing string 210 from further downward movement within the wellbore 180, the top drive 110 and elevator 200 are disengaged from the first casing string 210. The elevator 200 retrieves a second casing string 130 from its original location, such as from the rack (not shown), and connects the second casing string 130 to the top drive 110. The second casing string 130 is lowered toward the wellbore 180 substantially in line with the first casing string 210 with respect to well center to mate with the first casing string 210. Then a makeup operation is performed, and the top drive 110 may be activated so that the motor 140 rotates the second casing string 130 to threadedly connect the second casing string 130 to the first casing string 210.


The spider 100 is then unactuated again to release the gripping members 20 from the first casing string 210. Releasing the gripping members 20 causes the gripping members 20 to move radially away from the first casing string 210. The gripping members 20 may be released by actuating the piston and cylinder assembly according to the above-mentioned co-pending application. In the alternative, the gripping members 20 may be released by pulling up on the casing 130, by using an elevator for example.


Because the first casing string 210 and the second casing string 130 are now threadedly connected to one another, the elevator 200 and connection to the top drive 110 hold the entire casing string 210, 130 above the wellbore 180. The top drive 110 may again impart rotation to the casing string 210, 130 while the casing string 210, 130 is simultaneously lowered, so that the drill bit (not shown) at the lower end of the first casing string 210 drills to a second depth within the formation 215. The rollers 84 are adjusted radially outward or inward to accommodate the diameter of the second casing string 140 when the second casing string 140 reaches the spider 100. The process as described above is then repeated until the desired number of casing strings is disposed within the wellbore 180 to reach the desired depth within the formation 215.


The above description of embodiments of the present invention contemplates the spider 100 being flush mounted within the rig floor 135. Alternative embodiments include the spider 100 being mounted or located above or on the rig floor 135, as with conventional spiders, or mounted or located below the rig floor 135.


Moreover, above-described embodiments include rotating the entire casing string while drilling the casing into the formation. Other embodiments of the present invention involve rotating only a portion of the casing string, for example the earth removal member (preferably a drill bit) by a mud motor or other torque-conveying device. Yet further embodiments of the present invention involve merely lowering the casing string into the formation to form a wellbore while circulating drilling fluid out from the casing string (“jetting”) without rotation of any portion of the casing string. Any combination of rotation of the casing string, rotation of a portion of the casing string, and/or jetting may be utilized in embodiments of the present invention.


Although the above discussion of embodiments of the present invention describes the spider 100 in terms of drilling with casing, the spider 100 may also be used in casing handling operations to support any type of tubular body during any wellbore operation. Specifically, the spider 100 may be utilized to support a tubular when making up and/or breaking out threadable connections between tubulars and/or lowering tubulars into the wellbore. Tubulars usable with the spider 100 of the present invention include but are not limited to drill pipe, liner, tubing, and slotted tubulars. Additionally, the spider 100 described above may be used for running casing into a previously-formed wellbore, drilling with casing, running one or more tubulars into the wellbore, forming a tubular string (e.g., by threadedly connecting tubulars), and/or connecting casing sections (preferably by threadable connection) to one another.


While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1. An apparatus for supporting a tubular in a wellbore, comprising: a housing having a bore extending therethrough, the bore adapted to receive the tubular; andone or more guide members attached to the housing to facilitate rotational movement of the tubular within the wellbore, wherein the one or more guide members are radially movable into engagement with the tubular.
  • 2. The apparatus of claim 1, wherein the one or more guide members are positioned in a manner capable of centering the tubular in the bore.
  • 3. The apparatus of claim 1, wherein the one or more guide members are disposed at or below a rig floor.
  • 4. The apparatus of claim 1, wherein the one or more guide members are oriented radially inward toward the tubular with respect to the housing.
  • 5. The apparatus of claim 1, wherein the one or more guide members facilitate axial movement of the tubular within the wellbore.
  • 6. The apparatus of claim 1, wherein the one or more guide members comprise: a clevis having a shaft at one end;a pin for coupling a roller to the clevis; anda mounting assembly, wherein the shaft is adjustable within the mounting assembly.
  • 7. The apparatus of claim 6, wherein the shaft is adjustable within the mounting assembly by fluid pressure.
  • 8. The apparatus of claim 6, wherein the clevis is disposed parallel to the rotational axis of the tubular.
  • 9. The apparatus of claim 1, wherein the one or more guide members are rollable along the outer diameter of the tubular.
  • 10. The apparatus of claim 1, wherein an axis of the one or more guide members is substantially parallel to an axis of the housing.
  • 11. The apparatus of claim 1, wherein an axis of the one or more guide members is substantially parallel to an axis of the tubular.
  • 12. The apparatus of claim 1, wherein the one or more guide members are adjustable from a first position wherein an axis of the one or more guide members is substantially parallel to an axis of the tubular to a second position wherein the axis of the one or more guide members is not substantially parallel to the axis of the tubular.
  • 13. The apparatus of claim 1, wherein the apparatus includes at least two guide members and an axis of each of the at least two guide members is approximately equidistant from an axis of the housing.
  • 14. The apparatus of claim 1, wherein the tubular is casing.
  • 15. The apparatus of claim 1, wherein the one or more guide members comprise one or more rollers.
  • 16. The apparatus of claim 1, wherein the one or more guide members are adjustable to accommodate tubulars of different sizes.
  • 17. The apparatus of claim 1, wherein the one or more guide members are disposed within the wellbore.
  • 18. The apparatus of claim 1, wherein the apparatus comprises a spider.
  • 19. The apparatus of claim 1, wherein the one or more guide members are disposed within the housing.
  • 20. The apparatus of claim 19, wherein a rotational axis of the one or more guide members is substantially parallel to a central axis of the bore.
  • 21. The apparatus of claim 19, wherein a rotational axis of the one or more guide members is substantially parallel to a longitudinal axis of the tubular.
  • 22. The apparatus of claim 1, wherein the one or more guide members are adjustable from a first position for facilitating rotational movement of the tubular to a second position for facilitating reciprocal movement of the tubular.
  • 23. A method of forming a wellbore using a casing having an earth removal member, comprising: providing a tubular handling apparatus having an opening for receiving the casing and one or more guide members for engaging the casing;adjusting the one or more guide members radially into engagement with the casing; androtating the casing with respect to the opening to form the wellbore.
  • 24. The method of claim 23 comprises moving the casing axially with respect to the opening.
  • 25. The method of claim 23, wherein adjusting the one or more guide members radially comprises adjusting an axis of the one or more guide members radially to accommodate misalignment between an axis of the casing and an axis of the opening.
  • 26. The method of claim 23, further comprising providing the tubular handling apparatus with one or more gripping members.
  • 27. The method of claim 26, further comprising: drilling the casing to a desired depth; andactivating the one or more gripping members to inhibit axial movement of the casing.
  • 28. The method of claim 23, further comprising positioning the one or more guide members at or below a rig floor.
  • 29. The method of claim 23, wherein adjusting the one or more guide members further comprises pivoting the one or more guide members from a position wherein the axis of the one or more guide members is parallel to the axis of the casing to a position wherein the axis of the one or more guide members is not parallel to the axis of the casing.
  • 30. The method of claim 23, wherein the one or more guide members comprise one or more rollers.
  • 31. The method of claim 23, wherein adjusting the one or more guide members further comprises pivoting the one or more guide members from a position for facilitating reciprocation of the casing to a position for facilitating rotation of the casing.
  • 32. An apparatus for supporting a tubular in a wellbore, comprising: a housing having a bore extending therethrough, the bore adapted to receive the tubular; andone or more rolling members attached to the housing to facilitate movement of the tubular within the wellbore, wherein the one or more rolling members are disposed at or below a rig floor and are radially movable into engagement with the tubular.
  • 33. The apparatus of claim 32, wherein the one or more rolling members are oriented radially inward toward the tubular with respect to the housing.
  • 34. The apparatus of claim 32, wherein the one or more rolling members are adjustable from a first position wherein an axis of the one or more rolling members is substantially parallel to an axis of the tubular to a second position wherein the axis of the one or more rolling members is not substantially parallel to the axis of the tubular.
  • 35. The apparatus of claim 32, wherein the apparatus includes at least two rolling members and an axis of each of the at least two rolling members is approximately equidistant from an axis of the housing.
  • 36. The apparatus of claim 32, wherein the tubular is casing.
  • 37. The apparatus for claim 32, wherein the one or more rolling members are disposed within the wellbore.
  • 38. The apparatus of claim 32, wherein the one or more rolling members are adjustable to accommodate tubulars of different sizes.
  • 39. An apparatus for supporting a tubular in a wellbore, comprising: a housing having a bore extending therethrough, the bore adapted to receive the tubular; andone or more guide members attached to the housing to facilitate movement of the tubular within the wellbore, wherein the one or more guide members are radially movable into engagement with the tubular and wherein the one or more guide members include: a clevis having a shaft at one end;a pin for coupling a roller to the clevis; anda mounting assembly, wherein the shaft is adjustable within the mounting assembly.
  • 40. The apparatus of claim 39, wherein the shaft is adjustable within the mounting assembly by fluid pressure.
  • 41. The apparatus of claim 39, wherein the clevis is disposed parallel to the rotational axis of the tubular.
  • 42. An apparatus for supporting a tubular in a wellbore, comprising: a housing having a bore extending therethrough, the bore adapted to receive the tubular; andone or more guide members disposed within the housing to facilitate movement of the tubular within the wellbore, wherein the one or more guide members are radially movable into engagement with the tubular and wherein the one or more guide members are adjustable from a first position wherein an axis of the one or more guide members is substantially parallel to an axis of the tubular to a second position wherein the axis of the one or more guide members is not substantially parallel to the axis of the tubular.
  • 43. The apparatus of claim 42, wherein the one or more guide members are oriented radially inward toward the tubular with respect to the housing.
  • 44. The apparatus of claim 42, wherein the one or more guide members are rollable along the outer diameter of the tubular.
  • 45. The apparatus of claim 42, wherein a rotational axis of the one or more guide members is substantially parallel to a rotational axis of the tubular.
  • 46. The apparatus of claim 42, wherein the apparatus includes at least two guide members and an axis of each of the at least two guide members is approximately equidistant from an axis of the housing.
  • 47. The apparatus of claim 42, wherein the tubular is casing.
  • 48. The apparatus of claim 42, wherein the one or more guide members comprise one or more rollers.
  • 49. The apparatus of claim 42, wherein the one or more guide members are adjustable to accommodate tubulars of different sizes.
  • 50. The apparatus of claim 42, wherein the one or more guide members are disposed within the wellbore.
  • 51. A method of forming a wellbore using a casing having an earth removal member, comprising: providing a tubular handling apparatus having an opening for receiving the casing and one or more rolling members for engaging the casing, wherein the one or more rolling members are positioned at or below a rig floor;adjusting the one or more rolling members radially into engagement with the casing; andmoving the casing with respect to the opening to form the wellbore.
  • 52. The method of claim 51, wherein moving the casing comprises moving the casing axially with respect to the opening.
  • 53. The method of claim 51, wherein moving the casing comprises rotating the casing in the wellbore.
  • 54. The method of claim 51, wherein adjusting the one or more rolling members radially comprises adjusting an axis of the one or more rolling members radially to accommodate misalignment between an axis of the casing and an axis of the opening.
  • 55. The method of claim 51, further comprising: drilling the casing to a desired depth; andactivating the one or more gripping members to inhibit axial movement of the casing.
  • 56. The method of claim 51, further comprising positioning the one or more rolling members at or below a rig floor.
  • 57. The method of claim 51, wherein adjusting the one or more rolling members further comprises pivoting the one or more rolling members from a position wherein the axis of the one or more rolling members is parallel to the axis of the casing to a position wherein the axis of the one or more rolling members is not parallel to the axis of the casing.
  • 58. The method of claim 51, further comprising providing the tubular handling apparatus with one or more gripping members.
  • 59. The method of claim 58, wherein the tubular handling apparatus comprises a spider.
  • 60. The method of claim 51, wherein the one or more rolling members comprise one or more rollers.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 10/794,800, filed Mar. 5, 2004 now U.S. Pat. No. 6,994,176, which is a continuation-in-part of U.S. patent application Ser. No. 10/207,542 filed Jul. 29, 2002 now U.S. Pat. No. 6,892,835, which is herein incorporated by reference in its entirety. This application also claims benefit of U.S. Provisional Patent Application Ser. No. 60/452,154, filed on Mar. 5, 2003, which is incorporated herein by reference in its entirety.

US Referenced Citations (287)
Number Name Date Kind
179973 Thornton Jul 1876 A
1418766 Wilson Jun 1922 A
1585069 Youle May 1926 A
1728136 Power Sep 1929 A
1777592 Thomas Oct 1930 A
1805007 Pedley May 1931 A
1825026 Thomas Sep 1931 A
1842638 Wigle Jan 1932 A
1917135 Littell Jul 1933 A
2105885 Hinderliter Jan 1938 A
2128430 Pryor Aug 1938 A
2167338 Murcell Jul 1939 A
2184681 Osmun et al. Dec 1939 A
2214429 Miller Sep 1940 A
2414719 Cloud Jan 1947 A
2522444 Grable Sep 1950 A
2536458 Munsinger Jan 1951 A
2570080 Stone Oct 1951 A
2610690 Beatty Sep 1952 A
2641444 Moon Jun 1953 A
2668689 Cormany Feb 1954 A
2692059 Bolling, Jr. Oct 1954 A
2953406 Young Sep 1960 A
2965177 Bus, Sr. et al. Dec 1960 A
3041901 Knights Jul 1962 A
3087546 Wooley Apr 1963 A
3122811 Gilreath Mar 1964 A
3193116 Kenneday et al. Jul 1965 A
3266582 Homanick Aug 1966 A
3380528 Timmons Apr 1968 A
3392609 Bartos Jul 1968 A
3477527 Koot Nov 1969 A
3489220 Kinley Jan 1970 A
3518903 Ham et al. Jul 1970 A
3548936 Kilgore et al. Dec 1970 A
3552507 Brown Jan 1971 A
3552508 Brown Jan 1971 A
3552509 Brown Jan 1971 A
3552510 Brown Jan 1971 A
3566505 Martin Mar 1971 A
3570598 Johnson Mar 1971 A
3602302 Kluth Aug 1971 A
3606664 Weiner Sep 1971 A
3635105 Dickmann et al. Jan 1972 A
3638989 Sandquist Feb 1972 A
3662842 Bromell May 1972 A
3680412 Mayer et al. Aug 1972 A
3691825 Dyer Sep 1972 A
3700048 Desmoulins Oct 1972 A
3706347 Brown Dec 1972 A
3746330 Taciuk Jul 1973 A
3747675 Brown Jul 1973 A
3766991 Brown Oct 1973 A
3776320 Brown Dec 1973 A
3780883 Brown Dec 1973 A
3808916 Porter et al. May 1974 A
3838613 Wilms Oct 1974 A
3840128 Swoboda, Jr. et al. Oct 1974 A
3848684 West Nov 1974 A
3857450 Guier Dec 1974 A
3871618 Funk Mar 1975 A
3881375 Kelly May 1975 A
3885679 Swoboda, Jr. et al. May 1975 A
3901331 Djurovic Aug 1975 A
3913687 Gyongyosi et al. Oct 1975 A
3915244 Brown Oct 1975 A
3964552 Slator Jun 1976 A
3980143 Swartz et al. Sep 1976 A
4054332 Bryan, Jr. Oct 1977 A
4077525 Callegari et al. Mar 1978 A
4100968 Delano Jul 1978 A
4127927 Hauk et al. Dec 1978 A
4142739 Billingsley Mar 1979 A
4202225 Sheldon et al. May 1980 A
4221269 Hudson Sep 1980 A
4257442 Claycomb Mar 1981 A
4262693 Giebeler Apr 1981 A
4274777 Scaggs Jun 1981 A
4274778 Putnam et al. Jun 1981 A
4280380 Eshghy Jul 1981 A
4315553 Stallings Feb 1982 A
4320915 Abbott et al. Mar 1982 A
4437363 Haynes Mar 1984 A
4440220 McArthur Apr 1984 A
4446745 Stone et al. May 1984 A
4449596 Boyadjieff May 1984 A
4472002 Beney et al. Sep 1984 A
4489794 Boyadjieff Dec 1984 A
4492134 Reinhldt et al. Jan 1985 A
4494424 Bates Jan 1985 A
4515045 Gnatchenko et al. May 1985 A
4529045 Boyadjieff et al. Jul 1985 A
4570706 Pugnet Feb 1986 A
4592125 Skene Jun 1986 A
4593584 Neves Jun 1986 A
4593773 Skeie Jun 1986 A
4604724 Shaginian et al. Aug 1986 A
4604818 Inoue Aug 1986 A
4605077 Boyadjieff Aug 1986 A
4613161 Brisco Sep 1986 A
4625796 Boyadjieff Dec 1986 A
4646827 Cobb Mar 1987 A
4649777 Buck Mar 1987 A
4652195 McArthur Mar 1987 A
4667752 Berry et al. May 1987 A
4676312 Mosing et al. Jun 1987 A
4681158 Pennison Jul 1987 A
4681162 Boyd Jul 1987 A
4683962 True Aug 1987 A
4686873 Lang et al. Aug 1987 A
4709599 Buck Dec 1987 A
4709766 Boyadjieff Dec 1987 A
4725179 Woolslayer et al. Feb 1988 A
4735270 Fenyvesi Apr 1988 A
4738145 Vincent et al. Apr 1988 A
4742876 Barthelemy et al. May 1988 A
4759239 Hamilton et al. Jul 1988 A
4762187 Haney Aug 1988 A
4765401 Boyadjieff Aug 1988 A
4765416 Bjerking et al. Aug 1988 A
4773689 Wolters Sep 1988 A
4781359 Matus Nov 1988 A
4791997 Krasnov Dec 1988 A
4793422 Krasnov Dec 1988 A
4800968 Shaw et al. Jan 1989 A
4813493 Shaw et al. Mar 1989 A
4813495 Leach Mar 1989 A
4821814 Willis et al. Apr 1989 A
4832552 Skelly May 1989 A
4836064 Slator Jun 1989 A
4843945 Dinsdale Jul 1989 A
4867236 Haney et al. Sep 1989 A
4878546 Shaw et al. Nov 1989 A
4899816 Mine Feb 1990 A
4909741 Schasteen et al. Mar 1990 A
4921386 McArthur May 1990 A
4936382 Thomas Jun 1990 A
4962579 Moyer et al. Oct 1990 A
4962819 Bailey et al. Oct 1990 A
4971146 Terrell Nov 1990 A
4997042 Jordan et al. Mar 1991 A
5022472 Bailey et al. Jun 1991 A
5036927 Willis Aug 1991 A
5049020 McArthur Sep 1991 A
5060542 Hauk Oct 1991 A
5062756 McArthur et al. Nov 1991 A
5081888 Schulze-Beckinghausen Jan 1992 A
5107940 Berry Apr 1992 A
5111893 Kvello-Aune May 1992 A
RE34063 Vincent et al. Sep 1992 E
5161438 Pietras Nov 1992 A
5191939 Stokley Mar 1993 A
5233742 Gray et al. Aug 1993 A
5244046 Council et al. Sep 1993 A
5245265 Clay Sep 1993 A
5251709 Richardson Oct 1993 A
5255751 Stogner Oct 1993 A
5272925 Henneuse et al. Dec 1993 A
5282653 LaFleur et al. Feb 1994 A
5284210 Helms et al. Feb 1994 A
5294228 Willis et al. Mar 1994 A
5297833 Willis et al. Mar 1994 A
5305839 Kalsi et al. Apr 1994 A
5332043 Ferguson Jul 1994 A
5340182 Busink et al. Aug 1994 A
5351767 Stogner et al. Oct 1994 A
5354150 Canales Oct 1994 A
5368113 Schulze-Beckinghausen Nov 1994 A
5386746 Hauk Feb 1995 A
5388651 Berry Feb 1995 A
5433279 Tessari et al. Jul 1995 A
5461905 Penisson Oct 1995 A
5497840 Hudson Mar 1996 A
5501280 Brisco Mar 1996 A
5501286 Berry Mar 1996 A
5503234 Clanton Apr 1996 A
5535824 Hudson Jul 1996 A
5575344 Wireman Nov 1996 A
5577566 Albright et al. Nov 1996 A
5584343 Coone Dec 1996 A
5588916 Moore Dec 1996 A
5645131 Trevisani Jul 1997 A
5661888 Hanslik Sep 1997 A
5667026 Lorenz et al. Sep 1997 A
5706894 Hawkins, III Jan 1998 A
5711382 Hansen et al. Jan 1998 A
5735348 Hawkins, III Apr 1998 A
5735351 Helms Apr 1998 A
5746276 Stuart May 1998 A
5765638 Taylor Jun 1998 A
5772514 Moore Jun 1998 A
5785132 Richardson et al. Jul 1998 A
5791410 Castille et al. Aug 1998 A
5803191 Mackintosh Sep 1998 A
5823258 Goldner Oct 1998 A
5833002 Holcombe Nov 1998 A
5836395 Budde Nov 1998 A
5839330 Stokka Nov 1998 A
5842530 Smith et al. Dec 1998 A
5850877 Albright et al. Dec 1998 A
5890549 Sprehe Apr 1999 A
5909768 Castille et al. Jun 1999 A
5931231 Mock Aug 1999 A
5960881 Allamon et al. Oct 1999 A
5971079 Mullins Oct 1999 A
5971086 Bee et al. Oct 1999 A
6000472 Albright et al. Dec 1999 A
6012529 Mikolajczyk et al. Jan 2000 A
6056060 Abrahamsen et al. May 2000 A
6065550 Gardes May 2000 A
6070500 Dlask et al. Jun 2000 A
6079509 Bee et al. Jun 2000 A
6119772 Pruet Sep 2000 A
6142545 Penman et al. Nov 2000 A
6161617 Gjedebo Dec 2000 A
6170573 Brunet et al. Jan 2001 B1
6173777 Mullins Jan 2001 B1
6199641 Downie et al. Mar 2001 B1
6202764 Ables et al. Mar 2001 B1
6217258 Yamamoto et al. Apr 2001 B1
6227587 Terral May 2001 B1
6237684 Bouligny, Jr. et al. May 2001 B1
6276450 Seneviratne Aug 2001 B1
6279654 Mosing et al. Aug 2001 B1
6309002 Bouligny Oct 2001 B1
6311792 Scott et al. Nov 2001 B1
6315051 Ayling Nov 2001 B1
6334376 Torres Jan 2002 B1
6349764 Adams et al. Feb 2002 B1
6360633 Pietras Mar 2002 B2
6378630 Ritorto et al. Apr 2002 B1
6390190 Mullins May 2002 B2
6394186 Whitelaw et al. May 2002 B1
6412554 Allen et al. Jul 2002 B1
6431626 Bouligny Aug 2002 B1
6443241 Juhasz et al. Sep 2002 B1
6527047 Pietras Mar 2003 B1
6527493 Kamphorst et al. Mar 2003 B1
6536520 Snider et al. Mar 2003 B1
6553825 Boyd Apr 2003 B1
6591471 Hollingsworth et al. Jul 2003 B1
6595288 Mosing et al. Jul 2003 B2
6615921 Whitelaw et al. Sep 2003 B2
6622796 Pietras Sep 2003 B1
6637526 Juhasz et al. Oct 2003 B2
6651737 Bouligny Nov 2003 B2
6668684 Allen et al. Dec 2003 B2
6679333 York et al. Jan 2004 B2
6688394 Ayling Feb 2004 B1
6688398 Pietras Feb 2004 B2
6691801 Juhasz et al. Feb 2004 B2
6705405 Pietras Mar 2004 B1
6725938 Pietras Apr 2004 B1
6732822 Slack et al. May 2004 B2
6742584 Appleton Jun 2004 B1
6742596 Haugen Jun 2004 B2
6832656 Cameron Dec 2004 B2
6832658 Keast Dec 2004 B2
6840322 Haynes Jan 2005 B2
6892835 Shahin et al. May 2005 B2
6907934 Kauffman et al. Jun 2005 B2
6976298 Pietras Dec 2005 B1
6994176 Shahin et al. Feb 2006 B2
7096977 Juhasz et al. Aug 2006 B2
7100698 Kracik et al. Sep 2006 B2
7121349 Jennings Oct 2006 B2
7128161 Pietras Oct 2006 B2
20010042625 Appleton Nov 2001 A1
20020029878 Victor Mar 2002 A1
20020108748 Keyes Aug 2002 A1
20020170720 Haugen Nov 2002 A1
20030155159 Slack et al. Aug 2003 A1
20030164276 Snider et al. Sep 2003 A1
20030173073 Snider et al. Sep 2003 A1
20030221519 Haugen et al. Dec 2003 A1
20040003490 Shahin et al. Jan 2004 A1
20040069500 Haugen Apr 2004 A1
20040144547 Koithan et al. Jul 2004 A1
20040173358 Haugen Sep 2004 A1
20040216924 Pietras et al. Nov 2004 A1
20040251050 Shahin et al. Dec 2004 A1
20040251055 Shahin et al. Dec 2004 A1
20050000691 Giroux et al. Jan 2005 A1
20050051343 Pietras et al. Mar 2005 A1
20050096846 Koithan et al. May 2005 A1
20050098352 Beierbach et al. May 2005 A1
20060000600 Pietras Jan 2006 A1
Foreign Referenced Citations (22)
Number Date Country
2 307 386 Nov 2000 CA
0 162 000 Nov 1985 EP
0 171 144 Feb 1986 EP
0 285 366 Oct 1988 EP
0 474 481 Mar 1992 EP
0 479 583 Apr 1992 EP
0 525 247 Feb 1993 EP
0 589 823 Mar 1994 EP
1 469 661 Apr 1977 GB
2 053 088 Feb 1981 GB
2 201 912 Sep 1988 GB
2 224 481 Sep 1990 GB
2 345 074 Jun 2000 GB
2 357 530 Jun 2001 GB
2001-173349 Jun 2001 JP
WO 98-32948 Jul 1998 WO
WO 99-11902 Mar 1999 WO
WO 99-58810 Nov 1999 WO
WO 00-09853 Feb 2000 WO
WO 00-11309 Mar 2000 WO
WO 0133033 May 2001 WO
WO 2004011765 Feb 2004 WO
Related Publications (1)
Number Date Country
20060124357 A1 Jun 2006 US
Provisional Applications (1)
Number Date Country
60452154 Mar 2003 US
Continuations (1)
Number Date Country
Parent 10794800 Mar 2004 US
Child 11345066 US
Continuation in Parts (1)
Number Date Country
Parent 10207542 Jul 2002 US
Child 10794800 US