The invention relates generally to cabinet racks. More particularly, the invention relates to adjustable side rails and a method of attaching adjustable side rails to the mounting rails of cabinet racks.
Electronic equipment is often housed in a metal framework called an equipment rack. Usually, an equipment rack contains multiple bays. Each bay holds a unit of equipment, such as a server or a switch. Racks are generally available in standard sizes. Common sizes include 19″ racks and 23″ racks. These dimensions correspond to the width of the rack; the height and depth of the racks can vary. Typically, each equipment unit occupies one of the bays and is secured to the rack with screws. To install a unit of equipment in a four-post rack, for example, a side rail is secured to each side of the unit of equipment. This equipment assembly is then attached to the front and back vertical structural members of the rack, herein referred to as mounting rails.
Constructing and then installing the equipment assembly can be an onerous, time-consuming task. Because the depths of the racks can vary from customer to customer, an installer typically determines the length of each side rail at the time of installing the equipment unit into the cabinet rack. Accordingly, the installer measures the distance between the front mounting rail and the back mounting rail and then constructs two side rails. Each side rail is made of two separate rail portions. The installer overlaps these rail portions and joins them to produce a unitary side rail having the measured length.
The installer then attaches the two side rails to the sides of the equipment unit and proceeds to install the equipment assembly into the cabinet. At this point, the installer learns whether there has been any error in measuring the distance between the front and back mounting rails or in the constructing of the side rails. If so, the side rails need to be removed from the sides of the equipment unit and reconstructed to the appropriate length.
Provided the side rails are of the proper length, installing the equipment assembly often requires the assistance of a second installer, because one installer alone cannot easily hold and secure the equipment assembly to the cabinet rack. Often, one installer is needed to support the equipment assembly, while the other fastens the side rails to the rear mounting rails and then to the front mounting rails with screws. There is, therefore, a need for a system and method of installing units of equipment into cabinet racks that avoids the aforementioned problems.
In one aspect, the invention features an adjustable side rail, comprising a first elongate rail portion having top edge and a bottom edge, and a second elongate rail portion having spatially separated opposing upper and lower grooves. Each groove slidingly receives one of the top and bottom edges of the first elongate rail portion when the first elongate rail portion engages the second elongate rail portion. A tab projects from one end of one of the first and second elongate rail portions. The tab has a side edge with a notch formed therein for catching an edge of a hole in a mounting rail into which the tab is inserted and for anchoring the one end of that elongate rail portion to the mounting rail while a length of the side rail is adjusted.
In another aspect, the invention features a method of installing a unit of equipment in a cabinet rack. A tab extending from one end of an adjustable side rail is inserted into a hole of a first mounting rail at one end of the cabinet rack. The tab is positioned within the hole such that an edge of the tab catches a surface adjacent to the hole to anchor the one end of the adjustable side rail to the first mounting rail by preventing the tab from being horizontally retracted from the hole. The adjustable side rail, anchored to the first mounting rail, toward a second mounting rail at another end of the cabinet rack to adjust a length of the adjustable side rail to fit between the mounting rails.
In another aspect, the invention features a cabinet rack having a pair of adjustable side rails. Each adjustable side rail is coupled to a rear mounting rail and to a front mounting rail. Each adjustable side rail also has a first elongate rail portion, a second elongate rail portion, and a tab projecting from a back end of one of the first and second elongate portions into a hole of the rear mounting rail. The first elongate rail portion has a top edge and a bottom edge. The second elongate rail portion has spatially separated opposing upper and lower grooves. Each groove slidably receives one of the top and bottom edges of the first elongate rail portion. The tab has a side edge with a notch formed therein for catching an edge of the hole in the rear mounting rail into which the tab is inserted and anchoring the back end of that elongate rail portion with the tab to the rear mounting rail while a front end of the other elongate rail portion is coupled to the front mounting rail.
The above and further advantages of this invention may be better understood by referring to the following description in conjunction with the accompanying drawings, in which like numerals indicate like structural elements and features in various figures. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
The present invention facilitates the installation of equipment units, such as servers and switches, into cabinet racks. Using adjustable side rails, equipment rails, and equipment trays of the invention, an installer is able to construct the structural support for the equipment units within a cabinet rack in less time than currently possible with existing technology. Additionally, these rails and trays enable the installer to work alone, without the assistance of a second installer, when installing equipment units, thus reducing the cost of installation.
In brief overview, the adjustable side rails of the invention have at least one tab that projects from an end of the side rail. An installer inserts each tab into a hole of a vertical support member of the cabinet rack. A notch in the tab catches an edge of the hole into which the tab is inserted. This notch anchors one end of the adjustable side rail to the vertical structural member while the installer pulls on or pushes the other end, with a lateral sliding motion, to adjust its length. After the side rail is at the desired length, the installer fastens each end of the side rail to the respective vertical support member. As a result, the installer is able to install the side rails for supporting the equipment units without having to measure precisely the depth of the cabinet rack (or, more specifically, the distance between the front and rear vertical support members).
In one embodiment, equipment rails are attached to the sides of the equipment units. The installer then horizontally inserts the equipment unit into the cabinet rack by sliding together the equipment rails and installed side rails. Because of this generally horizontal sliding motion, the installer does not need to tilt or angle the equipment unit to insert it into the bay. In another embodiment, the adjustable side rails have an integrated shelf member. After installation, the integrated shelf members of opposing side rails define the edges of a shelf onto which the installer can slide or place the equipment unit.
Equipment trays of the invention have integrated (i.e., built-in) equipment rails. These equipment rails enable the installer to slide together the equipment tray and installed side rails. After the equipment tray is in place within the cabinet rack, the installer can slide one or more equipment units onto the equipment tray. The equipment tray may need slight tilting to be inserted into the rack. The equipment tray has an open front end to permit the installer to slide the equipment unit horizontally onto the tray. Optionally, the equipment unit can be loaded in the equipment tray before the equipment tray is placed in the rack.
Each mounting rail 8 includes a plurality of holes 10. The holes 10 are square or round in shape, depending on the type of mounting rail 8. Mounting rail types, for example, include Electronic Industry Association (EIA) Standard rails, which have round holes, and Universal Mounting Rails, which have square holes. The dimensions and tolerances of and spacing between the holes 10 may be defined by the National Electrical Manufacturers Association (NEMA). The EIA-310-D compliant standard, for example, specifies the spacing between holes.
On a front surface of each front mounting rail 8′ are lateral indicators 12. In the embodiment shown, three holes 10 are located between each pair of lateral indicators 12. The distance between each pair of lateral indicators 12 corresponds to one unit (1 U) of vertical rack space. For example, if the dimensions for one unit of vertical rack space is 1.75″, two units or 2 U corresponds to 3.5″ of vertical rack space, three units or 3 U corresponds to 5.25″ of vertical rack space, and four units or 4 U corresponds to 7.00″ of vertical rack space. Equipment to be installed in the cabinet rack 2 is normally specified according to this rack unit dimension. An equipment unit specified as 2 U occupies as much vertical rack space as a two 1 U units of equipment. It is to be understood that the principles of the invention are not limited to cabinet racks with lateral indicators; the invention can be practiced in cabinet racks that do not have lateral indicators.
The cabinet rack 2 also includes a pair of adjustable side rails 14 of the invention. Each side rail 14 is connected to one of the front mounting rails 8′ and to the corresponding rear mounting rail 8″. Generally, the side rails 14 can be sized to support equipment of different rack unit dimensions (1 U, 2 U, etc). The pair of side rails 14 provides a bay into which an equipment unit (not shown) can be horizontally installed. Although only one pair of side rails 14 is shown, it is to be understood that the cabinet rack 2 can have as many pairs of side rails as bays for holding equipment units.
At a back end 24 of the outer rail portion 20, a flange 26 and a tab 28 operate to connect the side rail 14 to a rear mounting rail 8″ of the cabinet rack 2, as described in more detail below. A flange 30 at a front end 32 of the inner rail portion 22 provides a structure by which to secure the side rail 14 to a front mounting rail 8′. Whether installed on the left or on the right side of the cabinet rack 2, the flange 30 extends outwardly (i.e., the flange 30 of the left side rail 14 extends toward the left of the cabinet rack 2, and the flange 30 of the right side rail 14 extends toward the right).
As shown, the inner rail portion 22 is slidably engaged within grooves 44, 44′ (
In one embodiment, the outer rail portion 20 is approximately 18.240 inches in length measured from the end of the tab 28 to the back end 46. The tab 28 extends approximately ½ an inch from the back surface of the flange 26 (i.e., the length of the outer rail portion 20 measured from the back surface of the flange 26 to the back end 46 is 17.740 inches). The width of the outer rail portion 20, measured from the outer edge of the flange 26 to the inner surface of the curved edge 42, is approximately 0.880 inches. The height of the outer rail portion 20, measured from the top surface of the upper edge 42 to the bottom surface of the lower edge 42′, is approximately 1.720 inches.
The flange 26 also includes a pair of holes 66, one hole 66 on each side of the indented central region 60, for receiving a fastener. Fasteners are inserted through holes 10 in the rear mounting rail 8″ into these holes 66 to secure the back surface of the flange 26 to the front surface of a rear mounting rail 8″ of the cabinet rack 2. Threaded nuts 68 (
In one embodiment, the inner rail portion 22 is approximately 23.06 inches in length measured from the front surface of the flange 30 to the back edge of the back end 86. The width of the inner rail portion 22, measured from the outer edge of the flange 30 to the inner surface of the curved edge 82, is approximately 0.805 inches. The height of the inner rail portion 22, which corresponds to the height of the flange 30, is approximately 1.720 inches. The distance between the top surface of the upper edge 82 to the bottom surface of the lower edge 82′ is approximately 1.580 inches.
At the start of the process 100, the inner and outer rail portions 22, 20 are slidably engaged. At step 104, the tab 28 extending from the rear flange 26 is inserted into one of the holes 10 in a rear mounting rail 8″. For a 1 U-sized side rail 14, for example, the tab 28 enters the center hole of the three holes 10 located between an adjacent pair of lateral markings 12. The tab 28 penetrates the hole 10 far enough to enable the notch to anchor the back end of the side rail 14 to the rear mounting rail 8″ while the length of the side rail 14 is slidingly adjusted. More specifically, an edge of the mounting rail hole 10 that receives the tab 28 is wedged between a back edge of the wide region 62 and the back surface of the flange 26. This position prevents the tab 28 from being retracted from the hole 10 when the installer the adjusts (step 108) the length of the side rail 14 by extending the inner rail portion 22. The installer extends the inner rail portion 22 until the front flange 32 is flush with a back surface of the front mounting rail 8′.
At step 112, the installer aligns the holes 90 of the front flange 32 with the holes 10 of the front mounting rail 8 and inserts fasteners through the aligned holes 90, 10 into the tapped nuts 92. Similarly, the installer fastens (step 116) the rear flange 26 to the front surface of the rear mounting rail 8″ by inserting fasteners through the aligned holes 10, 66 to be received by the tapped nuts 68. Steps 104, 108, 112, 116 are repeated to attach a second side rail 14 for supporting an equipment unit in the cabinet rack 2.
In one embodiment, an equipment unit is equipped for installation in the cabinet rack 2 by attaching an equipment rail to each side of the equipment unit. The resulting equipment assembly is then inserted into a bay of the cabinet rack by sliding the equipment rails into the installed side rails 14.
The side rail 14′ includes an elongate outer rail portion 200 and an elongate inner rail portion 202. At a back end 204 of the outer rail portion 200, a flange 206 and a plurality of tabs 208 operate to connect the side rail 14′ to a rear mounting rail 8″ of the cabinet rack 2. A flange 210 at a front end 212 of the inner rail portion 202 provides a structure by which the side rail 14′ is secured to a front mounting rail 8′. When installed in the cabinet rack 2, the flange 210 extends outwardly (i.e., if on the left side, towards the left of the cabinet rack 2; if on the right side, towards the right).
In one embodiment, the inner rail portion 202 is approximately 24.57 inches in length measured from front surface of the flange 210 to the back end 220. The width of the inner rail portion 202, measured from the outer edge of the flange 210 to the inmost edge of the shelf 218, is approximately 1.54 inches; the width of the shelf 218 being approximately 0.94 inches. The height of the inner rail portion 202 is approximately 3.40 inches.
One side 214 of the inner rail portion 202 has a plurality of rectangular openings 216 that permit the passage of air. Also, a shelf 218 extends perpendicularly from a bottom edge of the side 214. The shelf 218 operates to support the equipment unit being installed. The size of the shelf 218 can vary, depending upon the size and weight of the equipment unit to be supported. At a back end 220 of the inner rail portion is a forward-pointing tab 222 that engages a corresponding slot in the rear of the equipment unit. The tab 222 limits the rearward extent to which the equipment unit can slide on the shelf 218.
On the opposite side 214′ of the inner rail portion 202 are a plurality of curved rail guides 230. Each rail guide 230 is located at an edge of a corresponding opening 216, either at a top edge or at a bottom edge of the opening 216. Each rail guide 230 is formed from the material (e.g., metal) that is cut away from the side 214′ and bent upwards (or downwards) to produce the corresponding opening 216. The upper and lower sets of curved rail guides 230 each form a discontinuous groove along a length of the side 214′. The upper groove is spatially separated from the lower groove by a distance that closely corresponds to the height of the outer rail portion 200.
As shown, the outer rail portion 200 is slidably engaged within the upper and lower grooves of the inner rail portion 202. To fit between the front and rear mounting rails 8, the overall length of the side rail 14′ is adjusted by sliding the inner rail portion 202 inwards or outwards with respect to the outer rail portion 200. The inner rail portion 202 can also be separated entirely from the outer rail portion 200.
The flange 206 also includes a pair of holes 266, one on either side of the indented central region 260, for receiving a fastener. Fasteners are inserted through holes 10 in the rear mounting rail 8″ into these holes 266 to secure the back surface of the flange 206 to the front surface of a rear mounting rail 8″. Threaded nuts 268 (
To connect the outer and inner rail portions 200, 202, the front end 270 of the outer rail portion 200 slides into the back end 220 of the inner rail portion 202. More specifically, when the outer and inner rail portions 200, 202 are slidably joined, the curved top and bottom edges 242, 242′ of the outer rail portion 202 slide into the upper and lower discontinuous grooves defined by the curved rail guides 230 of the inner rail portion 202. Also, the inner side 240 of the outer rail portion 200 faces the outer surface 214′ of the inner rail portion 202.
Connecting the adjustable side rail 14′ to the front and rear mounting rails of the cabinet rack 2 is similar to the process 100 described in
This embodiment of the adjustable side rail 14′ enables the installation of an equipment unit in the cabinet rack 2 without the need to attach equipment rails on the sides of the equipment unit.
Each side wall 324 also has a plurality of upper and lower rail guides 334 extending outwardly from a top edge or from a bottom edge of that side wall 324. In one embodiment, each upper rail guide 334 has a horizontal section that extends substantially laterally from the side wall 324, a first angled section that extends generally upwards from the horizontal section, and a second angled section that extends generally upwards from the first angled section to produce a generally upwards facing lip. Each lower rail guide 334 has a horizontal section extending substantially laterally from the side wall 324, a first angled section extending generally downwards from the horizontal section, and a second angled section extending generally downwards from the first angled section to produce a generally downwards facing lip.
In one embodiment, the upwards- and downwards-facing lips of the rail guides 334 are spatially separated and sized to be closely received within the upper and lower grooves 84, 84′ of the inner rail portion 22 of the side rail 14 (
In another embodiment, opposing surfaces of the horizontal sections of the rail guides 334 are spatially separated to closely receive the outer rail portion 200 of the side rail 14′ (
For either type of embodiment, the equipment tray 320 enables the installation of an equipment unit in the cabinet rack 2 without the use of equipment rails on the sides of the equipment. To install an equipment unit in the cabinet rack 2, the installer slides the equipment unit onto the base 322 through the open end 328. For example, the equipment tray 320 can support a pair of power supply modules. A plurality of tabs 336 projects from the base 322 along a line to partition the base 322 into left and right sections. The tabs 336 operate to keep the power supply modules apart. The tabs 336 can be located along a center line to partition the base 322 into equal halves, or disposed at other locations to produce unequally sized base sections.
Each lower rail guide 334′ has a first curved section 350′ that bends downwards away from the side wall 324′, a horizontal section 354′ that extends substantially laterally from the first curved section 350′, a second curved section 358′ that curves generally downwards from the horizontal section 354′, and a third curved section 362′ that extends generally downwards from the second curved section 358′ to produce a generally downwards facing lip 366′.
Although the invention has been shown and described with reference to specific preferred embodiments, it should be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention as defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5571256 | Good et al. | Nov 1996 | A |
6021909 | Tang et al. | Feb 2000 | A |
6578939 | Mayer | Jun 2003 | B1 |
6749275 | Cutler et al. | Jun 2004 | B2 |
6773080 | Chen et al. | Aug 2004 | B2 |
6866154 | Hartman et al. | Mar 2005 | B2 |
6871920 | Greenwald et al. | Mar 2005 | B2 |
6893091 | Fenner | May 2005 | B1 |
6926378 | Greenwald et al. | Aug 2005 | B2 |
6929339 | Greenwald et al. | Aug 2005 | B1 |
20010037985 | Varghese et al. | Nov 2001 | A1 |
20010040142 | Haney | Nov 2001 | A1 |
20010040203 | Brock et al. | Nov 2001 | A1 |
20030161134 | Besserer et al. | Aug 2003 | A1 |
20050211647 | Palker et al. | Sep 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20050212390 A1 | Sep 2005 | US |