The present disclosure relates to an adjustment drive for an adjustable spacing comb for a hair cutting appliance, wherein the adjustment drive comprises an actuator that is configured for actuating a movable comb portion of the adjustable spacing comb with respect to a blade set of the hair cutting appliance. The present invention further relates to an adjustable spacing comb comprising an adjustment drive and to a hair cutting appliance that is fitted with an adjustable spacing comb. Moreover, the present invention further relates to a method for operating an adjustable spacing comb for a hair cutting appliance.
Hair cutting appliances, particularly electric hair cutting appliances, are generally known and may include trimmers, clippers and shavers. Electric hair cutting appliances may also be referred to as electrically powered hair cutting appliances. Electric hair cutting appliances may be powered by electric supply mains and/or by energy storages, such as batteries, for instance. Electric hair cutting appliances are generally used to trim (human) body hair, in particular facial hair and head hair to allow a person to have a well-groomed appearance. Frequently, electric hair cutting appliances are used for cutting animal hair.
EP 2 322 328 A1 discloses a hair cutting device having an interchangeable comb unit. The interchangeable comb unit comprises a comb identification member allowing the device to identify a hair length associated with the comb unit via a comb recognition arrangement present in the device's housing.
U.S. 2012/0233865 A1 discloses an adjustable comb assembly arranged to be attachable to an electric hair cutting appliance. The comb assembly comprises a knob allowing the user to rotatably adjust the cutting length setting of the comb assembly.
U.S. Pat. No. 6,968,623 B2 discloses a hair trimmer comprising a body, a cutting head including a blade set, an adjustable comb, wherein the comb is movable with respect to the blade set, an electric motor for driving the blade set to effect a cutting action, and an actuator assembly that is capable of moving the comb with respect to the blade set between a fully retracted position and a fully extended position, the actuator assembly comprising a comb carriage, a comb button connected to the comb carriage, wherein the comb button is actuatable to adjust the position of the comb relative to the blade set, and a lock button movable with respect to the comb button, wherein the lock button selectively prevents and permits movement of the comb button relative to the body. Consequently, manual adjustment of the length of the comb is enabled.
U.S. Pat. No. 7,992,307 B2 discloses a hair clipper comprising a housing and a motor which is connected by a shaft to a motorized cutting guide, wherein the cutting guide is driven by the motor, wherein the cutting guide is movable to a plurality of guide positions. Consequently, motorized adjustment of the length of the cutting guide (or comb) is enabled.
A comb for a hair cutting appliance, particularly a spacing comb, generally may be arranged as an attachable comb or an integrally formed comb. A spacing comb generally spaces a blade set of the hair cutting appliance from the skin when the appliance is moved in a moving direction with respect to the skin during operation. Consequently, the spacing comb may enable to cut hair to a desired length, i.e. to a desired length of remaining hair at the skin.
Conventional hair cutting appliances may be fitted with a set of attachment combs, each of which associated with a distinct hair length. Consequently, a user of the appliance basically needs to replace an attachment comb by another one to alter the hair cutting length. Furthermore, manually adjustable comb attachments are known, as disclosed in U.S. Pat. No. 6,968,623 B2. Furthermore, also powered adjustment combs have been presented in recent years, as for instance disclosed in U.S. Pat. No. 7,992,307 B2. Typically, powered adjustment combs comprise a movable comb portion that is movable with respect to a blade set of the hair cutting appliance, wherein the movable comb portion is coupled to an actuator, particularly to an electromotor and/or an electric powertrain.
However, operating a motorized adjustment comb frequently has proven to be afflicted with several drawbacks. It is often cumbersome for the user to operate the adjustable spacing comb in a precise and accurate manner since typically rather conventional control elements are provided, for instance push buttons, control levers etc. Typically, these control elements provide a predefined user input sensitivity. In other words, a single user input action may cause a defined response of the motor such that the adjustable spacing comb is displaced by a defined distance or step.
Consequently, coarsely positioning the adjustable spacing comb in the provided adjustment range (which may include covering considerably long distances in the adjustment range) may be experienced as time-consuming. Furthermore, fine adjustment of the adjustable spacing comb may be difficult since conventional control elements typically require considerably large minimum increments of the adjustment motion, as indicated above. Consequently, operating a motorized adjustable spacing comb by means of conventional control elements may be regarded as a trade-off between adjustment speed and adjustment precision.
Due to the above-mentioned lack of operating and adjusting efficiency of conventional adjustable spacing comb arrangements, operating the hair cutting appliance may be further complicated. It would be therefore advantageous to simplify the act of adjusting the spacing comb. It would be further advantageous to provide an adjustable spacing comb and an adjustment drive therefor that may be operated by the user in a time-efficient and highly accurate manner.
There is thus still room for improvement.
It is an object of the present invention to provide a hair cutting appliance, an adjustable spacing comb for a hair cutting appliance, and an adjustment drive for such an adjustable spacing comb that may overcome at least some of the above-mentioned problems. In particular, it is an object to provide an adjustment drive for an adjustable spacing comb that may ensure simplified operability and, more preferably, extended input options for a user. It would be further beneficial to seek for improvements in adjustment speed and adjustment precision and accuracy. It would be further advantageous to provide a corresponding method for operating an adjustable spacing comb.
According to a first aspect of the present disclosure, an adjustment drive for an adjustable spacing comb for a hair cutting appliance is presented, the adjustment drive comprising:
This aspect is based on the insight that the rotation element which may also be referred to as rotation wheel, may enable user input actions which may induce both precise positioning and quick positioning of the movable comb portion. On the one hand side, the user may rotate the rotation element slowly and by small (angular) increments. This may enable a precise positioning of the movable comb portion. On the other hand, the user may push or speed up the rotation element to considerable high revolution speeds making use of the rotation element's moment of inertia. Consequently, the rotation element may further rotate or spin even though the user no longer touches or contacts the rotation element. Once the rotation element is set into rotation, huge total rotation angles may be achieved. Consequently, the movable comb portion may be moved by a considerably long distance. Conversely, the user may slightly rotate the rotation element so as to move the movable comb portion by considerably small increments.
Generally, the rotation element may also be referred to as flywheel control element. It is particularly preferred that the rotation element is a rotatingly mounted rotation element comprising a considerable large moment of inertia. It is particularly preferred that the rotation element, once being accelerated by the user, may assume a flywheel-like behavior. In other words, kinetic energy may be stored in the flywheel-like rotation element which may basically cause the rotation element to rotate even further when the user releases grip or contact on rotation element.
Generally, the user may operate the rotation element with his/her fingers or thumbs. For instance, the user may accelerate or rotate the rotation element by pushing or pulling a circumferential portion of the rotation element.
The adjustment drive in accordance with the above aspect may have the further advantage that a single rotation element may be used for extending and retracting the movable comb portion. Basically, the rotation element may rotate clockwise and counter-clockwise. Consequently, the rotation may be “translated” into an extending or a retracting motion of the movable comb portion.
Generally, the encoder may be configured to detect angular motion, angular velocity and/or angular acceleration of the rotation element. Consequently, positioning speed, positioning distance, target positions, etc. may be specified by the user in large ranges by respectively operating or rotating the rotation element.
Generally, the encoder may be configured to output an electric user input signal that may take the form of an analog signal or a digital signal. The encoder may be arranged as an absolute encoder or an incremental encoder. The encoder may be arranged as an optical encoder and/or a capacitive encoder, for instance.
The adjustment drive according to the first aspect aspect of the present invention further comprises a control unit coupled to the actuator and to the encoder, wherein the control unit is configured to convert the user input signal into an actuator operating signal. To this end, the adjustment drive may use a conversion algorithm. In the alternative, or in addition, the adjustment drive can make use of a characteristic mapping comprising respective pairs of user input signal values and corresponding actuator operating signal values.
By way of example, when the encoder is arranged as an absolute encoder, a distinct turning angle of the rotation element may be associated with a distinct absolute position of the movable comb portion with respect to the blade set. It is worth mentioning in this regard that the encoder may be arranged as a single-turn encoder or a multi-turn encoder.
In yet another embodiment, the encoder may be arranged as an incremental encoder. In other words, the encoder may be arranged as a relative encoder. An incremental encoder may be configured to detect incremental (rotational) position changes of the rotation element. Consequently, incremental position changes of the movable comb portion may be induced accordingly. It goes without saying that also a combination of absolute and incremental rotary motion detection may be utilized by the encoder and the respective control unit.
In some embodiments, the rotation element may be arranged as a multi-turn rotation element. Consequently, no limit stop(s) for the rotational movement is(are) provided. However, in some alternative embodiments, the rotation element may cooperate with respective limit stops that limit a maximum rotatory movement of the rotation element.
The control unit of the adjustment drive according to the first aspect of the present disclosure is configured to operate the movable comb portion such that an adjustment speed of the movable comb portion is a function of a difference between a normalized position of the rotation element and a normalized position of the movable comb portion. This function may be a proportional relation or a non-linear relation such as an exponentional or quadratic relation, for example. Consequently, the angular displacement of the rotation element may be used to set the adjustment speed or velocity of the movable comb portion. In the alternative, the angular velocity of the rotation element may set the adjustment velocity of the movable comb portion. The position of the rotation element and the position of the movable comb portion may be normalized so as to make to comparable.
The above embodiment may be further detailed in that the control unit is configured to operate the movable comb on the basis of the formula:
V
comb
=K
gain * (Xwheel−Xcomb),
wherein Vcomb is the adjustment speed of the movable comb portion, wherein Kgain is a gain factor or coefficient, wherein Xwheel is the rotational position of the rotation element, and wherein Xcomb is the position of the movable comb portion.
As indicated above, the algorithm can make use of absolute positions and/or relative positions. It may be further preferred to define limits for the resulting velocity of the movable comb portion Vcomb. For instance, a speed range may be provided that comprises an upper and a lower border [minspeed, maxspeed]. Consequently, the adjustment speed Vcomb of the movable comb portion may be defined to be within the following range:
V
comb=min(max(Vcomb, minspeed), maxspeed).
Consequently, actuator overloads (or adjustment drive overloads) may be prevented.
Generally, detecting user inputs and operating the actuator accordingly may be conducted in accordance with the following procedure: Initially, the user moves or rotates the rotation element. Consequently, the encoder detects angular motion of the rotation element. Consequently, the control unit may detect a resulting difference between the (rotational) position of the rotation element and the actual comb position. Thereafter, the above (or a similar) formula may be applied to calculate the resulting comb adjustment speed in response to the user input. Consequently, the actuator may be operated so as to drive the adjustable spacing comb at the calculated adjustment speed. The act of comb adjustment may stop when the control unit determines that the (normalized) position of the rotation element corresponds to the (normalized) position of the movable comb portion.
In still another embodiment, the rotation element is a flywheel rotation element, wherein the rotation element further comprises a circumferential portion that is tangible for a user. Consequently, the user may touch, particularly push or pull, the circumferential portion so as to set the rotation element into rotation.
In still another embodiment, the rotation element is a high density rotation element comprising a significant moment of inertia. By way of example, the rotation element may be formed from a material that may comprise a considerably high volumetric mass density. For instance, the circumferential portion of the rotation element may be formed from metal material and/or rubber or rubber-like material. Generally, mass may be accumulated at the circumferential portion of the rotation element. In other words, material may be removed at a central portion of the rotation element.
In one embodiment, the rotation element of the adjustment drive is rotatably mounted at the hair cutting appliance, particularly rotatably supported at a housing portion of the hair cutting appliance. It is generally preferred that the rotation element is mounted in such a way with respect to the housing portion of the hair cutting appliance that smooth-running rotatory motion of the rotation element may be enabled. The above embodiment may be further developed in that the rotation element is at least partially covered by the housing portion, wherein a circumferential portion of the rotation element is accessible through an opening portion of the housing portion. Consequently, the rotation element may be perceived by the user as an integrated component of the hair cutting appliance, particularly of the housing portion thereof. In some embodiments, a locking member for the rotation element may be provided which selectively locks the rotation element with respect to the housing portion.
In still another embodiment, the rotation element may comprise a circumferential surface patterning, particularly a circumferential knurling. By way of example, a so-called criss-cross pattern may be generated at the circumferential portion of the rotation element. Knurling may involve linear knurling, diamond knurling and further knurling types. Basically, knurling allows the user to get a better grip on the rotation element. Consequently, the user may push or set the rotation element into even higher rotational speed. Also precisely operating the rotation element may be simplified in this way.
In the alternative, a better grip on the rotation element for the user may be achieved also by providing material at the circumferential portion that comprises considerably high friction coefficients. By way of example, rubber material or rubber-like material may be provided at the circumferential portion which may exhibit considerably high frictional forces.
In still another embodiment, the adjustment drive is further configured to provide feedback to a user, wherein a type of feedback is selected from a group consisting of tactile feedback, audio feedback, visual feedback, and combinations thereof.
By way of example, feedback to the user may be provided via a vibrating alert. The respective vibrations may be generated by the actuator itself or by a separate vibrating element. Audio feedback may be provided to the user by a buzzer or a similar element. Visual feedback may be provided to the user by the adjustable spacing comb itself since the movable comb portion is typically moved by distances that are clearly visible to the user. However, also separate visual indicator elements may be envisaged, e.g. active display elements.
According to another aspect of the present disclosure, an adjustable spacing comb for a hair cutting appliance is presented, the adjustable spacing comb comprising a movable comb portion that is movable with respect to a housing portion of the hair cutting appliance, and an adjustment drive in accordance with at least some embodiments discussed herein. Generally, the spacing comb may be arranged as an attachable and detachable spacing comb. In the alternative, the spacing comb may be arranged as an integrated or integrally provided spacing comb that cannot be detached from the hair cutting appliance. The movable comb portion may comprise a plurality of comb teeth that may divide and guide hairs when the hair cutting appliance including the adjustable spacing comb is moved through hair to cut hair to a selected length.
In yet another aspect of the present disclosure, a hair cutting appliance, particularly a hair trimmer or clipper, is presented, the hair cutting appliance comprising a housing portion, a cutting unit including a blade set, and an adjustable spacing comb in accordance with at least some embodiments described herein. Generally, the hair cutting appliance may be regarded as an electrically powered hair cutting appliance. Consequently, a motor may be provided for driving the blade set. Typically, the blade set may comprise a stationary blade and a movable blade, wherein the movable blade is movable with respect to the stationary blade. The movable blade may be driven with respect to the stationary blade, particularly oscillatingly driven. The movable blade and the respective stationary blade may comprise cutting edges that may cooperate to cut hair.
Generally, the hair cutting appliance may comprise an elongated housing comprising a first end and a second end which is opposite to the first end. At the first end of the housing, a cutting head may be arranged. The second end of the housing may also be referred to as handle end.
In one embodiment of the hair cutting appliance, the rotation element is mechanically unassociated with the actuator of the adjustment drive. This may particularly involve that the rotation element is mounted in a manner rotationally independent from the actuator. In other words, the rotation element is not mechanically linked to the actuator. Needless to say, the rotation element and the actuator may be coupled by the housing of the hair cutting appliance. However, despite of being arranged at or connected to the housing portion, the rotation element and the actuator of the adjustment drive may be mechanically independent from each other. In other words, signal lines or signal links for communication between the rotation element and the actuator may be provided. For instance, the rotation element and the actuator may be coupled via the control unit and the encoder.
In yet another embodiment of the hair cutting appliance, the rotation element is arranged at a location of the housing portion that is remote from the adjustment drive of the adjustable spacing comb. This may have the advantage that the rotation element may be basically arbitrarily positioned at the housing portion of the hair cutting appliance without the strong need to have consideration for the actual arrangement and/or configuration of the actuator. Consequently, the rotation element may be arranged at a user-friendly location of the housing portion which may further simplify operating the hair cutting appliance.
According to yet another aspect of the present disclosure, a method for operating an adjustable spacing comb for a hair cutting appliance is presented, the method comprising the following steps:
Preferably, the method can make use of the adjustable spacing comb and the adjustment drive as discussed herein. Preferred embodiments of the disclosure are defined in the dependent claims. It shall be understood that the claimed method has similar and/or identical preferred embodiments as the claimed device and as defined in the dependent claims.
These and other aspects of the invention will be apparent from and elucidated with reference to the embodiments described hereinafter. In the following drawings
The hair cutting appliance 10 may further comprise operator controls. For instance, an on-off switch or button 20 may be provided. Furthermore, a length adjustment control 22 may be provided at the housing 12 of the hair cutting appliance 10. The length adjustment control 22 may be provided in case an adjustable spacing comb 26 is attached to the housing 12 of the hair cutting appliance 10. In
As can be further seen from
With further reference to
With particular reference to
The adjustment drive 50 may comprise an actuator 52 or, more particularly, an electromotor. The actuator 52 may be coupled to a reduction gear 54. The reduction gear 54 may be coupled to a transmission element 56. Generally, the transmission element 56 may be arranged to convert a rotational output motion of the actuator 52 and the reduction gear 54, if any, into a basically longitudinal positioning motion of the movable comb portion 40. A respective longitudinal direction is indicated in
As can be seen from
For operating the adjustment drive 50, respective control elements may be provided. To this end, the adjustment drive 50 may comprise an input rotation element 64, particularly a manually operable rotation element 64. Generally, the rotation element 64 may be formed in a basically rotationally symmetrical fashion. The rotation element 64 may be rotationally mounted. More particularly, the rotation element 64 may be mounted to the housing portion 12 or to an intermediate component that is attached to the housing portion 12. Generally, the rotation element 64 may be arranged to be rotated about a rotation axis 66, refer also to the curved double-arrow denoted by reference numeral 68 in
The rotation element 64 may be referred to as flywheel rotation element 64. The rotation element 64 may have a considerably high moment of inertia. Consequently, the user may set the rotation element 64 into rotation. Due to the moment of inertia, the rotation element 64 may basically maintain its rotation for a considerable time period. Consequently, a user may push or pull the rotation element 64 which may involve a single driving stroke. The rotation element 64 may then rotate “passively” for a considerably larger time period.
The rotation element 64 is coupled to an encoder 70. The encoder 70 may be configured to detect rotary or rotational movement of the rotation element 64. By way of example, the encoder 70 may comprise a Hall-sensor or a similar customary rotation sensor. Consequently, the encoder 70 may detect and output a user signal which is derivable from the user's driving stroke applied to the rotation element 64. The user input signal may be transferred to a control unit 74. The control unit 74 may comprise a processing unit. The control unit 74 may convert the detected user input signal into an actuator operating signal that may be transferred to the actuator 52. Consequently, there is no power transmission or force transmission link between the actuator 52 and the rotation element 64. Rather, electric signals may be transferred from the encoder 70 to the actuator 52 via the control unit 74.
The rotation element 64 may extend the range of possible user inputs that may be detected by a single operating element. As indicated above, the user may, on the one hand, precisely rotate the rotation element for precisely positioning the movable comb portion 40. On the other hand, the user may vigorously actuate the rotation element 64 which may cause significant rotation of the rotation element 64. Consequently, the movable comb portion 40 may cover long distances. In each case, the act of adjusting is user-friendly and time-efficient.
Further reference is made to
With particular reference to
Similarly, the rotation axis 66 of the rotation element 64 shown in
Further reference is made in this connection to
As exemplarily shown in
In still another embodiment, the rotation element 64 may be further coupled to a click mechanism 102. The click mechanism 102 may comprise a wheel 104, particularly a polygonal wheel or toothed wheel 104. The wheel 104 may be mounted to the axis 66 and may be further arranged to cooperate with a clicker element 106, particularly a clicker spring. The clicker element 106 may be coupled to or mounted at the housing portion 12, refer also to
With further reference to
As can be further seen from
With further reference to
In a further step S24, a desired moving speed of the movable comb portion in response to the detected user input may be calculated. Consequently, an operating signal may be generated that may be used to operate an actuator for moving the movable comb portion. A further step S26 may follow which may stop the movement of the movable comb portion when it is determined that the actual (normalized) position of the movable comb portion corresponds to the (normalized) position of the rotation element. The steps S20 to S26 may form a loop.
While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description are to be considered illustrative or exemplary and not restrictive; the invention is not limited to the disclosed embodiments. Other variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims.
In the claims, the word “comprising” does not exclude other elements or steps, and the indefinite article “a” or “an” does not exclude a plurality. A single element or other unit may fulfill the functions of several items recited in the claims. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.
Any reference signs in the claims should not be construed as limiting the scope.
Number | Date | Country | Kind |
---|---|---|---|
14167674.2 | May 2014 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/058173 | 4/15/2015 | WO | 00 |