This disclosure relates to an adjustable spring system and a method of adjusting a spring rate in the system.
Adjustable coil springs have been used in coil-over type suspension systems. In one type of system, a shock absorber includes a body receiving a rod that is telescopically movable with respect to the body. The shock absorber is arranged between first and second members and damps the relative movement between the members.
In a coil-over arrangement, a coil spring is supported between an end of the rod and the body. In one example, a portion of the body has an annular groove that receives a portion of the coil spring. The body is positioned with respect to the coil spring to change the effective length of the coil spring and provide a desired spring rate.
The disclosure can be further understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
An adjustable spring system 10 is schematically illustrated in
Each spring assembly 11 includes a spring 16 having coils that cooperates with an adjustment member 18 that is drivable with respect to the spring 16 to change its spring rate by changing the length of the spring 16. The spring 16 and adjustment member 18 are coaxial with one another. An actuator 20 is operatively coupled to the adjustment member 18. A controller 22 communicates with the actuator 20 and a sensor 24 that detects a condition. In one example, the sensor 24 is an accelerometer, which may be used by the controller 22 to detect an undesired natural frequency of at least one of the first and second members 12, 14. In the example, a manual switch 26 is in communication with the actuator 20, either directly or indirectly, and is configured to be operable by a user to manually drive the adjustment member 18, as desired.
Referring to
The spring system 10 and its spring 16 includes multiple coils, such as first, second and third coils 13, 15, 17. A body, such as the adjustment member 18 mechanically supports the first and second coils 13, 15, as shown in
The adjustment member 18 is rotatable relative to the spring 16 in the example to provide a desired number of unsupported coils, which corresponds to a desired spring rate. The shaft 32 is rotated in response to a command from the controller 22, for example, enabling the spring rate to be controlled in real time to react to various undesired conditions. In one example, an undesired natural frequency may be detected, and the controller 22 provides a command to the actuator 20 to provide a desired number of unsupported coils corresponding to a spring rate that negates the natural frequency of the first member 12. The sensor 24 provides feedback to as to the effectiveness of the adjustment made by the controller 22. In another example, a user may simply actuate the switch 26 to select a desired spring rate by feel, for example.
Referring to
One example system 110 that may be used for the vehicle 36 is illustrated in
Another application for a vehicle 136 is illustrated in
Although an example embodiment has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of the claims. For that reason, the following claims should be studied to determine their true scope and content.
This invention was made with government support from the National Aeronautics and Space Administration under Contract No.: NNM06AB13C. The government may have certain rights to this invention pursuant to Contract No. NNM06AB13C awarded by the National Aeronautics and Space Administration.