1. Field of the Invention
The present invention relates to an adjustable steering column assembly for a vehicle, more specifically to an adjustable steering column assembly having a locking device.
2. Description of the Prior Art
Vehicles can be equipped with a steering column that adjusts the position of a steering wheel to enhance the comfort and safety of a user. For example, the steering column can provide telescoping movement for moving the steering wheel closer to and away from the user. Also, the steering column can provide raking movement to move the steering wheel up and down relative to the user. These features cooperate to enable the user to adjust the steering wheel to a desired, convenient position for operating the vehicle and for enabling the steering wheel to be moved out of the way to provide greater access to getting into and out of the driver's seat of the vehicle. Adjustable steering columns may include a handle coupled to a locking device for selectively allowing and preventing both the raking movement and the telescoping movement of the steering column simultaneously once the desired position of the steering wheel has been selected. However, the force required to move the handle to allow both the raking movement and the telescoping movement is large due to the simultaneous disengagement of the locking devices. In addition, when a vehicle is in a collision, typically the force applied to the inner jacket in the collision causes the inner jacket to slide a predetermined distance in the outer jacket.
Therefore, there remains a need to develop an adjustable steering column having a locking device that reduces the force to rotate a handle and prevents an inner jacket from sliding within an outer jacket during a collision.
The present invention provides for an adjustable steering column assembly having an outer jacket defining a longitudinal axis and an inner jacket slidably disposed in the outer jacket along the longitudinal axis for telescoping movement. The adjustable steering column assembly includes a locking device having a pivot pin coupled to the outer jacket and defining a pin axis. The locking device further includes a pawl coupled to the pivot pin and a lever coupled to the pawl with the lever having a cam surface. The pawl rotates about the pin axis between an engaged position engaging the inner jacket for preventing the telescoping movement and a disengaged position disengaging the inner jacket for allowing the telescoping movement. The locking device includes an extension movable between a first position engaging a first portion of the cam surface and a second position engaging a second portion of the cam surface for moving the lever away from the inner jacket and causing the pawl to rotate about the pin axis to disengage the pawl from the inner jacket.
The present invention therefore provides for a locking device having an extension movable between a first position and a second position for moving a lever away from an inner jacket which reduces the force to rotate a handle. In addition, the locking device prevents the inner jacket from sliding within an outer jacket during a collision.
Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
Referring to the Figures, wherein like numerals indicate like or corresponding parts throughout the several views, a locking device 20 for selectively preventing and allowing telescoping movement of a first member 22 relative to a second member 24 along a longitudinal axis L is generally shown in
In the embodiment shown in
As best shown in
A bracket 38 is coupled to the steering column assembly 26 for supporting the inner jacket 22 and the outer jacket 24 to allow raking movement. The user can rakingly move the inner jacket 22 and the outer jacket 24 to obtain the desired position of the steering wheel away from the user. In other words, the inner jacket 22 and the outer jacket 24 move together such that the steering wheel moves up and down relative to the user. The bracket 38 defines a plurality of holes 40 with a plurality of serrations 42 disposed in the holes 40. The bracket 38 is mounted to the vehicle and supports the inner jacket 22 and the outer jacket 24. The bracket 38 includes a plurality of capsules 46 which break free from the bracket 38 when a predetermined force is applied to the steering wheel in a collision of the vehicle. At least one energy absorbing strap 48 is disposed on the outer jacket 24 for absorbing energy when the predetermined force is applied to the steering wheel in the collision. The bracket 38, the capsules 46, and the energy absorbing strap 48 are well known to those skilled in the art and will not be discussed further. The locking device 20 prevents the inner jacket 22 from sliding within the outer jacket 24 in the collision for allowing the energy absorbing strap 48 to absorb the force applied to the steering wheel.
A support 44 is adapted to be coupled to the outer jacket 24 for supporting the locking device 20. The support 44 defines an opening 50 adjacent to the bracket 38 and defines a void 52 adjacent the opening 50. More specifically, the support 44 is disposed within the bracket 38 and may be coupled to the outer jacket 24 or integrally formed with the outer jacket 24.
The locking device 20 includes a pivot pin 54 coupled to the outer jacket 24 and defining a pin axis P. More specifically, the pivot pin 54 is coupled to the support 44. Preferably, the pivot pin 54 is disposed through the void 52 and the pin axis P is transverse the longitudinal axis L. As shown in
Referring to
A return spring 80 is coupled to the outer jacket 24 and the pawl 62 for continuously biasing the pawl 62 into engagement with the inner jacket 22. More specifically, the return spring 80 includes a base portion 82 and a hook portion 84 with the hook portion 84 extending away from the base portion 82 such that the base portion 82 is disposed in the recess 72 of the finger 70 and the hook portion 84 is coupled to the latch 36 of the outer jacket 24 for continuously bias the pawl 62 into engagement with the inner jacket 22.
Also referring to
Referring to
The extension 98 includes a distal end 100 and a proximal end 102 with the extension 98 disposed adjacent the arcuate profile of the cam surface 88. Preferably, the distal end 100 of the extension 98 engages the cam surface 88 between the first end 90 and the second end 92 during rotation of the pivot pin 54. Preferably, the proximal end 102 of the extension 98 is coupled to the pivot pin 54. The extension 98 is further defined as a bead disposed on the pivot pin 54 with the pivot pin 54 rotatable relative to the outer jacket 24 such that the bead engages the arcuate profile during the rotation of the pivot pin 54. The void 52 of the support 44 and the channel 78 of the pawl 62 are complementary in shape to the pivot pin 54 and the bead for feeding the bead through the support 44 and into the cavity 74 of the pawl 62. Only one side of the channel 78 of the pawl 62 is configured to complement both the bead and the pivot pin 54 for preventing the bead from moving through the other side of the pawl 62. It is to be appreciated that the bead may be integrally formed with the pivot pin 54, forged, machined, welded or coupled to the pivot pin 54 in any other method known to those skilled in the art. It is also to be appreciated that the bead may be circular, oval, oblong, square, or any other suitable configuration.
A handle 104 is coupled to the pivot pin 54 and rotatable about the pin axis P such that the rotation of the handle 104 in one direction about the pin axis P rotates the extension 98 to engage the arcuate profile of the cam surface 88 for rotating the pawl 62 about the pin axis P in an opposite direction from the handle 104. More specifically, when the handle 104 rotates in one direction about the pin axis P, the extension 98 rotates in the same direction as the handle 104 which causes the extension 98 to engage the arcuate profile of the cam surface 88 and rotate the lever 86 in an opposite direction from the handle 104 which rotates the pawl 62 in the same direction as the lever 86. The handle 104 includes an end cap 114 for grasping the handle 104. The handle 104 rotates about the pin axis P between a locked position 106 securing the pawl 62 to the inner jacket 22 for preventing the telescoping movement and an unlocked position 108 releasing the pawl 62 from the inner jacket 22 for allowing the telescoping movement. The force required to rotate the handle 104 from the locked and unlocked positions 106, 108 are low due to the extension 98 being disposed on the pivot pin 54 and within the pawl 62. The head 56 of the pivot pin 54 abuts the handle 104 for preventing movement of the handle 104 along the pin axis P.
A rake locking device 110 may be coupled to the bracket 38 and cooperates with the holes 40 and the serrations 42 of the bracket 38 for selectively allowing and preventing the raking movement of the inner and outer jackets 22, 24. More specifically, the rake locking device 110 is coupled to pivot pin 54 and the handle 104. The rake locking device 110 may be further defined as a 3-pin device as shown in
Referring to
Referring to
In this embodiment, the cavity 74 and the slot 76 of the pawl 62 are eliminated such that the lever 86 is disposed on the periphery 68 of the pawl 62 with the lever 86 and the pawl 62 rotating in the same direction during rotation of the extension 98. More specifically, the rod 96 and the protrusion 94 are eliminated from the lever 86. In addition, the rod axis R is eliminated. Preferably, the first end 90 of the lever 86 is disposed on the periphery 68 of the pawl 62. It is to be appreciated that the lever 86 may be integrally formed with the pawl 62. In other words, the pawl 62 and the lever 86 may be formed of a homogenous material. However, it is to be appreciated that the lever 86 may be coupled to the pawl 62 in any suitable way known to those skilled in the art. The channel 78 of the pawl 62 complements the shape of the pivot pin 54 only due to the extension 98 being removed from the pivot pin 54.
A post 112 is coupled to the outer jacket 24 with the extension 98 coupled to the post 112 for supporting the extension 98 and facilitating rotation of the extension 98 about a post axis A during the rotation of the handle 104. More specifically, the post 112 is coupled to the support 44 with the extension 98 coupled to the post 112 for supporting the extension 98 and facilitating rotation of the extension 98 about the post axis A during the rotation of the handle 104. The extension 98 is coupled to the post 112 between the distal and proximal ends 100, 102. The force required to rotate the handle 104 is low due to the extension 98 being disposed on the post 112. Preferably, the post axis A is parallel to the longitudinal axis L. In other words, the post axis A and the longitudinal axis L are transverse to the pin axis P. However, it is to be appreciated that the post axis A may be any orientation relative to the longitudinal axis L and the pin axis P. As shown in
The handle 104 defines an aperture 118 for receiving the extension 98 and rotating the extension 98 about the post axis A during the rotation of the handle 104. More specifically, the proximal end 102 of the extension 98 is disposed through the aperture 118 of the handle 104 such that rotation of the handle 104 causes the extension 98 to rotate about the post axis A. In other words, when the handle 104 rotates in one direction about the pin axis P, the extension 98 rotates about the post axis A which causes the distal end 100 of the extension 98 to engage the arcuate profile of the cam surface 88 and rotate the lever 86 and the pawl 62 in the opposite direction from the handle 104. The force required to rotate the handle 104 from the locked and unlocked positions 106, 108 are low due to the extension 98 being disposed on the post 112.
Referring to
Obviously, many modifications and variations of the present invention are possible in light of the above teachings. The foregoing invention has been described in accordance with the relevant legal standards; thus, the description is exemplary rather than limiting in nature. Variations and modifications to the disclosed embodiment may become apparent to those skilled in the art and do come within the scope of the invention. Accordingly, the scope of legal protection afforded this invention can only be determined by studying the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2867309 | Martin | Jan 1959 | A |
3302478 | Pauwels | Feb 1967 | A |
3866876 | Adams | Feb 1975 | A |
4793204 | Kubasiak | Dec 1988 | A |
5029489 | Burmeister et al. | Jul 1991 | A |
5222410 | Kinoshita | Jun 1993 | A |
5409261 | Yamaguchi | Apr 1995 | A |
5452624 | Thomas et al. | Sep 1995 | A |
5524927 | Toussaint | Jun 1996 | A |
5711189 | Cartwright et al. | Jan 1998 | A |
5813289 | Renick et al. | Sep 1998 | A |
5820163 | Thacker et al. | Oct 1998 | A |
5823062 | Snell et al. | Oct 1998 | A |
5823487 | Kirchhoff et al. | Oct 1998 | A |
6139057 | Olgren et al. | Oct 2000 | A |
6419269 | Manwaring et al. | Jul 2002 | B1 |
6422651 | Muhlberger et al. | Jul 2002 | B1 |
6591709 | Kim et al. | Jul 2003 | B1 |
6616185 | Manwaring et al. | Sep 2003 | B2 |
6659504 | Riefe et al. | Dec 2003 | B2 |
6851332 | Bechtel et al. | Feb 2005 | B2 |
7174804 | Adoline et al. | Feb 2007 | B2 |
7293481 | Li et al. | Nov 2007 | B2 |
7306259 | Tinnin et al. | Dec 2007 | B2 |
7421925 | Korzan et al. | Sep 2008 | B2 |
20040089091 | Bechtel et al. | May 2004 | A1 |
20050199087 | Li et al. | Sep 2005 | A1 |
20070235998 | Demmon et al. | Oct 2007 | A1 |
Number | Date | Country |
---|---|---|
0818379 | Jan 1998 | EP |
2311839 | Oct 1997 | GB |
Number | Date | Country | |
---|---|---|---|
20080191457 A1 | Aug 2008 | US |