The present invention relates to methods and suture/button/needle constructs for ligament repair and, more specifically, for cranial cruciate ligament repair in canines.
Cruciate ligament repairs, particularly canine Cranial Cruciate Ligament (CrCL) repairs, involve attachment of the CrCL to the femur (running across the stifle joint) and attachment to the tibia. The CrCL holds the tibia in place and prevents excess anterior drawer, internal rotation and hyperextension. CrCL rupture occurs primarily in the knees of dogs and cats, and is one of the most common orthopedic injuries in dogs. CrCL rupture is also the most common cause of degenerative joint disease in the stifle joint. When a CrCL is torn, it causes sudden pain, instability in the knee joint, and often results in the pet holding its leg up. The pet may put the leg down and start using it within few days, but will continue to limp for several weeks. Typically, at the end of several weeks, the initial pain subsides and the pet will try to use its leg more; however, the joint remains unstable. Every time the animal puts weight on the leg, the tibia slides forward relative to the femur. This abnormal motion causes wear and tear on the joint cartilage, causing pain and leading to arthritis. This motion can also impart excessive stress on the menisci (C-shaped cartilage within the knee joint), causing damage or tearing.
A suture-button construct for stabilization of a cranial cruciate ligament deficient stifle, and associated surgical method, is the subject matter of U.S. Pat. No. 7,875,057, issued on Jan. 25, 2011, the disclosure of which is incorporated by reference herein in its entirety. The construct and associated technique disclosed in this prior patent greatly facilitates CrCL repair as compared to the prior art, but it requires the tying of knots to secure the second button against the medial side of the femur or tibia, depending on orientation of the construct. It also requires either a second incision or an incision large enough that allows exposure of the lateral aspect of the joint and the medial aspect where the knots are being tied to secure the button. A CrCL construct and technique is needed which provides the same repair and fixation as disclosed in the aforementioned patent, but without the need for tying knots or a second incision.
The present invention provides methods and reconstruction systems (a self-locking, adjustable, knotless button/loop/needle construct) for extracapsular ligament reconstruction in mammals. The reconstruction system comprises a button/loop needle construct formed of a pair of fixation devices (for example, two buttons) connected by flexible loops. At least one of the loops includes a flexible material with two or more adjustable splices/eyesplices that are interconnected to form an adjustable, flexible, continuous, knotless loop. A needle is attached to each of the fixation devices so that each needle guides the respective fixation device through the bone tunnels out of the opposite end.
The fixation devices that emerge from the tunnels are seated against the femoral and tibial cortex. A draw strand of the button/loop construct is pulled to cinch down the construct. After the desired tension is obtained, the extra strands of suture are cut at the tunnel site, and the needles are cut free.
The present invention also provides a method of canine ligament repair and fixation to bone. The method of the present invention comprises inter alia the steps of: (i) providing tibial and femoral tunnels or holes through the tibia and femur; (ii) providing a reconstruction system comprising a knotless button/loop needle construct including two fixation devices (for example, two buttons), at least one flexible, adjustable continuous loop attached to one of the fixation devices (e.g., the buttons), and two needles (each needle being attached to one fixation device, e.g., the button); (iii) securing the construct by advancing the button/loop needle construct through the femoral and tibial tunnels (by using each of the needles as a guide to pull each button), until each button exits the respective tunnel and flips; and (iv) cinching the construct to provide secure seating of each button against the femoral and tibial cortex and stabilization of the joint.
These and other features and advantages of the present invention will become apparent from the following description of the invention that is provided in connection with the accompanying drawings and illustrated embodiments of the invention.
The present invention provides surgical procedures and reconstruction systems for the stabilization of the cranial cruciate ligament deficient stifle using a button/loop/needle construct in a minimally invasive approach. The present invention also provides methods and reconstruction systems (a self-locking, adjustable, knotless button/loop/needle construct) for extracapsular ligament reconstruction in mammals.
The reconstruction system of the present invention comprises a knotless button/loop/needle construct including two fixation devices (for example, two buttons), at least one flexible, adjustable loop attached to at least one of the fixation devices (e.g., the buttons), and two needles (each needle being attached to one fixation device, e.g., the button). The knotless button/loop/needle construct has an adjustable loop length and allows adjustment in one direction while preventing or locking the construct from loosening in the opposite direction, due to applied tensile forces. The construct and techniques of the present invention provide an improved knotless system for cruciate ligament repair.
At least one of the loops include a flexible material with two or more adjustable eyesplices/splices that are interconnected to form an adjustable loop. Each needle (attached to each of the buttons) guides the respective button through the bone tunnels out of the opposite end. The buttons that emerge from the tunnels are seated against the femoral and tibial cortex. A draw strand of the suture-button construct is pulled to cinch down the construct. After the desired tension is obtained, the extra strands of suture are cut at the tunnel site, and the needles are cut free.
The present invention also provides a method of canine ligament reconstruction by inter alia: (i) drilling tunnels through the tibia and femur; (ii) providing a button/loop/needle construct with two buttons and at least one flexible, adjustable loop (a four-point knotless fixation device) that is capable of adjusting tension (e.g., is provided with a loop having an adjustable perimeter and length), and with two needles (each needle being attached to one of the buttons); (iii) securing the construct by advancing the button/loop/needle construct through the femoral and tibial tunnels (by using each of the needles as a guide to pull each button) until each button exits the respective tunnel and flips; and (iv) cinching the construct to provide secure seating of each button against the femoral and tibial cortex and stabilization of the joint.
Referring now to the drawings, where like elements are designated by like reference numerals,
As shown in
In an exemplary and illustrative embodiment only, the fixation devices are buttons having a similar or different configuration. The buttons may have a body with an oblong, elongate configuration, to allow passage of the buttons through tibia and femoral tunnels. Although the embodiments below will be detailed with reference to particular configurations for the first and second fixation devices 12, 32 (e.g., two narrow, oblong, elongate buttons), the invention is not limited to this exemplary embodiment only and has applicability to fixation devices with other shapes and geometries, as long as the fixation devices are provided with apertures/holes/passages that allow a flexible material (a flexible strand) to pass therethrough (or be threaded therethrough) to form the flexible, adjustable, self-cinching, knotless loops of the invention.
The flexible material 11 forming the interconnected loops has an adjustable length and, as described below, is connected to two fixation devices (buttons) 12, 32 that are further secured on tibial cortex and fibular cortex, respectively. The flexible material 11 is threaded through apertures/holes/eyelets of each of the first and second fixation devices 12, 32 and splices are created to form the knotless, integrated, self-cinching reconstruction system 100. In an exemplary only embodiment, and as detailed below, the flexible material 11 may be suture such as a suture braid with braided filaments having a hollow core (for example, strands of suture such as ultrahigh molecular weight polyethylene (UHMWPE) braided with strands of polyester, collagen, or other suture materials, such as PET, PEEK, silk nylon, and absorbable polymers, among many others).
In an exemplary and illustrative embodiment only, self-locking button/loop/needle construct 10 includes a button 12 and flexible material 11 with two or more adjustable eyesplices 16, 18 that are interconnected to form one adjustable loop 14. By pulling on the free braid strands, the individual eyesplices 16, 18 constrict and, in turn, reduce the loop length of loop 14. Elongation of the construct is constricted because, in order for loop 14 to elongate, a force must be applied interior to one or both of the eyesplices 16, 18. Although
Details regarding the formation/assembly of a self-locking adjustable construct with one fixation device and two adjustable splices (and which allows, for example, a graft to be fully inserted and seated in a bone tunnel) are provided in U.S. Patent Application Publication Nos. 2010/0256677 and 2010/0268273, the disclosures of which are incorporated by reference in their entirety herewith.
As described in the above-noted applications, a self-locking, adjustable, knotless construct includes a button and a flexible material with two adjustable eyesplices that are interconnected to form an adjustable continuous loop. By pulling on the free braid strands, the individual eyesplices constrict and, in turn, reduce the loop length L of loop. In order for the loop to elongate, a force needs to be applied interior to one or both of the eyesplices to elongate the individual loops.
Exemplary steps of a method of forming/assembling a self-locking, adjustable knotless construct 10 with one fixation device (e.g., one button) and two splices/eyesplices are detailed in the above-noted applications, and include as starting materials a suture strand (for example, 50 inches of braided UHMWPE strand); a needle (for example, a blunt tip needle with nitinol loop) and a button (for example, a 3.5 mm titanium button). The suture strand is folded to create two equal length parallel braid strands. At this step, the braid is folded at the midpoint, 25 inches, to create two parallel equal length braid strands (Step 1). At Step 2, a first eyesplice is created on the first strand of braid by passing the blunt tip needle through the center of the braid with the end of the braid being carried through in the nitinol loop of the needle. In one embodiment, the splice should travel for a distance of about 17-19 mm through the braid towards the braid midpoint created in Step 1. In another embodiment, the splice should travel for a distance of about 25 mm.
Once the first eyesplice has been formed, at Step 3, the button is slid over the non-spliced strand passing the strand through both button holes. The button is slid so that it rests over the first spliced section. At Step 4, a second eyesplice is formed, similar to the first one, with the opposing strand. The strand is looped through the first eyesplice loop, resulting in two eyesplice loops that are interconnected. Again, as detailed above, the splice length is about between 17-19 mm, or about 25 mm. The splice should be created such that the exiting aperture of the splice is as close as possible to the first eyesplice.
According to an exemplary and illustrative embodiment only, self-locking, knotless button/loop/needle construct 30 may be formed similarly to the construct 10 (as detailed above) or may be formed by connecting a flexible loop 34 of flexible material to a fixation device such as button 32. Either way, loop 34 interconnects with loop 14, as shown in
Buttons 12, 32 of the construct 100 may be formed, for example, of metal, PEEK or PLLA. Details of buttons 12, 32 are also set forth in U.S. Patent Publ. No. 2007/0179531 (Thornes). As detailed in U.S. Patent Publ. No. 2007/0179531, buttons 12, 32 are provided with a plurality of holes that allows the flexible material (preferably suture, as described below) to pass thereto. Each of buttons 12, 32 may be preferably oblong and may be provided with two or more apertures.
The flexible material 11 of the adjustable loops is preferably a braided high strength suture material, such as a suture formed of braided strands of ultrahigh molecular weight polyethylene. The braided high strength suture may be provided with optional colored strands to assist surgeons in distinguishing between suture lengths with the trace and suture lengths without the trace.
The knotless repair system 100 of the present invention may be employed in a method of stabilization of a cranial cruciate ligament deficient stifle, for example, which is accomplished without tying knots. In one embodiment, the tibial hole is drilled in the tibia by entering the tibia on the lateral side just distal to the articular margin of the proximal tibia and within the extensor groove underneath the LDE tendon and exiting the tibia on a medial side. Once the tibial and femoral tunnels/holes have been drilled through the tibia and femur, the knotless construct 100 of the present invention is secured to the tunnels/holes by advancing the construct through the femoral and tibial tunnels (by using each of the needles as a guide to pull each button) until each button exits the respective tunnel and flips. Cinching of the construct provides secure seating of each button against the femoral and tibial cortex and stabilization of the joint.
According to an exemplary embodiment, the tissue to be treated is a canine CrCL.
The joint is first explored and preparation of the knee cavity is conducted by removing any remaining articular cartilage using a combination of a rasp, curette and mechanical burr, for example. The canine is positioned in lateral or dorsal recumbency preferably under general anesthetic and prepared for surgery of the affected stifle. A hanging limb technique with aseptic preparation and appropriate draping may be performed. A lateral parapatellar approach with arthrotomy may be performed and complete exploration of the stifle joint may be conducted. The joint capsule is closed and tibial tunnel 93a and femoral tunnel 91a are created at the appropriate locations in the proximal tibia 93 and femur 91, for tibial and femoral fixation.
After creation of the femoral and tibial bone tunnels 91a, 93a, each needle 50, 54 is guided through the tunnel (
Once the desired tension is obtained, the extra strands of suture can be cut at the tunnel site, and the needles 50, 54 can be cut free, as shown in
The flexible material 11 forming the adjustable, knotless loops is preferably a braided high strength suture material, such as described in U.S. Pat. No. 6,716,234, the disclosure of which is incorporated by reference. The flexible material 11 may be provided with optional colored strands to assist surgeons in distinguishing between suture lengths with the trace and suture lengths without the trace. The flexible material 11 may be also provided in the form of a suture tape, or a combination of suture strand and suture tape, and as desired. The flexible material 11 may be suture such as such as a suture braid with braided filaments having a hollow core (for example, strands of suture such as ultrahigh molecular weight polyethylene (UHMWPE) braided with strands of polyester, collagen, or other suture materials, such as PET, PEEK, silk nylon, and absorbable polymers, among many others). The flexible material 11 may also contain a bioabsorbable material, such as PLLA or one of the other polylactides, for example, and/or may be formed of twisted fibers having strands of a contrasting color added to the braided threads, to make the suture more visible during surgical procedures. In exemplary embodiments, flexible material may be a braided suture cover containing strands of a high strength suture material, such as FiberWire™ suture, sold by Arthrex, Inc. of Naples, Fla.
Buttons 12, 32 of the construct 100 of the present invention may be formed, for example, of metal, PEEK or PLLA. As detailed above, the buttons are provided with openings (apertures, eyelets, holes) that allow the passage of the flexible material to pass thereto.
While the present invention is described herein with reference to illustrative embodiments for particular applications, it should be understood that the invention is not limited thereto. Those having ordinary skill in the art and access to the teachings provided herein will recognize additional modifications, applications, embodiments and substitution of equivalents all fall within the scope of the invention. Accordingly, the invention is not to be considered as limited by the foregoing description.
This application claims the benefit of U.S. Provisional Application No. 61/414,712, filed Nov. 17, 2010, the entire disclosure of which is incorporated by reference herein. This application is also a continuation-in-part of U.S. patent application No. 12/751,835, now U.S. Pat. No. 8,460,379, filed Mar. 31, 2010, and U.S. patent application No. 12/751,897, now U.S. patent No. 8,439,976, filed Mar. 31, 2010, each of which claims the benefit of U.S. Provisional Application No. 61/165,343, filed Mar. 31, 2009, U.S. Provisional Application No. 61/168,117, filed Apr. 9, 2009, U.S. Provisional Application No. 61/259,507, filed Nov. 9, 2009, U.S. Provisional Patent Application No. 61/311,234, filed Mar. 5, 2010, and U.S. Provisional Patent Application No. 61/311,211, filed Mar. 5, 2010, the entire disclosures of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3176316 | Bodell | Apr 1965 | A |
4187558 | Dahlen et al. | Feb 1980 | A |
4301551 | Dore et al. | Nov 1981 | A |
4400833 | Kurland | Aug 1983 | A |
4776851 | Bruchman et al. | Oct 1988 | A |
4790850 | Dunn et al. | Dec 1988 | A |
4792336 | Hlavacek et al. | Dec 1988 | A |
4851005 | Hunt et al. | Jul 1989 | A |
4863471 | Mansat | Sep 1989 | A |
4917700 | Aikins | Apr 1990 | A |
4932972 | Dunn et al. | Jun 1990 | A |
5024669 | Peterson et al. | Jun 1991 | A |
5026398 | May et al. | Jun 1991 | A |
5129902 | Goble et al. | Jul 1992 | A |
5171274 | Fluckiger et al. | Dec 1992 | A |
5211647 | Schmieding | May 1993 | A |
5217495 | Kaplan et al. | Jun 1993 | A |
5263984 | Li et al. | Nov 1993 | A |
5266075 | Clark et al. | Nov 1993 | A |
5306301 | Graf et al. | Apr 1994 | A |
5320626 | Schmieding | Jun 1994 | A |
5397357 | Schmieding et al. | Mar 1995 | A |
5562669 | McGuire | Oct 1996 | A |
5575819 | Amis | Nov 1996 | A |
5628756 | Barker et al. | May 1997 | A |
5643266 | Li | Jul 1997 | A |
5645588 | Graf et al. | Jul 1997 | A |
5931869 | Boucher et al. | Aug 1999 | A |
5961520 | Beck et al. | Oct 1999 | A |
5964764 | West, Jr. et al. | Oct 1999 | A |
6056752 | Roger | May 2000 | A |
6099530 | Simonian et al. | Aug 2000 | A |
6099568 | Simonian et al. | Aug 2000 | A |
6110207 | Eichhorn et al. | Aug 2000 | A |
6159234 | Bonutti et al. | Dec 2000 | A |
6193754 | Seedhom | Feb 2001 | B1 |
6203572 | Johnson et al. | Mar 2001 | B1 |
6283996 | Chervitz et al. | Sep 2001 | B1 |
6296659 | Foerster | Oct 2001 | B1 |
6325804 | Wenstrom et al. | Dec 2001 | B1 |
6517578 | Hein | Feb 2003 | B2 |
6533802 | Bojarski et al. | Mar 2003 | B2 |
7097654 | Freedland | Aug 2006 | B1 |
7494506 | Brulez et al. | Feb 2009 | B2 |
7686838 | Wolf et al. | Mar 2010 | B2 |
7749250 | Stone et al. | Jul 2010 | B2 |
7776039 | Bernstein et al. | Aug 2010 | B2 |
7819898 | Stone et al. | Oct 2010 | B2 |
7828855 | Ellis et al. | Nov 2010 | B2 |
7875057 | Cook et al. | Jan 2011 | B2 |
7905903 | Stone et al. | Mar 2011 | B2 |
7914539 | Stone et al. | Mar 2011 | B2 |
8109965 | Stone et al. | Feb 2012 | B2 |
8118836 | Denham et al. | Feb 2012 | B2 |
8162997 | Struhl | Apr 2012 | B2 |
8206446 | Montgomery | Jun 2012 | B1 |
8231654 | Kaiser et al. | Jul 2012 | B2 |
20010041938 | Hein | Nov 2001 | A1 |
20020161439 | Strobel et al. | Oct 2002 | A1 |
20030114929 | Knudsen et al. | Jun 2003 | A1 |
20040015171 | Bojarski et al. | Jan 2004 | A1 |
20040059415 | Schmieding | Mar 2004 | A1 |
20040073306 | Eichhorn et al. | Apr 2004 | A1 |
20040199166 | Schmieding et al. | Oct 2004 | A1 |
20040243235 | Goh et al. | Dec 2004 | A1 |
20040267360 | Huber | Dec 2004 | A1 |
20050004670 | Gebhardt et al. | Jan 2005 | A1 |
20050033363 | Bojarski et al. | Feb 2005 | A1 |
20050065533 | Magen et al. | Mar 2005 | A1 |
20050070906 | Clark et al. | Mar 2005 | A1 |
20050137704 | Steenlage | Jun 2005 | A1 |
20050149187 | Clark et al. | Jul 2005 | A1 |
20050171603 | Justin et al. | Aug 2005 | A1 |
20050203623 | Steiner et al. | Sep 2005 | A1 |
20050261766 | Chervitz et al. | Nov 2005 | A1 |
20060067971 | Story et al. | Mar 2006 | A1 |
20060095130 | Caborn et al. | May 2006 | A1 |
20060142769 | Collette | Jun 2006 | A1 |
20060265064 | Re et al. | Nov 2006 | A1 |
20070021839 | Lowe | Jan 2007 | A1 |
20070083236 | Sikora et al. | Apr 2007 | A1 |
20070118217 | Brulez et al. | May 2007 | A1 |
20070162123 | Whittaker et al. | Jul 2007 | A1 |
20070162125 | LeBeau et al. | Jul 2007 | A1 |
20070179531 | Thornes | Aug 2007 | A1 |
20070225805 | Schmieding | Sep 2007 | A1 |
20070239209 | Fallman | Oct 2007 | A1 |
20070239275 | Willobee | Oct 2007 | A1 |
20070250163 | Cassani | Oct 2007 | A1 |
20070270857 | Lombardo et al. | Nov 2007 | A1 |
20080046009 | Albertorio et al. | Feb 2008 | A1 |
20080177302 | Shurnas | Jul 2008 | A1 |
20080188935 | Saylor et al. | Aug 2008 | A1 |
20080188936 | Ball et al. | Aug 2008 | A1 |
20080208252 | Holmes | Aug 2008 | A1 |
20080215150 | Koob et al. | Sep 2008 | A1 |
20080228271 | Stone et al. | Sep 2008 | A1 |
20080234819 | Schmieding et al. | Sep 2008 | A1 |
20080243248 | Stone et al. | Oct 2008 | A1 |
20080275553 | Wolf et al. | Nov 2008 | A1 |
20080275554 | Iannarone et al. | Nov 2008 | A1 |
20080300683 | Altman et al. | Dec 2008 | A1 |
20080312689 | Denham et al. | Dec 2008 | A1 |
20090018654 | Schmieding et al. | Jan 2009 | A1 |
20090030516 | Imbert | Jan 2009 | A1 |
20090054982 | Cimino | Feb 2009 | A1 |
20090062854 | Kaiser et al. | Mar 2009 | A1 |
20090082805 | Kaiser et al. | Mar 2009 | A1 |
20090187244 | Dross | Jul 2009 | A1 |
20090216326 | Hirpara et al. | Aug 2009 | A1 |
20090228017 | Collins | Sep 2009 | A1 |
20090234451 | Manderson | Sep 2009 | A1 |
20090265003 | Re et al. | Oct 2009 | A1 |
20090275950 | Sterrett et al. | Nov 2009 | A1 |
20090306776 | Murray | Dec 2009 | A1 |
20090306784 | Blum | Dec 2009 | A1 |
20090312776 | Kaiser et al. | Dec 2009 | A1 |
20100049258 | Dougherty | Feb 2010 | A1 |
20100049319 | Dougherty | Feb 2010 | A1 |
20100100182 | Barnes et al. | Apr 2010 | A1 |
20100145384 | Stone et al. | Jun 2010 | A1 |
20100145448 | Montes De Oca Balderas et al. | Jun 2010 | A1 |
20100211075 | Stone | Aug 2010 | A1 |
20100211173 | Bardos et al. | Aug 2010 | A1 |
20100249930 | Myers | Sep 2010 | A1 |
20100256677 | Albertorio et al. | Oct 2010 | A1 |
20100268273 | Albertorio et al. | Oct 2010 | A1 |
20100268275 | Stone et al. | Oct 2010 | A1 |
20100274355 | McGuire et al. | Oct 2010 | A1 |
20100274356 | Fening et al. | Oct 2010 | A1 |
20100292792 | Stone et al. | Nov 2010 | A1 |
20100305709 | Metzger et al. | Dec 2010 | A1 |
20100312341 | Kaiser et al. | Dec 2010 | A1 |
20100318188 | Linares | Dec 2010 | A1 |
20100324676 | Albertorio et al. | Dec 2010 | A1 |
20100331975 | Nissan et al. | Dec 2010 | A1 |
20110040380 | Schmieding et al. | Feb 2011 | A1 |
20110046734 | Tobis et al. | Feb 2011 | A1 |
20110054609 | Cook et al. | Mar 2011 | A1 |
20110087284 | Stone et al. | Apr 2011 | A1 |
20110098727 | Kaiser et al. | Apr 2011 | A1 |
20110112640 | Amis et al. | May 2011 | A1 |
20110112641 | Justin et al. | May 2011 | A1 |
20110118838 | Delli-Santi et al. | May 2011 | A1 |
20110137416 | Myers | Jun 2011 | A1 |
20110184227 | Altman et al. | Jul 2011 | A1 |
20110196432 | Griffis, III | Aug 2011 | A1 |
20110196490 | Gadikota et al. | Aug 2011 | A1 |
20110218625 | Berelsman et al. | Sep 2011 | A1 |
20110238179 | Laurencin et al. | Sep 2011 | A1 |
20110270278 | Overes et al. | Nov 2011 | A1 |
20110276137 | Seedhom et al. | Nov 2011 | A1 |
20110288635 | Miller et al. | Nov 2011 | A1 |
20110301707 | Buskirk et al. | Dec 2011 | A1 |
20110301708 | Stone et al. | Dec 2011 | A1 |
20120046746 | Konicek | Feb 2012 | A1 |
20120046747 | Justin et al. | Feb 2012 | A1 |
20120053630 | Denham et al. | Mar 2012 | A1 |
20120089143 | Martin et al. | Apr 2012 | A1 |
20120109299 | Li et al. | May 2012 | A1 |
20120123474 | Zajac et al. | May 2012 | A1 |
20120123541 | Albertorio et al. | May 2012 | A1 |
20120150297 | Denham et al. | Jun 2012 | A1 |
20120165938 | Denham et al. | Jun 2012 | A1 |
20120197271 | Astorino et al. | Aug 2012 | A1 |
20120296345 | Wack et al. | Nov 2012 | A1 |
20130023928 | Dreyfuss | Jan 2013 | A1 |
20130023929 | Sullivan et al. | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
299 10 202 | Sep 1999 | DE |
201 01 791 | Jun 2001 | DE |
0 440 991 | Aug 1991 | EP |
1 108 401 | Jun 2001 | EP |
1 707 127 | Oct 2006 | EP |
2 238 944 | Oct 2010 | EP |
WO 2007002561 | Jan 2007 | WO |
WO 2008091690 | Jul 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20120065732 A1 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
61414712 | Nov 2010 | US | |
61165343 | Mar 2009 | US | |
61168117 | Apr 2009 | US | |
61259507 | Nov 2009 | US | |
61311234 | Mar 2010 | US | |
61311211 | Mar 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12751835 | Mar 2010 | US |
Child | 13298912 | US | |
Parent | 12751897 | Mar 2010 | US |
Child | 12751835 | US |