Adjustable suture-button constructs for ligament reconstruction

Abstract
An adjustable suture-button construct for ligament reconstruction. The construct is a knotless, adjustable, flexible suture loop, a first fixation device (a free or removable slotted button) and optionally a second fixation device (a fixed, non-removable button). Suture ends of the knotless suture loop provide a variable-length graft support that can be adjusted prior to, during, or after deployment of the constructs. The removable, detachable fixation device is provided with attachment feature(s) to permit assembly onto the adjustable loop. The removable, detachable fixation device is attached to the tibia end of the loop construct after the loop construct is passed through the tibial tunnel (i.e., once the loop exits the anterior tibia cortex). If a fixed, non-removable button is employed, the fixed, non-removable button is securely attached (by stitching, for example) to the graft.
Description
FIELD OF THE INVENTION

The present invention relates to the field of surgery and, more particularly, to ligament repair/reconstruction, such as, ACL and PCL repair/reconstruction techniques and associated fixation and reconstruction devices.


BACKGROUND OF THE INVENTION

The posterior cruciate ligament (PCL) is one of four ligaments important to the stability of the knee joint. The PCL prevents the tibia from sliding too far backwards. Along with the anterior cruciate ligament (ACL) which keeps the tibia from sliding too far forward, the PCL helps to maintain the tibia in position below the femur.


Surgical reconstruction of the PCL is usually recommended only for grade III PCL tears because of the overall technical difficulty of the surgery. Surgical PCL reconstruction is difficult in part because of the position of the PCL in the knee. Trying to place a new PCL graft in this position is challenging and, over time, the replacement PCL graft is notorious for stretching out and becoming less functional.


Adjustable suture-button constructs and associated techniques for fixation of a tendon or ligament, such as an ACL, are disclosed in U.S. Patent Application Publication Nos. 2010/0256677 and 2010/0268273, the disclosures of both of which are incorporated herein in their entirety. It would be desirable to provide similar adjustable suture-button constructs that can be used for PCL reconstruction, as well as for reconstruction of the ACL or collateral ligaments.


SUMMARY OF THE INVENTION

The present invention provides methods and constructs for ligament repair/reconstruction, such as PCL reconstruction and ACL reconstruction. The constructs use a knotless, adjustable, flexible suture loop, a first fixation device (a free or removable slotted button) and optionally a second fixation device (a fixed, non-removable button). Suture ends of the knotless suture loop provide a variable-length graft support that can be adjusted prior to, during, or after deployment of the constructs. The removable, detachable fixation device is provided with attachment feature(s) to permit assembly onto the adjustable loop. The removable, detachable fixation device is attached to one end of the loop, e.g., the tibia end of the loop construct after the loop construct is passed through the tibial tunnel (i.e., once the loop exits the anterior tibia cortex). If a fixed, non-removable button is employed, the fixed, non-removable button is securely attached (by stitching, for example) to the graft.


The present invention also provides a method of ligament repair by inter alia: (i) providing a ligament reconstruction system comprising an adjustable, self-locking, knotless, flexible, loop construct with a free or removable slotted button and optionally a fixed, non-removable button; and (ii) securing a PCL ligament, ACL ligament or other graft with the reconstruction system.


These and other features and advantages of the present invention will become apparent from the following description of the invention that is provided in connection with the accompanying drawings and illustrated embodiments of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a schematic view of a reconstruction assembly of the present invention, including a knotless suture-button construct with a fixed, graft button and a removable button (in the pre-assembled form) for ligament reconstruction, and according to a first embodiment of the present invention.



FIG. 2A illustrates the fixed, graft button of the knotless suture-button construct of FIG. 1.



FIG. 2B is a top view of the intertwined threaded flexible member and fixed graft button.



FIGS. 3-5 illustrate the steps for forming the knotless suture-button construct of FIG. 1.



FIG. 6 illustrates a perspective view of the reconstruction assembly resulting from the steps illustrated in FIGS. 3-5.



FIG. 7 illustrates a driver instrument for engaging the removable, detachable button.



FIG. 8 is an enlarged view of the instrument head and the removable button.



FIG. 9 illustrates loading of the removable, detachable button onto the knotless suture-button construct using the driver instrument.



FIG. 10-16 illustrate an exemplary method of attaching a knotless suture-button construct with a fixed, graft button of the present invention to a graft to form a PCL graft construct.



FIG. 17 illustrates a PCL graft construct of the present invention.



FIGS. 18-28 illustrate a method of deploying the PCL reconstruction assembly of FIG. 17.



FIG. 29 illustrates another suture-button construct for use with the present invention.



FIGS. 30-33 illustrate the assembly of additional ligament-construct embodiments using adjustable knotless loop constructs of the present invention.



FIGS. 34-46 illustrate the exemplary steps practiced in deploying the ligament-constructs of FIGS. 30-33.



FIGS. 47-52 illustrate another adjustable, knotless suture construct of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The present invention provides methods and reconstruction systems (knotless, adjustable loop constructs with a removable, detachable button) for ligament repair/reconstruction in a minimally invasive approach.


In embodiments of the present invention, methods and reconstruction systems (knotless, adjustable loop constructs with a removable, detachable button) for PCL/ACL repair/reconstruction in a minimally invasive approach


In one embodiment, the reconstruction system comprises a suture-button construct formed by a first fixation device (for example, a graft button) attached to an adjustable, knotless flexible loop; and a free, removable, detachable second fixation device (for example, a slotted button). The graft button is preferably a round button (having four regular holes) with two small “extra” holes to allow stitching to the graft. The detachable button is slotted to allow assembly onto the loop construct. The detachable button is attached to the tibia end of the loop construct after the loop construct is passed through the tibial tunnel (i.e., once the loop exits the anterior tibia cortex). Tractable suture ends of the knotless suture loop provide a variable-length graft support that can be adjusted prior to, during, or after deployment of the constructs.


In another embodiment, the reconstruction system comprises an adjustable, knotless flexible loop and only one fixation device, i.e., only a free, removable, detachable button (without a fixed button). The removable, detachable fixation device is provided with attachment feature(s) to permit assembly onto the adjustable loop. Tractable suture ends of the knotless suture loop provide a variable-length graft support that can be adjusted prior to, during, or after deployment of the constructs.


In another embodiment, the reconstruction system comprises adjustable, knotless flexible loops and discrete fixation devices, one of which is a free, removable, detachable button (without a fixed button). The removable, detachable fixation device is provided with attachment feature(s) to permit assembly onto the adjustable loop. Tractable suture ends of the knotless suture loop provide a variable-length graft support that can be adjusted prior to, during, or after deployment of the constructs.


The present invention also provides methods of ligament repair by inter alia: (i) providing a ligament reconstruction system comprising an adjustable, self-locking, knotless loop construct with a detachable, free, removable button that is assembled onto the knotless loop construct (and optionally with a non-removable, graft button stitched to a graft); and (ii) securing a ligament or graft with the reconstruction system.


Referring now to the drawings, where like elements are designated by like reference numerals, FIGS. 1-28 illustrate reconstruction assembly 100 (with one fixed, suturable button and one removable, detachable button) and methods of PCL reconstructions (including arthroscopic inlay technique) with the assembly 100. The implant/assembly 100 (reconstruction system 100) of FIG. 1 includes an adjustable, knotless, flexible loop construct 50 formed from a flexible material 30 with button 10 to be attached to the graft (e.g., the graft button), by sewing or other suitable attachment techniques. A second, slotted button 20 which is capable of removable attachment to the tibial end of the loop construct after it is passed through the tibia (the detachable, removable button). Alternatively, the slotted button 20 is capable of removable attachment to adjustable, knotless, flexible loop construct 50 wherever deployed. Buttons 10 and 20 of the construct 100 may be formed, for example, of metal, PEEK or PLLA.


The graft button 10 is about 10 mm round button (having four regular holes) with two small “extra” holes to allow stitching to the graft. The detachable button 20 is about 12 mm×8 mm and is slotted to allow assembly onto the loop construct. The slots 22 will allow it to be loaded onto the thinner, proximal loop segment (non-spliced section) but will not allow passage of the thicker loop segment (spliced) near the tibia to prevent detachment from the implant. As detailed above, the buttons are provided with openings that allow the passage of the flexible material 30 to pass thereto. The detachable button 20 may be provided on a driver 60 that holds the button onto a “forked” tip to simplify loading. Once the detachable button 20 is loaded, the forked tip can be retracted by sliding a button on the handle, which will release the detachable button.



FIGS. 1 and 6 illustrate schematic and perspective views of assembly 100 of the present invention, in a pre-assembled form. Assembly 100 includes a knotless suture-button construct 50 formed of a knotless, flexible, adjustable suture member 30 formed from a flexible member 32 and a fixed, non-removable fixation device 10 (graft button 10) and a removable, detachable fixation device 20 (button 20). The flexible material 30 may be a high strength braid construct such as an ultrahigh molecular weight (UHMWPE) braid. The flexible material 30 may be provided with optional colored strands to assist surgeons in distinguishing between suture lengths with the trace and suture lengths without the trace. Assembly 100 may be provided as a kit of components. The knotless suture-button construct has an adjustable loop length and allows adjustment in one direction while preventing or locking the construct from loosening in the opposite direction, due to applied tensile forces.



FIG. 2A shows a top view of the first fixation device 10 used for the knotless suture-button construct 50 shown in FIG. 1. In an exemplary embodiment only, the first fixation device 10 is a round button provided with a plurality of circular holes. In an exemplary embodiment only, button 10 is a 10 mm diameter titanium button with 6 round holes, e.g., holes 1-4 and stitching holes 5 and 6. FIG. 2B illustrates the intertwined flexible member discussed in detail below with the flexible member cross-over “X” 35.



FIGS. 3, 4A-4C, 5 and 6 illustrate exemplary steps of forming the knotless suture-button construct 50 (with the following exemplary starting materials).


Starting Materials:

    • A braided high strength (UHMWPE) suture strand 32.
    • A needle with nitinol loop 55.
    • A round titanium button 10 with six holes.


Assembly Instructions for Reconstruction Assembly 100:


Step 1: One tail/end 38 of braid 30 is passed through hole 1, then back down through hole 2 of the button 10 (FIG. 2) forming a flexible member strand section 33 that bridges holes 1 and 2.


Step 2: About 12 inches of the longer strand (second tail) is passed through hole 3 adjacent to the first hole of button 10 to create a loop 31 (FIG. 3).


Step 3: The tail end 38 of the same strand that passed through hole 3 is passed under the strand section 33 bridging holes 1 and 2 and then passed over the strand section 33 and down through hole 4 of button 10 (FIGS. 2 and 4A-4C). This forms an intertwining or interlinking “X” 35 of the braid (FIGS. 2 and 4A-4C). The strand looped across holes 1 and 2 will be linked with the strand across holes 3 and 4.


Steps 4 and 5: The loop 30 is tightened to create an apex 48 at the center. One tail strand 34 is used to create an eyesplice 40 terminating at the apex 48 of the braid loop 30 (FIG. 5), where FIG. 5 is a partial view of the suture member 32 after it has been threaded through button 10. The first splice 40 is created by passing the blunt tip needle 55 and a tail end 38 through the center of the braid 30 with the strand being carried through in the nitinol loop of the needle 55. Step 5: Splicing is repeated with the remaining tail end (also 38) on the opposing side of the loop to form a second splice 45 of adjustable, knotless loop 30 (FIG. 5). FIG. 6 illustrates the adjustable, knotless construct with the button 10.


As button 10 is attached to flexible material 32 and includes two adjustable eyesplices 40, 45, pulling on the free braid strands 34, 36 respectively constricts the individual eyesplices 40, 45, and in turn, reduces the loop length of loop 30. In order for loop 30 to elongate, a force needs to be applied interior to one or both of the eyesplices to elongate the individual loops.


The slotted button 20 can be attached to the tibial end of the loop (to the proximal, thinner non-spliced loop segment) after it is passed through the tibia (the detachable, removable button 20). The graft button 10 may be an exemplary 10 mm round button (having four regular holes) with two small “extra” holes to allow stitching to the graft. The detachable button 20 may be an exemplary 12 mm×8 mm button and is slotted to allow assembly onto the loop construct.


A driver instrument 60 (FIGS. 7-9) easily holds button 20 for loading. Driver 60 includes a “forked” tip 66 at the distal end of shaft 67 with prongs 68 which detachable hold button 20. Once the button 20 is loaded, the forked tip 66 can be retracted by sliding a button 61 on handle 62 of the driver 60, which will release the button 20. The button is released and pulled distally. The button cannot fall off the loop and the implant 100 can be tightened. FIG. 9 is a perspective view of the reconstruction assembly 100 of the invention, with fixed, graft button 10 and removable, detachable button 20 secured on knotless, adjustable, flexible suture loop (suture member) 50.



FIGS. 10-16 illustrate the exemplary steps followed to attach construct 100 to bone block 91 of the PCL graft 90. A method of assembling PCL graft construct involves inter alia the steps of: (i) providing at least one flexible, adjustable loop 50 construct (a four-point knotless fixation device) that is capable of adjusting tension (i.e., is provided with a loop having an adjustable perimeter and length); (ii) attaching the button 10 of the loop construct 50 to a bone block 91 of a PCL graft 90 by suturing the button 10 to the graft 90 through laterally arranged small holes that go through the bone block 91; (iii) passing the adjustable loop 50 through a tibial tunnel; (iv) assembling a detachable button 20 onto the loop of the construct 50 exiting the tibia (onto the thinner, non-spliced loop segment); and (v) subsequently, tightening the loop construct to fix the bone block portion of the PCL graft into the posterior socket.



FIGS. 10-13 illustrate one embodiment of preparing the graft 90. Place a coring reamer 92 next to the bone tendon junction in the desired location of the final graft. Use the reamer 92 to drill a 2.4 mm hole through the bone plug 91. Replace the drill pin with the collared pin 93 from the coring reamer. Ream until the blade reaches the tendon. Remove excess bone with a sagital saw and rongeur to form bone inlay 94 with passageway 95, until the graft fits in the appropriate sized hole in the sizing block.


Place a passing suture through button 10 and pass through hole 95 (FIG. 14). Pull the button 10 down tightly against the tendinous portion of the graft 90. Use the open holes in the button 10 to attach the button to the tendon 90. With needle 56 stitch the button 10 with suture 96 with whip stitches 97 and 98 (FIGS. 15-16). The attachable button 20 can be loaded onto the implant, over the anterior tibia and tensioned by pulling on shortening strands.


The adjustable suture-button construct of the present invention facilitates tibial fixation of the arthroscopic inlay technique. The arthroscopic inlay provides the benefits of traditional, open inlay PCL reconstruction with the advantage of being an arthroscopic procedure. As illustrated in FIGS. 18-20, use a guide and a drill for example, an Arthrex RetroConstruction™ Guide and a FlipCutter®) about equal to the size of the reamer 92 to drill a socket 105 approximately 12 mm deep over the PCL tibial insertion site. Remove the FlipCutter® 102 from the drill sleeve 104 while holding sleeve in place for suture passing. Pass passing suture 106 (for example, a #2 Fiberstick™) through the drill sleeve and into the joint for retrieval through the anteromedial portal.


As illustrated in FIGS. 21-24, a wire (passing suture) is retrieved from the joint through a peripatellar arthroscopy portal, and then utilized to introduce the graft/implant 100 into the knee. An arthroscopic grasper to hold the graft 90 at the tendon bone junction inferiorly and push the graft posterior until it reaches the tibial socket. Hold light tension on the implant (not tensioning strands) to guide the graft 90 into position. When the bone block 94 of the graft 90 has reached the tibial socket, as seen arthroscopically and fluoroscopically, pull distally to seat graft 90. Once the loop construct exits the anterior tibial cortex, button 20 with attachment features (such as slots, for example) is assembled by the surgeon onto the loop and sliding the button 20 distally to the end of the implant. (FIGS. 25 and 26). Tension strands 34, 36 of the implant/construct symmetrically and remove any slack buildup created by one strand by pulling on the other, then pull to cinch up the loop construct and fix the bone block portion of the graft into the posterior socket. (FIGS. 27-28). The suture is thicker in the end of the implant, ensuring that the button 20 cannot become disassembled from the suture. Once the graft 90 is seated, the tensioning strands may be cut. A knot may be tied before cutting sutures, to protect the implant during cutting and to act as backup fixation. Proceed with femoral graft passing and fixation.



FIGS. 29-46 illustrate other exemplary fixation assemblies of the present invention and associated methods of ligament reconstructions, e.g., for ACL repair. In one embodiment two reconstruction assemblies 100 are provided with only removable, detachable buttons 20. In another embodiment, reconstruction assembly 100 with a removable button and a second reconstruction assembly 200 with a fixed oblong button are used with graft 190.



FIG. 29 illustrates the reconstruction assembly 200 with fixed button 230 and the adjustable, knotless, flexible suture construct 250, similar to construct 50, with splices 240, 245. As with reconstruction assembly 100, reconstruction assembly 200 includes the adjustable knotless suture construct of the present invention formed from an open ended, flexible member, for example, a braided suture, and is formed in a similar manner. A first suture tail shortening strand (a free suture end) of the flexible member is spliced through a first segment of the suture on one side of a mid-section of the flexible member. A first adjustable loop “1” is formed. A second suture tail, shortening strand (the other free suture end) is first passed through the loop 1 and then spliced through a second segment of the suture on another side of the mid-section to form the adjustable suture construct, illustrated above. The first and second segments are offset and separate from one another. Pulling on the free ends of the suture (i.e., the shortening strands) adjusts the length of the graft support.


Suture-button constructs 50, each without a button, are loaded onto the graft 190. (FIG. 30). Alternatively, suture-button construct 50 with a detachable button and any suitable adjustable suture-button construct, such as the ACL suture-button construct 200 with a fixed button are loaded on respective sides of graft 190, as illustrated in FIG. 31. Once loaded, the graft 190 is folded into a loop and sutured to create a graft construct 190 (“GraftLink®”), FIGS. 32 and 33.


Femoral and tibial sockets are prepared in the knee, the passing sutures placed, and graft 190 is taken off preparation station, FIGS. 34 and 35. The femoral adjustable suture-button construct 200 (or 100) is passed and the shortening strands are pulled to advance graft to femur (FIGS. 36-37). In the case of two adjustable suture-button constructs 100, one is similarly passed and pulled through the femoral tunnel.


As illustrated in FIGS. 38-42, the tibial passing suture is tied to adjustable suture-button construct 100 which includes a removable button to be subsequently assembled and passed through the tibia. The tibial construct 100 is passed through the tibia completely, and button 20 loaded by sliding the proximal, thinner part of loop 50 through the slots 22 of button 20 (FIGS. 43 and 44).



FIGS. 45-46): The button 20 is pulled down to the end of the loop 50, near the tensioning sutures 34 and 36. The tensioning sutures are then pulled to shorten the implant which brings the button to bone and tensions the graft. After appropriate graft tension is reached sutures may be cut and surgery is complete. A knot (for example, a square knot) may be tied over the button 20 to protect the splice from being damaged and as backup fixation to the self locking suture-button construct.



FIGS. 47-52 illustrate another suture-button construct 300 of the present invention including one adjustable and one fixed loop. The suture-button construct 300 may be used in conjunction with a detachable, removable button (such as button 20 described above) for the PCL repair detailed above, or for any other fixation of tissue in surgical repairs.



FIG. 47 shows a strand of flexible material 220 (for example, an UHMWPE braid 220) with a fixed eyesplice 222 at one end (fixed by stitching/interweaving individual strands, as known in the art) to be passed through button 260. FIGS. 48-52 illustrate sequential exemplary steps of a method of forming/assembling construct 300 (FIG. 51) of the present invention. The construct includes one adjustable and one fixed loop, with an adjustable splice 240 (FIG. 50). One strand controls the length of the loop, eliminating the need to construct multiple loops evenly. Stitching is one option for the fixed eyesplice but may include other methods of locking/creating the fixed splice. For example, one such alternative is tying knots 401, 402 at either end of an adjustable splice (as shown in FIG. 52) to form construct 400. The knots 401, 402 are too bulky to pass through the splice tunnel and prevent adjustment of the splice loop. This results in a strong fixed loop without stitching.


While the present invention is described herein with reference to illustrative embodiments for particular applications, it should be understood that the invention is not limited thereto. Those having ordinary skill in the art and access to the teachings provided herein will recognize additional modifications, applications, embodiments and substitution of equivalents all fall within the scope of the invention. Accordingly, the invention is not to be considered as limited by the foregoing description.

Claims
  • 1. A method of ligament fixation at a site, comprising the steps of: providing at least one adjustable, knotless, flexible loop construct having an adjustable length, two splices that are interconnected, and tractable suture ends, and at least one button that is adapted for engagement with the adjustable, knotless, flexible loop construct;engaging the at least one adjustable, knotless, flexible loop construct with a ligament;positioning the at least one adjustable, knotless, flexible loop construct and engaged ligament into a bone tunnel;assembling the at least one button to the at least one adjustable, knotless, flexible loop construct, the at least one button being configured to removably attach to and detach from the adjustable, knotless, flexible loop construct; andadjusting the length of the at least one adjustable, knotless, flexible loop construct to secure the ligament and engage the at least one button at the site.
  • 2. The method of claim 1, wherein the ligament is a PCL graft configured to engage the tibial cortex.
  • 3. The method of claim 1, wherein the button that is adapted for engagement is non-securely attached to the adjustable, knotless, flexible loop construct, the button having an elongate body with attachment features that permit attachment to and removal from the adjustable, knotless, flexible loop construct.
  • 4. The method of claim 3, wherein the attachment features include lateral, symmetrical slots disposed on a circumference of the elongate body.
  • 5. The method of claim 1, wherein the step of engaging the at least one adjustable, knotless, flexible loop construct with a ligament further includes providing the at least one adjustable, knotless, flexible loop construct with a second button that is sutured to the ligament.
  • 6. The method of claim 1, wherein providing at least one adjustable, knotless, flexible loop construct having an adjustable length, two splices that are interconnected, and tractable suture ends, and at least one button that is adapted for engagement with the adjustable, knotless, flexible loop construct includes providing a second adjustable, knotless, flexible loop construct having an adjustable length, two splices that are interconnected, and tractable suture ends, wherein the second adjustable, knotless, flexible loop construct also engages a ligament.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/414,715, filed Nov. 17, 2010, the entire disclosure of which is incorporated by reference herein.

US Referenced Citations (168)
Number Name Date Kind
3176316 Bodell Apr 1965 A
3409014 Shannon Nov 1968 A
4187558 Dahlen et al. Feb 1980 A
4301551 Dore et al. Nov 1981 A
4400833 Kurland Aug 1983 A
4776851 Bruchman et al. Oct 1988 A
4790850 Dunn et al. Dec 1988 A
4792336 Hlavacek et al. Dec 1988 A
4851005 Hunt et al. Jul 1989 A
4863471 Mansat Sep 1989 A
4917700 Aikins Apr 1990 A
4932972 Dunn et al. Jun 1990 A
5024669 Peterson et al. Jun 1991 A
5026398 May et al. Jun 1991 A
5129902 Goble et al. Jul 1992 A
5171274 Fluckiger et al. Dec 1992 A
5211647 Schmieding May 1993 A
5217495 Kaplan et al. Jun 1993 A
5263984 Li et al. Nov 1993 A
5266075 Clark et al. Nov 1993 A
5306301 Graf et al. Apr 1994 A
5320626 Schmieding Jun 1994 A
5397357 Schmieding et al. Mar 1995 A
5417699 Klein et al. May 1995 A
5562669 McGuire Oct 1996 A
5575819 Amis Nov 1996 A
5628756 Barker et al. May 1997 A
5643266 Li Jul 1997 A
5645588 Graf et al. Jul 1997 A
5931869 Boucher et al. Aug 1999 A
5961520 Beck et al. Oct 1999 A
5964764 West, Jr. et al. Oct 1999 A
6056752 Roger May 2000 A
6099530 Simonian et al. Aug 2000 A
6099568 Simonian et al. Aug 2000 A
6110207 Eichhorn et al. Aug 2000 A
6159234 Bonutti et al. Dec 2000 A
6193754 Seedhom Feb 2001 B1
6203572 Johnson et al. Mar 2001 B1
6283996 Chervitz et al. Sep 2001 B1
6296659 Foerster Oct 2001 B1
6325804 Wenstrom et al. Dec 2001 B1
6517578 Hein Feb 2003 B2
6533802 Bojarski et al. Mar 2003 B2
7097654 Freedland Aug 2006 B1
7494506 Brulez et al. Feb 2009 B2
7686838 Wolf et al. Mar 2010 B2
7749250 Stone et al. Jul 2010 B2
7776039 Bernstein et al. Aug 2010 B2
7819898 Stone et al. Oct 2010 B2
7828855 Ellis et al. Nov 2010 B2
7875057 Cook et al. Jan 2011 B2
7905903 Stone et al. Mar 2011 B2
7914539 Stone et al. Mar 2011 B2
8109965 Stone et al. Feb 2012 B2
8118836 Denham et al. Feb 2012 B2
8162997 Struhl Apr 2012 B2
8206446 Montgomery Jun 2012 B1
8231654 Kaiser et al. Jul 2012 B2
20010041938 Hein Nov 2001 A1
20020161439 Strobel et al. Oct 2002 A1
20030114929 Knudsen et al. Jun 2003 A1
20040015171 Bojarski et al. Jan 2004 A1
20040059415 Schmieding Mar 2004 A1
20040073306 Eichhorn et al. Apr 2004 A1
20040243235 Goh et al. Dec 2004 A1
20040267360 Huber Dec 2004 A1
20050004670 Gebhardt et al. Jan 2005 A1
20050033363 Bojarski et al. Feb 2005 A1
20050065533 Magen et al. Mar 2005 A1
20050070906 Clark et al. Mar 2005 A1
20050137704 Steenlage Jun 2005 A1
20050149187 Clark et al. Jul 2005 A1
20050171603 Justin et al. Aug 2005 A1
20050203623 Steiner et al. Sep 2005 A1
20050261766 Chervitz et al. Nov 2005 A1
20060067971 Story et al. Mar 2006 A1
20060095130 Caborn et al. May 2006 A1
20060142769 Collette Jun 2006 A1
20060265064 Re et al. Nov 2006 A1
20070021839 Lowe Jan 2007 A1
20070083236 Sikora et al. Apr 2007 A1
20070118217 Brulez et al. May 2007 A1
20070162123 Whittaker et al. Jul 2007 A1
20070162125 LeBeau et al. Jul 2007 A1
20070179531 Thornes Aug 2007 A1
20070225805 Schmieding Sep 2007 A1
20070239209 Fallman Oct 2007 A1
20070239275 Willobee Oct 2007 A1
20070250163 Cassani Oct 2007 A1
20070270857 Lombardo et al. Nov 2007 A1
20080046009 Albertorio et al. Feb 2008 A1
20080177302 Shurnas Jul 2008 A1
20080188935 Saylor et al. Aug 2008 A1
20080188936 Ball et al. Aug 2008 A1
20080208252 Holmes Aug 2008 A1
20080215150 Koob et al. Sep 2008 A1
20080228271 Stone et al. Sep 2008 A1
20080234819 Schmieding et al. Sep 2008 A1
20080243248 Stone et al. Oct 2008 A1
20080275553 Wolf et al. Nov 2008 A1
20080275554 Iannarone et al. Nov 2008 A1
20080300683 Altman et al. Dec 2008 A1
20080312689 Denham et al. Dec 2008 A1
20090018654 Schmieding et al. Jan 2009 A1
20090030516 Imbert Jan 2009 A1
20090054982 Cimino Feb 2009 A1
20090062854 Kaiser et al. Mar 2009 A1
20090082805 Kaiser et al. Mar 2009 A1
20090187244 Dross Jul 2009 A1
20090216326 Hirpara et al. Aug 2009 A1
20090228017 Collins Sep 2009 A1
20090234451 Manderson Sep 2009 A1
20090265003 Re et al. Oct 2009 A1
20090275950 Sterrett et al. Nov 2009 A1
20090306776 Murray Dec 2009 A1
20090306784 Blum Dec 2009 A1
20090312776 Kaiser et al. Dec 2009 A1
20100049258 Dougherty Feb 2010 A1
20100049319 Dougherty Feb 2010 A1
20100100182 Barnes et al. Apr 2010 A1
20100145384 Stone et al. Jun 2010 A1
20100145448 Montes De Oca Balderas et al. Jun 2010 A1
20100211075 Stone Aug 2010 A1
20100211173 Bardos et al. Aug 2010 A1
20100249930 Myers Sep 2010 A1
20100268273 Albertorio et al. Oct 2010 A1
20100268275 Stone et al. Oct 2010 A1
20100274355 McGuire et al. Oct 2010 A1
20100274356 Fening et al. Oct 2010 A1
20100292792 Stone et al. Nov 2010 A1
20100305709 Metzger et al. Dec 2010 A1
20100312341 Kaiser et al. Dec 2010 A1
20100318188 Linares Dec 2010 A1
20100324676 Albertorio et al. Dec 2010 A1
20100331975 Nissan et al. Dec 2010 A1
20110040380 Schmieding et al. Feb 2011 A1
20110046734 Tobis et al. Feb 2011 A1
20110054609 Cook et al. Mar 2011 A1
20110087284 Stone et al. Apr 2011 A1
20110098727 Kaiser et al. Apr 2011 A1
20110112640 Amis et al. May 2011 A1
20110112641 Justin et al. May 2011 A1
20110118838 Delli-Santi et al. May 2011 A1
20110137416 Myers Jun 2011 A1
20110184227 Altman et al. Jul 2011 A1
20110196432 Griffis, III Aug 2011 A1
20110196490 Gadikota et al. Aug 2011 A1
20110218625 Berelsman et al. Sep 2011 A1
20110238179 Laurencin et al. Sep 2011 A1
20110270278 Overes et al. Nov 2011 A1
20110276137 Seedhom et al. Nov 2011 A1
20110288635 Miller et al. Nov 2011 A1
20110301707 Buskirk et al. Dec 2011 A1
20110301708 Stone et al. Dec 2011 A1
20120046746 Konicek Feb 2012 A1
20120046747 Justin et al. Feb 2012 A1
20120053630 Denham et al. Mar 2012 A1
20120065732 Roller et al. Mar 2012 A1
20120089143 Martin et al. Apr 2012 A1
20120109299 Li et al. May 2012 A1
20120123474 Zajac et al. May 2012 A1
20120150297 Denham et al. Jun 2012 A1
20120165938 Denham et al. Jun 2012 A1
20120197271 Astorino et al. Aug 2012 A1
20120296345 Wack et al. Nov 2012 A1
20130023928 Dreyfuss Jan 2013 A1
20130023929 Sullivan et al. Jan 2013 A1
Foreign Referenced Citations (7)
Number Date Country
199 26 626 Dec 2000 DE
0 440 991 Aug 1991 EP
1 108 401 Jun 2001 EP
1 707 127 Oct 2006 EP
WO 2008091690 Jul 1931 WO
WO 2007002561 Jan 2007 WO
WO 2008091690 Jul 2008 WO
Non-Patent Literature Citations (1)
Entry
Eric McCarty, M.D., “ZipTight Fixation System Featuring ZipLoop Technology, Acute AC Joint Reconstruction,” Biomet Sports Medicine, 2010.
Related Publications (1)
Number Date Country
20120123541 A1 May 2012 US
Provisional Applications (1)
Number Date Country
61414715 Nov 2010 US