This invention relates generally to a dental bridge and, more particularly, to bridge framework for use in producing tooth-replacement bridges or splinting unstable teeth.
In some aspects and in some constructions, an adjustable system for bonded composites may generally include a ladder supporting a truss in one of multiple relative positions therewith. The ladder generally includes opposing rails connected by a plurality of rungs. The plurality of rungs are spaced along the rails to define a plurality of openings between adjacent rungs. The truss generally includes a metal strip having a plurality of upstanding projections. The projections are correspondingly spaced with the openings defined in the ladder to allow the truss to engage the ladder in a plurality of relative configurations. The combination of the ladder and truss may also provides a torsionally rigid and substantially stiff assembly with which to support one or more pontics and/or unstable teeth.
In some aspects and in some constructions, a system for bonded composites may generally include a reinforced substructure for supporting a pontic. The reinforced metal substructure may be substantially webbed, or generally includes a plurality of apertures or perforations therethrough to allow the flow or seepage of resin through and around the metal substructure for increased bonding strength of the resin between the pontic and the metal substructure. The substructure also generally includes reinforcing structure or framework in a direction along the ladder and truss, to which the metal substructure is coupled, and in a direction substantially normal to the ladder and truss.
In some aspects and in some constructions, a system for bonded composites may generally include the ladder and truss structure having a sufficient length to extend substantially through one or more teeth and a plurality of apertures or perforations therein to allow the flow or seepage of resin through and around the ladder and truss for increased bonding strength of the resin between the supporting one or more teeth and the ladder and truss.
In some aspects and in some constructions, a system for bonded composites may generally include provisions for occlusal stops. One or more projections on the truss may be configured to extend sufficiently far through the ladder such that the one or more projections serve to slow or halt the occlusal wear of the pontic.
In some aspects and in some constructions, a system for bonded composites may generally include a bendable ladder structure configured to go through a quadrant of teeth, a half-arch of teeth, or a full arch of teeth. The ladder structure may also be configured with an anterior segment for full or partial arch splinting. The anterior segment may include a single rail connecting ladder structures at opposite ends thereof, in addition to a plurality of apertures or perforations therethrough to allow the flow or seepage of resin through and around the ladder and truss for increased bonding strength of the resin between the supporting one or more teeth and the anterior segment. In addition, the bendable ladder structure may support a relatively long span of teeth or other attachments (e.g., arch wires).
In some aspects and in some constructions, a system for bonded composites may generally include a ladder and truss structure adaptable by the dentist and/or oral surgeon while sitting chair side with their patients. The adjustability built into the ladder and truss structure allows the dentist and/or oral surgeon to make adjustments to the composite without having to send it off-site to a laboratory.
Independent features and independent advantages of the present invention will become apparent to those skilled in the art upon review of the following detailed description, claims and drawings.
a is an enlarged perspective view illustrating the connection between the anterior arch wire shown in
b is a perspective view of the combination of the anterior arch wire shown in
a is an exploded view of the assembly shown in
b is a perspective view of the assembly of
a is a perspective view of the assembly shown in
b is a perspective view of the assembly shown in
a is a perspective view of the assembly shown in
a is a perspective view of another arrangement of a bridge with two reinforcing structures adjacent to one another, the middle reinforcing structure coupled to a pontic partially filled with composite resin and adjacent to a tooth.
a is an exploded view of the assembly shown in
b is an exploded view of another construction of the reinforcing structure, with a metal substructure coupled to a cast bridge.
c is an assembled view of the construction shown in
d is an assembled view of the construction shown in
a-25c are views of the insert shown in
a is a perspective view of the insert shown in
b is a perspective view of the insert bonded to a quarter of a pontic shown in
c is a perspective view of the insert bonded to a quarter of a pontic shown in
a are views of a bridge with a reinforcing structure of
Before any features and at least one construction of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other constructions and of being practiced or being carried out in various ways. Also, it is understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including”, “having” and “comprising” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
Although references may be made below to directions, such as upper, lower, downward, upward, rearward, bottom, front, rear, etc., in describing the drawings, these references are made relative to the drawings (as normally viewed) for convenience. These directions are not intended to be taken literally or limit the present invention in any form. In addition, terms such as “first” and “second” are used herein for purposes of description and are not intended to indicate or imply relative importance or significance.
In some aspects and in some constructions, the present invention may generally provide an adjustable system for bonded composite dentistry. The system for bonded composites generally includes multiple parts that can be altered and used alone or in combination to perform a plurality of operations such as, for example, splinting unstable teeth, supporting pontics, bridging gaps between teeth, preventing additional wear on new or existing teeth, etc.
As shown in
In the illustrated construction, the rails 12 each include a plurality of apertures or perforations 16 therethrough. The apertures 16 can be round and are distributed along the ladder 10 to, for example, allow for the flow of composite resin. In the illustrated construction, the rails 12 are configured such that they are separable from one another so a segment comprising a singular rail may be formed, if desired, as part of the overall framework of the ladder 10.
The plurality of rungs 14 are spaced along the rails 12 to define a plurality of openings 18 between adjacent rungs 14. The rungs 14 may be hollow or solid. The rungs 14 may have various cross-sectional shapes such as, for example, round, oval or square.
With reference to
In the illustrated construction, the truss 20 includes a strip 22 having a plurality of upstanding projections 24. The projections 24 may act as occlusal stops and to protect the biting portion of bonded teeth from the wear that occurs through mastication and contact with the opposite set of teeth. The projections 24 of the truss 20 are correspondingly spaced with the openings 18 defined in the ladder 10 to allow the truss 20 to engage the ladder 10 in a plurality of relative configurations to yield abridge. One or more apertures 26 may also be formed through the truss 20 in a location between the projections 24.
The projections 24 may be arranged on the truss 20 to engage in the opening 18 between every, every other, every third or every fourth rung 14 in the ladder 10. As a result, the truss 20 may fit precisely between the two rails 12, and the projections 24 may fit precisely in the opening 18 between every, every other, every third, or every fourth rung 14 in the ladder 10 to interlock the truss 20 and ladder 10. In addition, the projections 24 may act as occlusal stops by extending above the ladder 10 (e.g., ending 1-1.5 mm above the height of the top portion of the rails 12 and rungs 14). The truss 20, after interlocking with the ladder 10, reinforces and/or bridges the openings or open span between the rungs 14 on the ladder 10.
The substructure 28 can be connected to a cross truss 32, as shown in
One or more portions of the truss 20 (e.g., the strip 22, the projections 24, the substructure 28, the cross truss 32, etc.) may be formed of metal. In the illustrated construction, the structures of the truss 20 are formed of metal. In other constructions, one or more of the structures of the truss 20 may be formed of another material.
With reference to
As illustrated in
With reference to
Adding a shield 42 to the combination of the segment 36, bridge 35, and reinforcing structure 34 of
In the illustrated construction, the arch wire 48 is a solid wire as opposed to the segment 36 with perforations 40. The arch wire 48 can have a variety of applications including, for example, supporting anterior teeth that may be loose or maintaining alignment of anterior teeth. The arch wire 48 can be bonded to the back of a row of teeth, as understood in the art.
a and 14b show two reinforcing structures 34 supported by bridge 35. Two or more reinforcing structures 34 (arranged side by side or otherwise) may be used in this system because of the reinforcing nature of the bridge 35 provided by the truss 20 interlocking with the ladder 10. In the illustrated construction and in some aspects, this combination increases the compressive strength and resistance to torquing of the pontic provided by the metal substructure 28. The strength of the bridge 35 may also be increased by splinting as many teeth as possible to stabilize the pontic. In other words, the more abutments incorporated on either side of the reinforcing structure 34, the stronger the bridge 35.
a and 15b illustrate the bridge 35 with one reinforcing structure 34a for supporting a pontic with the bridge 35 inserted into an adjacent tooth 52 and an internal view of the bridge 35 inserted into a tooth 52 on the right. Referring to the tooth 52 in the middle, composite resin has been partially added near the bridge 35 with a goal of bonding the bridge 35 to the middle tooth 52. This is, in effect, a prefabricated, performed composite bridge 52, which can be manufactured and supplied to dentists before a patient actually needs this bridge 35. In other words, this preformed bridge 35 could be kept in storage until the appropriate time. This preformed bridge 35 could be bonded wherever a bicuspid or molar is missing. With reference to the reinforcing structure 34 on the left side, additional ladder inserts 54 with perforations 16 are shown running parallel to the ladder 10 to provide, for example, increased bonding surface area, increased strength, etc.
a show the bridge 35 and the reinforcing structure 34 during the process of inserting a pontic 64 onto the reinforcing structure 34. Pontics 64 used with the illustrated constructions of the bridge 35 can have various sizes. The pontic 64 illustrated in
With reference to
a-20d show a cast bridge 72 with reinforcing structure 34. The ladder 10 and truss 20 are merged into a one piece flat plane cast bridge 72. The cast bridge 72 may be made of an appropriate material, such as, for example, gold, titanium, laboratory processed composite, etc. The cast bridge 72 is imbedded into unpolymerized composite resin, and then the resin is tamped over and light-polymerized or cured. Thus, the cast bridge 72 will form the contact points, the marginal ridges, and the occlusal stops of a bonded, composite restoration.
As shown in
In some aspects, the present invention also generally includes a system for making and installing a temporary bridge, in which the dentist makes the temporary bridge chair side. The dentist first selects the appropriate length of the ladder 10 and snaps in a section of the truss 20 with one, two, three, or more reinforcing structures 34 depending on how many teeth are missing.
The dentist can select a reinforcement 70 that slides into the side apertures or perforations 16 in the rails 12. The fingers 66 sit lingual to the prepared teeth (e.g., molar, bicuspid, cuspid, lateral, and central), and the dentist sets a small amount of unpolymerized light-cured composite on the occlusal surface of the prepared teeth.
The dentist places the ladder 10, truss 20, and one or more reinforcing structures 34 into the unpolymerized light-cured composite. The dentist partially light-cures the resin without bonding the resin to the tooth. The dentist takes a vacuum-formed clear stent and fills it with acrylic or composite, then sets it over the ladder 10 and truss 20 on the prepared teeth, so that when the temporary bridge is removed, the ladder 10, truss 20, and pontic(s) are picked up because they are internally incorporated in the temporary bridge. The projections 24 on the truss 20 act as occlusal stops to prevent the wearing of the bridge. The temporary bridge is both reinforced and slow to wear occlusally to provide a long-term temporary bridge.
In contrast, in conventional dental bridges, the laboratory fashions the temporary bridge in a different manner. After receiving the study models and bite from the dentist, the laboratory prepares the designated teeth for crown preps. The laboratory selects the appropriate length and pontic size for the bridge and appropriate lingual reinforcement systems. The laboratory constructs the metal reinforced temporary bridge for placement by the dentist into the patient's mouth.
In some aspects, the system of the present invention eliminates any casting to be done because the individual components (e.g., the ladder 10, truss 20, substructure 28, etc.) can be a part of an extensive kit available to the dentist. For the reinforced single, double, or more pontic bridge, all the dentist, has to do is send the laboratory a set of unprepared study models, a bite, and a shade. The laboratory can groove the MO, DO, MOD preps in the adjacent teeth and fabricate a trim coping for the dentist to follow. The laboratory can then fabricate the bridge. When the dentist receives the bridge, the dentist only needs to put the trim coping in the patient's mouth, groove the teeth, apply the bonding resin, put the composite into the grooves, press the ladder 10 and truss 20 into the composite, tamp it over, light-cure the ladder 10 and truss 20 into the composite, and finally adjust the occlusion.
The ladder 10 and truss 20 of the present invention can be used in a variety of different applications. In one exemplary application, the ladder 10 and truss 20 can be used to stabilize mobile teeth up to and including an entire arch using just the ladder 10, or the ladder 10 in combination with the truss 20 or the truss 20 with the substructure 26 for anchoring the pontic. This is accomplished by embedding the ladder 10 and truss 20 into MO, DO, or MOD preparations in the teeth to be stabilized, in which unpolymerized composite resin has been placed. After seating the ladder 10 and truss 20, the resin oozes through the apertures or perforations 16 in the ladder 10 and the apertures 26 in the truss 20. After the resin is sufficiently set, it is tamped down and molded. The composite resin is then light cured or polymerized to create a permanent reinforced bridge.
As shown in
In another exemplary application, the interlocking ladder 10 and truss 20 with substructure(s) 28 and pontic(s) can be used to replace a missing tooth or teeth at any location over the arch. An artificial tooth or teeth can be formed around the metal substructure 28 by the dentist chair-side either free-hand or with celluloid pontic halves made from composite resin (light-cured or light-polymerized). The artificial tooth or teeth can also be fabricated in a dental laboratory by a dental laboratory technician. The resulting bridge is then bonded in two or more teeth after preparation of those teeth by the dentist and inserting the ladder 10 and truss 20 as previously discussed.
In yet another exemplary application, the interlocking ladder 10 and truss 20 with or without metal substructure(s) or pontic(s) may be used by a dentist or laboratory technician to construct a metal reinforced temporary bridge with metal occlusal stops, eliminating the conventional use of custom metal castings. The ladder 10 and truss 20 with or without metal substructure(s) 28 or pontic(s) are incorporated chair-side by the dentist using acrylic or composite resin in conjunction with a vacuum-formed clear celluloid bridge form, or by the laboratory using heat processed acrylic.
In another exemplary application, the ladder 10 and truss 20 as designed without the metal substructure(s) 28 or pontic(s) can also be cast as one piece. The castings can be made from an appropriate material, such as, for example, titanium, dental hard-gold alloy, crown and bridge non-precious metal, stainless steel, cast ceramic such as Empress, among other materials. The castings can fit within an MO, DO, or MOD restoration to act as a reinforcement, contact point or former, occlusal and marginal ridge stops for the MO, DO, or MOD light-cured composite restoration into which they are embedded to enhance the strength, longevity and durability of a light-cured or light-polymerized resin restoration. The castings can also be used to reinforce a single temporary crown as previously discussed. The ladder 10 and truss 20 can provide a long lasting temporary crown, which is substantially resistant to occlusal wear.
In yet another exemplary application, the ladder 10 and truss 20, with or without metal substructure(s) or pontic(s), may also be used by a laboratory to fabricate an all-composite (such as BELLE GLASS) permanent bridges. After the dentist supplies an impression of conventionally prepared teeth, the laboratory can incorporate the ladder 10 and truss 20 with pontic(s) into a composite bridge to reinforce spans of missing teeth. Such structure can substantially resist torquing and provide occlusal stops and mesial and distal marginal ridge stops. Additionally, all of the previously-discussed applications may all be accomplished at the same time in the same arch.
The present application claims the benefit of prior filed, co-pending provisional patent Application Ser. No. 60/529,475, filed Dec. 15, 2003. The present application incorporates by reference Application Ser. No. 60/529,475, and the entire disclosure of that application is considered as being part of the present application.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US04/41981 | 12/15/2004 | WO | 4/11/2007 |
Number | Date | Country | |
---|---|---|---|
60529475 | Dec 2003 | US |