Adjustable tether and epicardial pad system for prosthetic heart valve

Information

  • Patent Grant
  • 11045183
  • Patent Number
    11,045,183
  • Date Filed
    Tuesday, May 22, 2018
    6 years ago
  • Date Issued
    Tuesday, June 29, 2021
    2 years ago
Abstract
Apparatus and methods are described herein for repositioning a tether attached to a prosthetic heart valve. In some embodiments, a method includes inserting a distal end portion of a snare device through an incision at a first location in a ventricular wall of a heart and within the left ventricle of the heart. A tether extending from a prosthetic mitral valve, through the left ventricle and out an incision at a second location on the ventricular wall of the heart is snared with the snare device. The tether is pulled with the snare device such that a proximal end of the tether is moved back through the incision at the second location on the ventricular wall and into the left ventricle. The snare device is pulled proximally such that the tether is pulled proximally through the incision at the first location in the ventricular wall of the heart.
Description
BACKGROUND

Embodiments are described herein that relate to devices and methods for anchoring a prosthetic heart valve replacement.


A known design for a prosthetic mitral valve employs a tether coupled between the valve and the wall of the ventricle to help secure the prosthetic valve in the native valve apparatus. Problems can arise with a prosthetic valve employing such a tether if the tether is not properly tensioned or if the tether has been deployed in a less than optimal angular configuration or has migrated such that the valve axis is no long orthogonal to the annular plane.


Thus, a need exists for improved devices and methods for deploying and anchoring prosthetic heart valves, and that can provide the ability to adjust the tension on an anchoring tether and/or to reposition an anchor location for a prosthetic heart valve.


SUMMARY

Apparatus and methods are described herein for repositioning a tether attached to a prosthetic heart valve. In some embodiments, a method includes inserting a distal end portion of a snare device through an incision at a first location in a ventricular wall of a heart and within the left ventricle of the heart. A tether extending from a prosthetic mitral valve, through the left ventricle and out an incision at a second location on the ventricular wall of the heart is snared with the snare device. The tether is pulled with the snare device such that a proximal end of the tether is moved back through the incision at the second location on the ventricular wall and into the left ventricle. The snare device is pulled proximally such that the tether is pulled proximally through the incision at the first location in the ventricular wall of the heart.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional illustration of a portion of a heart, including the left atrium and the left ventricle, with a prosthetic mitral valve implanted therein and an epicardial anchor device anchoring the mitral valve in position via a ventricular tether.



FIG. 2 is a cross-sectional illustration of a portion of a heart, including the left atrium and the left ventricle, with a prosthetic mitral valve implanted therein with a ventricular tether secured by an epicardial anchor, and an adjustment and tensioning element operatively associated with the epicardial anchor.



FIG. 3 is a cross-sectional illustration of portion of a heart, including the left atrium and the left ventricle, with a prosthetic mitral valve implanted therein with a ventricular tether secured by an epicardial anchor, and an intra-ventricular adjustment and tensioning element coupled to the tether.



FIG. 4 is a side view of an embodiment of an S-shaped load element for use in a tension gauge.



FIG. 5 is a side view of an embodiment of a roller-type load element for use in a tension gauge.



FIG. 6 is a cross-sectional view of a portion of a heart, including the left atrium and the left ventricle, with a prosthetic mitral valve implanted therein and an epicardial anchor device anchoring the prosthetic mitral valve via a tether in a first location on a ventricular wall the heart.



FIGS. 7 and 8 are each a cross-sectional view a portion of the left ventricle of the heart, illustrating the tether being moved to a second location and securing the tether with a new epicardial pad at a second location on the ventricular wall of the heart using an intraventricular snare device, according to an embodiment.



FIG. 9 illustrates an angle of the tether relative to the prosthetic mitral valve of FIG. 6 after being moved to the second location on the ventricular wall of the heart.



FIG. 10 is a cross-sectional view a portion of a heart, including the left atrium and the left ventricle, with a prosthetic mitral valve implanted therein and an epicardial anchor device anchoring the prosthetic mitral valve via a tether in a first location on a ventricular wall the heart.



FIGS. 11-14 are each a cross-sectional view a portion of the left ventricle of the heart, illustrating the tether of FIG. 10 being moved and secured with a new epicardial pad at a second location on the ventricular wall of the heart using an intraventricular catheter device, according to an embodiment.



FIGS. 15 and 16 are each a cross-sectional view a portion of a heart, including the left atrium, the left ventricle, the right atrium and the right ventricle, with a prosthetic tricuspid heart valve implanted within the right atrium, and illustrating a method of anchoring the prosthetic valve via a tether and epicardial anchor device, according to an embodiment.



FIG. 17 is a cross-sectional view a portion of a heart, including the left atrium and the left ventricle, with a prosthetic mitral valve implanted therein and an epicardial anchor device anchoring the prosthetic mitral valve via a tether in a first location on a ventricular wall the heart.



FIGS. 18-20 are each a cross-sectional view a portion of the left ventricle of the heart, illustrating the tether of FIG. 17 being moved and secured with a new epicardial pad at a second location on the ventricular wall of the heart using an intraventricular catheter device, according to an embodiment.



FIGS. 21-23 are each a flowchart illustrating a different method of repositioning a tether to secure a prosthetic heart valve.



FIG. 24 is a flowchart illustrating another method of repositioning a tether to secure a prosthetic heart valve.





DETAILED DESCRIPTION

Apparatus and methods are described herein for repositioning or adjusting the anchoring location for an epicardial pad and tether that are used to secure or anchor a prosthetic valve within a heart, such as, for example, a prosthetic mitral valve or a prosthetic tricuspid valve. In some embodiments, an intraventricular snare device can be used to grab or snare the tether to move it to a new location. In some embodiments, an intraventricular catheter device can be used in which the tether can be threaded through the catheter device to move the tether to a new location.


In some embodiments, a method includes inserting a distal end portion of a snare device through an incision at a first location in a ventricular wall of a heart and within the left ventricle of the heart. A tether extending from a prosthetic mitral valve, through the left ventricle and out an incision at a second location on the ventricular wall of the heart is snared with the snare device. The tether is pulled with the snare device such that a proximal end of the tether is moved back through the incision at the second location on the ventricular wall and into the left ventricle. The snare device is pulled proximally such that the tether is pulled proximally through the incision at the first location in the ventricular wall of the heart.


In some embodiments, a method includes inserting a distal end portion of a catheter through an incision at a first location in a ventricular wall of a heart, through a left ventricle of the heart and through an incision at a second location in the ventricular wall while a proximal end of the catheter remains outside the incision at the first location, and such that a distal end portion of the catheter is disposed at least partially parallel to a tether extending through the incision at the second location in the ventricular wall. The tether is coupled at a distal end to a prosthetic mitral valve implanted within the heart. At least a portion of the tether is threaded through a lumen defined by the catheter until a proximal end of the tether extends out of a proximal end of the catheter outside of the heart. The catheter is pulled proximally such that the distal end portion of the catheter extends within the left ventricle of the heart with the tether extending through the lumen of the catheter outside of the heart. A tension on the tether between the prosthetic mitral valve and the incision at the first location in the ventricular wall of the heart can be adjusted.


In some embodiments, a method includes inserting a distal end of a catheter through an incision at a first location in a ventricular wall of a heart, through a left ventricle of the heart and through the ventricular septum of the heart such that the distal end of the catheter is disposed within the right ventricle. A portion of the catheter extends through the incision at the first location with the proximal end of the catheter disposed outside the heart. A snare device is moved distally within a lumen of the catheter until a distal end of the snare device is disposed within the right ventricle. A tether extending from a prosthetic tricuspid valve implanted within the heart, within the right ventricle and through an incision at a second location in the ventricular wall of the heart is snared with the snare device. The tether is pulled with the snare device through the lumen of the catheter such that the proximal end of the tether is pulled out the proximal end of the catheter outside of the heart.


In some embodiments, a method includes inserting a distal end of a catheter through an incision at a first location in a ventricular wall of a heart such that the distal end of the catheter is disposed within a left ventricle of the heart. A snare device is inserted through an incision at a second location in the ventricular wall of the heart such that a distal end portion of the snare device is disposed with the left ventricle of the heart. A tether extends from a prosthetic mitral valve, through the left ventricle out through the incision at the second location in the ventricular wall of the heart. The distal end portion of the catheter is snared with the snare device and the snare device is pulled, along with the snared distal end portion of the catheter, through the incision at the second location in the ventricular wall, while a proximal end of the catheter remains outside the incision at the first location. A distal end of the tether is threaded through a distal opening defined by the catheter, through a lumen defined by the catheter and out a proximal opening defined by the catheter. The catheter is removed, leaving the tether extending through the incision at the first location in the ventricular wall of the heart. A tension on the tether between the prosthetic mitral valve and the incision at the first location in the ventricular wall of the heart can be adjusted and the tether can be secured at the first location on the ventricular wall of the heart with an epicardial pad device.


In some embodiments, an adjustable tether and epicardial pad or anchor system for a transcatheter mitral valve replacement is described herein, and more particularly an apparatus and methods for adjustably securing and positioning a transcatheter prosthetic mitral valve that has been deployed into the native mitral annulus. For example, the prosthetic mitral valve can be anatomically secured in a two-phase process which includes securing the valve in the native annulus using a cuff and tether axial tensioning system in combination with a lateral expanded stent tensioning system, and to methods for making such systems.


In some embodiments, an adjustable-tether and epicardial pad system for a compressible prosthetic heart valve replacement is described herein, which can be deployed into a closed beating heart using, for example, a transcatheter delivery system. In some embodiments, such an apparatus can be deployed via a minimally invasive fashion and by way of example considers a minimally invasive surgical procedure utilizing the intercostal or subxyphoid space for valve introduction. In order to accomplish this, the valve is formed in such a manner that it can be compressed to fit within a delivery system and secondarily ejected from the delivery system into the target location, for example, the mitral or tricuspid valve annulus.


In some embodiments, there is provided a method of tethering a prosthetic heart valve during a transcatheter valve replacement procedure that includes deploying a transcatheter prosthetic heart valve in a patient using as an anchor an adjustable tether that is anchored within the heart between an apically affixed epicardial fastening device and a stent-based fastening system. The transcatheter prosthetic heart valve can include an expandable tubular stent having a cuff and an expandable internal leaflet assembly. The cuff includes wire covered with stabilized tissue or synthetic material, and the leaflet assembly is disposed within the stent and includes stabilized tissue or synthetic material.


In another embodiment, a prosthetic heart valve can be tethered to the apex of the left ventricle using an interlocking tethering system that includes a stent-based component and an adjustable-tether distal component that cooperatively engages with the stent-based component to form a secure attachment of the prosthetic heart valve to the apex, and an adjustable-tether proximal component that attaches to an epicardial tether securing device.


In some embodiments, an epicardial anchor device for anchoring a transluminal (transventricular) suture/tether includes a substantially rigid suturing disk having a tether-capture mechanism such as an axial tunnel, a winding channel, or a functional equivalent, and a tether locking mechanism such as a locking pin or screw that intersects the axial tunnel, a locking pin or screw operatively associated with the winding channel, a cam device like a rope lock that grips the tether by compression between two cams or a cam and fixed locking wall, a metal compression fastener, a tooth and pawl device, various combinations of the above, or a functional equivalent thereof.


In another embodiment, an epicardial anchor device for anchoring a transluminal suture includes a substantially rigid suturing disk having an axial tunnel, a locking pin tunnel that intersects the axial tunnel, a locking pin operatively associated with the locking pin tunnel, one or more radial channels that do not intersect with the axial tunnel and that do not intersect the locking pin tunnel, and a winding channel circumferentially disposed within a perimeter sidewall of the disk.


In some embodiments, an epicardial anchor device further includes a polyester velour coating. In some embodiments, the one or more radial channels includes four radial channels. In some embodiments, the one or more radial channels each have an enlarged axial keyhole tunnel.


In some embodiments, an epicardial anchor device includes a flexible pad operatively associated with the rigid tethering/suturing disk, and the flexible pad has a through-hole longitudinally aligned with the axial tunnel. In some embodiments, the epicardial anchor device further includes a sleeve gasket operatively associated with the rigid tethering/suturing disk, and the sleeve gasket has a lumen longitudinally aligned with the axial tunnel. In some embodiments, the device further includes a sleeve gasket attached to the rigid tethering/suturing disk and a flexible pad attached to the sleeve gasket. In such an embodiment, the sleeve gasket has a lumen longitudinally aligned with the axial tunnel of the tethering/suturing disk, and the flexible pad has a through-hole longitudinally aligned with both the lumen of the sleeve gasket and the axial tunnel of the tethering/suturing disk.


In some embodiments, a device for anchoring a transluminal tethering/suture includes a substantially rigid tethering/suturing disk, a sleeve gasket connected to the tethering/suturing disk, and a flexible pad connected to the sleeve gasket. The substantially rigid tethering/suturing disk has an axial tunnel, a locking pin tunnel that intersects the axial tunnel, a locking pin operatively associated with the locking pin tunnel, one or more radial channels that do not intersect with the axial tunnel and that do not intersect the locking pin tunnel, and a winding channel circumferentially disposed within a perimeter sidewall of the disk. The sleeve gasket is in longitudinal alignment with the axial tunnel, and the flexible pad has a through-hole longitudinally aligned with both the lumen of the sleeve gasket and the axial tunnel of the tethering/suturing disk.


In another embodiment, an epicardial anchor device for anchoring a transluminal suture includes a substantially rigid tethering/suturing disk having an axial tunnel, a locking pin tunnel that intersects the axial tunnel, and a locking pin operatively associated with the locking pin tunnel.


In some embodiments, a method for anchoring a transluminal suture includes affixing a transluminal suture to an epicardial anchor device, and positioning the epicardial anchor device external to a body lumen. The transluminal tether/suture extends from within the lumen to the epicardial anchor device.


In another embodiment, a tether and epicardial anchor device as described herein further includes at least one tether tension meter, tether tension gauge, or tether tension load measuring device operatively associated with the tether. In some embodiments, a tension sensor includes an electronic strain gage transducer. The tension sensor can be configured for dynamic tension, static tension, or both dynamic and static tension measurement. In some embodiments, the tension meter includes internal rollers that engage the tether. In some embodiments, the tether is loaded with a specific tension, such as 1.0-4.0 lbs.


In some embodiments, a sterile surgical kit is provided. The sterile surgical kit can contain a transcatheter delivery system, an epicardial anchor device and/or a transcatheter prosthetic valve.


In another embodiment, there is provided method of treating mitral or tricuspid regurgitation in a patient, which includes surgically deploying an adjustable-tethered prosthetic heart valve into the mitral or tricuspid annulus of the patient.


In another embodiment, the space between the cuff tissue and cuff Dacron liner (inside-outside) may be used to create a cuff that is expandable, swellable or may be inflated, and which provides an enhanced level of sealing of the cuff against the atrial trabeculations and annular tissue.


In some embodiments described herein, a tethering system for a prosthetic mitral valve is provided that is designed to maintain integrity to about 800 million cycles, or about 20 years. The use of a compressible prosthetic valve delivered via transcatheter endoscope techniques addresses various delivery issues. Deployment is addressed through the use of a prosthetic valve having a shape that features a tubular stent body that contains leaflets and an atrial cuff. This allows the valve to seat within the mitral annulus and be held by the native mitral leaflets. The use of a flexible valve attached using an apical tether provides compliance with the motion and geometry of the heart. The geometry and motion of the heart are well-known as exhibiting a complicated biphasic left ventricular deformation with muscle thickening and a sequential twisting motion. The additional use of the apically secured ventricular tether helps maintain the prosthetic valve's annular position without allowing the valve to migrate, while providing enough tension between the cuff and the atrial trabeculations to reduce and eliminate perivalvular leaking. The use of an adjustable tether or an adjustable paired-tether that is attached to an apical location can reduce or eliminate the cardiac muscle remodeling that has been witnessed in prior art devices. Some prior art devices can have a problem with unwanted change in tissue at the anchoring locations, as well as heart-generated migration of the original anchoring locations to new locations that reduce or destroy the prior art valve's effectiveness. The use of a compliant valve prosthesis and the special shape and features help reduce or eliminate clotting and hemodynamic issues, including left ventricular outflow tract (LVOT) interference problems. Many prior art valves were not even aware of or were not able to address problems with blood flow and aorta/aortic valve compression issues.


Structurally, a prosthetic heart valve as used with the apparatus and methods described herein can be a self-expanding tubular stent having a cuff at one end and tether loops for attaching tethers at the other end. Disposed within the tubular stent is a leaflet assembly that contains the valve leaflets, and the valve leaflets can be formed from stabilized tissue or other suitable biological or synthetic material. In one embodiment, the leaflet assembly may even include a wire form where a formed wire structure is used in conjunction with stabilized tissue to create a leaflet support structure which can have anywhere from 1, 2, 3 or 4 leaflets, or valve cusps disposed therein. In another embodiment, the leaflet assembly is wireless and uses only the stabilized tissue and stent body to provide the leaflet support structure, without using wire, and which can also have anywhere from 1, 2, 3 or 4 leaflets, or valve cusps disposed therein.


The upper cuff portion may be formed by heat-forming a portion of a tubular Nitinol® braided (or similar) stent such that the lower portion retains the tubular shape, but the upper portion is opened out of the tubular shape and expanded to create a widened collar structure that may be shaped in a variety of functional regular or irregular funnel-like or collar-like shapes. In one embodiment, the entire structure is formed from a laser-cut stent and collar design, as described further herein


As used in this specification, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, the term “a member” is intended to mean a single member or a combination of members, “a material” is intended to mean one or more materials, or a combination thereof.


As used herein, the words “proximal” and “distal” refer to a direction closer to and away from, respectively, an operator of, for example, a medical device. Thus, for example, the end of the medical device closest to the patient's body (e.g., contacting the patient's body or disposed within the patient's body) would be the distal end of the medical device, while the end opposite the distal end and closest to, for example, the user (or hand of the user) of the medical device, would be the proximal end of the medical device.


A prosthetic mitral valve can be anchored to the heart at a location external to the heart via one or more tethers coupled to an anchor device, as described herein. For example, the tether(s) can be coupled to the prosthetic mitral valve and extend out of the heart and be secured at an exterior location (e.g., the epicardial surface) with an anchor device, as described herein. An anchor device as described herein can be used with one or more such tethers in other surgical situations where such a tether may be desired to extend from an intraluminal cavity to an external anchoring site. Various different types and/or configurations of an anchor device (also referred to herein as “epicardial anchor device” or “epicardial pad” or “pad”) can be used to anchor a prosthetic mitral valve in the methods described herein. For example any of the epicardial anchor devices described in the '218 PCT application incorporated by reference above can be used.



FIG. 1 is a cross-sectional illustration of the left ventricle LV and left atrium LA of a heart having a transcatheter prosthetic mitral valve PMV deployed therein and an epicardial anchor device EAD as described herein securing the prosthetic mitral valve PMV in place. FIG. 1 illustrates the prosthetic mitral valve PMV seated into the native valve annulus and held there using an atrial cuff AC of the prosthetic mitral valve PMV, the radial tension from the native leaflets, and a ventricular tether T secured with attachment portions Tp to the prosthetic mitral valve PMV and to the epicardial anchor EAD. The epicardial anchor device EAD can be various different shapes, sizes, types and configurations, for example, the EAD can be an epicardial anchor device such as those described in the '218 PCT application incorporated by reference above. Further, the prosthetic mitral valve PMV and the tether T can be, for example, a prosthetic mitral valve and tether, respectively, as described in the '218 PCT application or other suitable types and configurations. f



FIG. 2 is a cross-sectional illustration of the left ventricle LV and left atrium LA of a heart having a transcatheter prosthetic mitral valve 126 deployed therein and an epicardial anchor device 120 securing the prosthetic mitral valve 120 in place. As described above for FIG. 1, the prosthetic mitral valve 126 is seated into the native annulus NA and held there using an atrial cuff, the radial tension from the native leaflets, and a single ventricular tether 128 secured by the epicardial anchor device 120 to the apex of the heart. The tether 128 includes tether portions 124 that are attached to the prosthetic mitral valve 126. In this embodiment, an epicardial adjustment and tensioning element 130 (also referred to herein as “tensioning element” or “tensioning member”) is operatively associated with the epicardial anchor device 120 and attached to the tether 128. The tensioning element 130 can include, for example, at least one tether tension meter, tether tension gauge, or tether tension load measuring device operatively associated with the tether 128. A tension sensor can include, for example, an electronic strain gage transducer. The tension sensor can be designed for dynamic tension, static tension, or both dynamic and static tension measurement. A tension meter may include a load cell transducer, tension sensor with internal rollers that engage the tether, or similar tension meter known in the art. Example embodiments of a tension meter are described below with reference to FIGS. 4 and 5.



FIG. 3 is a cross-sectional illustration of the left ventricle LV and left atrium LA of a heart with the transcatheter prosthetic mitral valve 126 deployed therein as described above, and an epicardial anchor device 120 securing the prosthetic mitral valve 120 in place. In this embodiment, a tensioning element 130 is disposed intra-ventricularly and attached to the tether 128.



FIG. 4 shows an example of one embodiment of an epicardial adjustment and tensioning device 230 that can be used to measure and adjust the load or tension on a tether attached to a prosthetic mitral valve (not shown in FIG. 4) and an epicardial anchor device, described herein. In this embodiment, the tensioning device 230 is in the form of a load cell transducer. As shown in FIG. 4, the load cell transducer tensioning device 230 can be coupled to a tether 228 extending from a prosthetic valve (not shown) and attached to an epicardial anchor device 220. In this embodiment, the anchor device 220 includes a pin 222 that can be inserted through an opening in the anchor device 220 to pierce the tether 228 and secure the tether to the anchor device 220. The load cell transducer tensioning device 230 can be made from a machined metal spring element such that when compression or tension forces are applied to the spring element, a strain is placed on the metal. Strain gauges are affixed to the metal spring element such that when stain forces increase or decrease on the spring element, the electrical circuit formed by the gauges captures the change in resistance that corresponds to the amount of strain. When voltage is applied to one side of the spring element, the opposite side will transmit an output voltage, and when strain forces are applied, the change in voltage can be measured.



FIG. 5 illustrates an embodiment of another type of epicardial adjustment and tensioning device 330. The tensioning device 330 is in the form of a tension meter that can be coupled to a tether 328 attached to a prosthetic mitral valve (not shown in FIG. 5) and an epicardial anchor device (not shown in FIG. 5), described herein.. The tension meter tensioning device 330 can include a roller-type load element 332 for use in exerting a tension on the tether 328. One or more strain gauge sensors (not shown) can be operatively coupled to the load element 332, and used to measure the displacement force on the middle or sensor roller 333, or to measure a change of angle as converted to the roller axis, or both. The physical tension can be converted to an electric signal to monitor the change in tension of a tether 328 which is operatively connected thereto. Using this tension meter 330, the tether 328 is fed through a pathway that includes a section that contacts the middle or sensor roller 333, and is fed over the sensor roller 333. This sensor roller 333 is usually placed between two fixed rollers 334 such that the tether 328 zig-zags through the set of rollers. This path creates a deflection angle relative to the axis of the tether on each end of the tensioning device 330. When the tether 328 moves, the sensor roller 333 either revolves, changing the angle of incidence from the fixed roller on either side, or the roller 333 itself is subjected to an orthogonal force vector, which (roller force) can be measured using a voltage change technique. In some embodiments, the tether 328 can be loaded with a specific tension, such as 1.0-4.0 lbs.



FIG. 6 illustrates a deployed prosthetic mitral valve 426 with an attached tether 428 that is anchored at an initial or first off-center position on the ventricular wall of the heart with an epicardial anchor device 420. The tether 428 includes tether portions 426 that couple the tether 428 to the prosthetic mitral valve 426. After the initial anchoring of the tether 428 at the first position, it may be desirable to move the tether 428 to a different desired anchored position on the ventricular wall. For example, after the initial placement of the prosthetic valve 426, it may be desirable to move the anchor location of the tether 428 to correct or improve the positioning of the deployed prosthetic mitral valve 426. For example, the initial placement of the prosthetic mitral valve 426 may provide an undesirable or less than optimal annulus-to-anchor pad angular relationship. In some cases, the tether may have been erroneously misaligned during the deployment process or the misalignment can arise from post-deployment migration of the tether due to, for example, anatomical reconfiguration or remodeling of the heart.


As shown in FIG. 7, a snare device 440 can be used to snare or capture the tether 428 and pull it back into the left ventricle and out through the ventricular wall at a different location, such as at the apex of the heart. A procedure catheter 442 can be used to introduce the snare device 440 into the heart. When repositioning the tether 428, a new epicardial anchor device 420′ can be used to secure the tether 428 at the new or second location. As shown in FIG. 8, the tether 428 is repositioned at the new location and secured to the ventricular wall with the epicardial anchor device 420′. In this new location, the angular position between the tether 428 and the mitral annulus can be placed at a more desired angular position such as, for example, 90 degrees as shown in FIG. 8 and shown schematically in FIG. 9. FIG. 9 illustrates the angle α between the commissural-commissural (CC) plane/axis P1 of the mitral annulus and the tether 428. The apical lateral plane/axis P2 is associated with the location of the epicardial anchor device 420′. The angle α can be for example, 90 degrees or substantially 90 degrees or a different desired angle.



FIG. 10 illustrates another embodiment of a deployed prosthetic mitral valve 526 with an attached tether 528 that is anchored at an initial or first off-center position on the ventricular wall of the heart. Although not shown, the tether 528 can be secured to the ventricular wall with an epicardial anchor device as described above. As with the previous embodiment, after the initial positioning or anchoring of the tether 528 at the first position, it may be desirable to move the tether 528 to a different desired anchored position. In this embodiment, an intraventricular catheter 545 and snare device 540 can be used to capture the deployed tether 528 and move it to a new location as shown in FIGS. 11-13.


The catheter 545 can be flexible and/or steerable and/or can be formed with bends or curves specifically configured for such use. The catheter 545 can be inserted into the left ventricle at a desired improved or corrected position. The catheter 545 can then be directed to exit the ventricle through the same aperture (perforation) in which the tether 528 extends out of the heart. In this manner, both the tether 528 and the catheter 545 exit the ventricle in parallel. The tether 528 can be manually fed through the catheter 545 or as shown in FIG. 11, the snare 540 can be inserted through the catheter 545 and used to capture and pull the tether 528. The tether 528 is pulled into the catheter 545 and through the catheter 545 at the new desired anchor position at or near the apex of the heart as shown in FIG. 12. The catheter 545 can then be withdrawn, and the tether 528 pulled proximally such that the tether 528 is pulled to a desired tension at the new second anchor position as shown in FIG. 13. The initial perforation at the first anchor location can be closed with sutures using known techniques, and the tether 528, at its new position, can be anchored in place with, for example, an epicardial pad device 520 as shown in FIG. 14. Alternatively, other anchoring methods can be used, such as tying the tether 528, or using a clip or other suitable device.


In the embodiments described above, the prosthetic valve is a prosthetic mitral valve and the tether extends downward through the left ventricle, exiting the left ventricle at the apex of the heart to be fastened on the epicardial surface outside of the heart. Similar anchoring is contemplated herein as it regards to the tricuspid, or other valve structure requiring a prosthetic. For example, FIGS. 15 and 16 illustrate a prosthetic tricuspid heart valve implanted within the right atrium of the heart and the prosthetic tricuspid valve is initially anchored via a tether on a ventricular wall of the right ventricle. It may be desirable to move the anchor location for the tether to a wall of the left ventricle.


As shown in FIG. 15, a prosthetic tricuspid heart valve 646 is implanted within the right atrium of the heart, and a tether 628 extends from the tricuspid heart valve 646 and out an incision on the right ventricular wall. To move the tether 628 to a new anchor location, a catheter 645 and snare device 640 can be used in a similar manner as described above for the previous embodiment. The catheter 645 can be inserted through the wall of the left ventricle at a desired anchor location and inserted through the ventricular septum VS as shown in FIG. 15. The snare 640 can be movably disposed within a lumen of the catheter 645 and used to grab or snare the tether 628 within the right ventricle. The snare 640 can be moved proximally through the catheter 645 such that the tether 628 extends outside of the new anchor location on the wall of the left ventricle. The catheter 645 can then be removed leaving the tether 628 extending through the ventricular septum Sp, through the left ventricle LV and out the new anchor location as shown in FIG. 16. The tether 628 can be secured with an epicardial anchor device 620, or other securing methods or devices can be used.



FIG. 17 illustrates another embodiment of a deployed prosthetic mitral valve 726 with an attached tether 728 that is anchored at an initial or first position on the ventricular wall of the heart. Although not shown, the tether 728 can be secured to the ventricular wall with an epicardial anchor device as described above. As with the previous embodiments, after the initial positioning or anchoring of the tether 728 at the first position, it may be desirable to move the tether 728 to a different desired anchored position. In this embodiment, an intraventricular needle 744, intraventricular microcatheter 745 and snare device 740 can be used to move the deployed tether 728 to a new location as shown in FIGS. 18-20.


As with previous embodiments, the microcatheter 745 can be flexible and/or steerable and/or can be formed with bends or curves specifically configured for such use. As shown in FIG. 17, the microcatheter 745 can be inserted e via the needle 744 through the ventricular wall of the heart at a desired improved or corrected position to anchor the tether 728 such that a distal end portion of the microcatheter is disposed within the left ventricle. Also shown in FIG. 17, in this embodiment, the snare device 740 is inserted through an opening in the heart in which the tether 728 extends out of the heart at the first position on the ventricular wall. The snare device 744 can be used to snare the distal end portion of the microcatheter 745 and pull the distal end portion of the microcatheter out through the heart at the opening in the ventricular wall in which the tether 728 extends at the first anchor position as shown in FIG. 18. The microcatheter 745 will then be extending between the first anchor position and the second desired anchor position in the ventricular wall of the heart. The needle 744 can be removed before or after the microcatheter 745 is pulled through the first anchor position.


The proximal end of the tether 728 can then be manually threaded through the distal end opening of the microcatheter, through the lumen of the microcatheter and out through the proximal end opening of the microcatheter 745 as shown in FIG. 19. The microcatheter 745 can then be removed, leaving the tether 728 extending out of the heart at the second desired anchor location in the ventricular wall as shown in FIG. 20. Before or after the microcatheter is removed, the tether 728 can be pulled proximally such that the tether 728 is pulled to a desired tension at the new second anchor position as shown in FIG. 20. The initial perforation or opening at the first anchor location can be closed with sutures using known techniques, and the tether 728, at its new position, can be anchored in place with, for example, an epicardial pad device 720 as shown in FIG. 20. Alternatively, other anchoring methods can be used, such as tying the tether 728, or using a clip or other suitable device as described above for previous embodiments.



FIG. 21 is a flowchart illustrating a method of repositioning a tether to secure a prosthetic heart valve. At 860 a distal end portion of a snare device (e.g., 440, 540, 640, 740) is inserted through an incision at a first location in a ventricular wall of a heart of a patient and a distal end of the snare device is positioned within the left ventricle of the heart. At 862, a tether extending from a prosthetic mitral valve and within the left ventricle and through an incision at a second location on the ventricular wall of the heart is snared with the snare device. At 864, the tether is pulled proximally with the snare device such that a proximal end of the tether is moved back through the incision at the second location on the ventricular wall and into the left ventricle. At 866, the snare device is pulled proximally such that the proximal end of the tether is pulled proximally through the incision at the first location in the ventricular wall of the heart. At 868, a tension on the tether can be adjusted. At 870, the tether can be secured at the first location on the ventricular wall of the heart with an epicardial pad device.



FIG. 22 is a flowchart illustrating another method of repositioning a tether to secure a prosthetic heart valve. At 960, a distal end portion of a catheter is inserted through an incision at a first location in a ventricular wall of a heart, through a left ventricle of the heart and through an incision at a second location in the ventricular wall while a proximal end of the catheter remains outside the incision at the first location, and such that a distal end portion of the catheter is disposed at least partially parallel to a tether extending through the incision at the second location in the ventricular wall. The tether is coupled at a distal end to a prosthetic mitral valve implanted within the heart. At 962, at least a portion of the tether is threaded through a lumen defined by the catheter until a proximal end of the tether extends out of a proximal end of the catheter outside of the heart. At 964, the catheter is pulled proximally such that the distal end portion of the catheter extends within the left ventricle of the heart with the tether extending through the lumen of the catheter outside of the heart. At 966, a tension on the tether between the prosthetic mitral valve and the incision at the first location in the ventricular wall of the heart can be adjusted. At 968, the catheter can be removed from the patient's body. At 970, the tether can be secured at the first location on the ventricular wall of the heart with an epicardial pad device.



FIG. 23 is a flowchart illustrating another method of repositioning a tether to secure a prosthetic heart valve. At 1060, a distal end of a catheter is inserted through an incision at a first location in a ventricular wall of a heart, through a left ventricle of the heart and through the ventricular septum of the heart such that the distal end of the catheter is disposed within the right ventricle. A portion of the catheter extends through the incision at the first location with the proximal end of the catheter disposed outside the heart. At 1062, a snare device is moved distally within a lumen of the catheter until a distal end of the snare device is disposed within the right ventricle. At 1064, a tether extending from a prosthetic tricuspid valve implanted within the heart, and extending within the right ventricle and through an incision at a second location in the ventricular wall of the heart is snared with the snare device. At 1066, tether is pulled with the snare device through the lumen of the catheter such that the proximal end of the tether is pulled out the proximal end of the catheter outside of the heart. At 1068, a tension on the tether between the prosthetic tricuspid valve and the incision at the first location in the ventricular wall of the heart can be adjusted. At 1070, the catheter can be removed from the patient's body leaving the tether extending from the prosthetic tricuspid valve, through the right ventricle, the left ventricle and out of the heart through the incision at the first location in a ventricular wall of a heart. At 1072, the tether can be secured at the first location on the ventricular wall of the heart with an epicardial pad device.



FIG. 24 is a flowchart illustrating another method of repositioning a tether to secure a prosthetic heart valve. At 1160, a distal end of a catheter is inserted through an incision at a first location in a ventricular wall of a heart and disposed within a left ventricle of the heart. At 1162, a snare device is inserted through an incision at a second location in the ventricular wall of the heart such that a distal end portion of the snare device is disposed with the left ventricle of the heart. A tether extends from a prosthetic mitral valve, through the left ventricle out through the incision at the second location in the ventricular wall of the heart. At 1164, the distal end portion of the catheter is snared with the snare device. At 1166, the snare device is pulled along with the snared distal end portion of the catheter through the incision at the second location in the ventricular wall, while a proximal end of the catheter remains outside the incision at the first location. At 1168, a distal end of the tether is threaded through a distal opening defined by the catheter, through a lumen defined by the catheter and out a proximal opening defined by the catheter. At 1170, the catheter is removed, leaving the tether extending through the incision at the first location in the ventricular wall of the heart. At 1172, a tension on the tether between the prosthetic mitral valve and the incision at the first location in the ventricular wall of the heart can be adjusted. At 1174, the tether can be secured at the first location on the ventricular wall of the heart with an epicardial pad device.


In other embodiments, there may be additional positioning-tethers optionally attached to the prosthetic valve to provide additional control over position, adjustment, and compliance during deployment and possible for up to 30 days afterwards to ensure there is no leaking. It is contemplated that the positioning tethers may be kept and gathered outside of the patient body for a period of time until the interventionalist can verify by Echocardiography or Fluoroscopy that no further adjustment is necessary.


During deployment, the operator is able to adjust or customize the tethers to the correct length for a particular patient's anatomy. The tethers also allow the operator to tighten the cuff onto the tissue around the valvular annulus by pulling the tethers, which creates a leak-free seal.


In some embodiments, the tethers are optionally anchored to other tissue locations depending on the particular application of the prosthetic heart valve. In the case of a mitral valve, or the tricuspid valve, there are optionally one or more tethers anchored to one or both papillary muscles, septum, and/or ventricular wall.


The tethers described herein can be made from surgical-grade materials such as biocompatible polymer suture material. Examples of such material include 2-0 exPFTE (polytetrafluoroethylene) or 2-0 polypropylene. In one embodiment, the tethers are inelastic. It is also contemplated that one or more of the tethers may optionally be elastic to provide an even further degree of compliance of the valve during the cardiac cycle. Upon being drawn to and through the apex of the heart, the tether(s) may be fastened by a suitable mechanism such as tying off to a pledget or similar adjustable button-type epicardial anchoring device to inhibit retraction of the tether back into the ventricle. It is also contemplated that the tethers might be bioresorbable/bioabsorbable and thereby provide temporary fixation until other types of fixation take hold such a biological fibrous adhesion between the tissues and prosthesis and/or radial compression from a reduction in the degree of heart chamber dilation.


Further, it is contemplated that the prosthetic heart valve may optionally be deployed with a combination of installation tethers and a permanent tether, attached to either the stent or cuff, or both, with the installation tethers being removed after the valve is successfully deployed. It is also contemplated that combinations of inelastic and elastic tethers may optionally be used for deployment and to provide structural and positional compliance of the valve during the cardiac cycle.


In some embodiments, to control the potential tearing of tissue at the apical entry point of the delivery system, a circular, semi-circular, or multi-part pledget is employed. The pledget may be constructed from a semi-rigid material such as PFTE felt. Prior to puncturing of the apex by the delivery system, the felt is firmly attached to the heart such that the apex is centrally located. Secondarily, the delivery system is introduced through the central area, or orifice as it may be, of the pledget. Positioned and attached in this manner, the pledget acts to control any potential tearing at the apex. As described, the epicardial anchor device can include at least 1-4 subcomponents. In some embodiments, the epicardial anchor device is a rigid anchoring element. In embodiments having two components, the epicardial anchor device is contemplated as having a rigid element for securing the tether and a flexible (felt pad or pledget) element sandwiched between the rigid element and the epicardial surface to address leaking problems. In another embodiment having two components, the epicardial anchor device is contemplated as having a rigid element for securing the tether and a flexible collapsible sleeve sandwiched between the rigid element and the epicardial surface to address leaking problems. In an embodiment having three components, the epicardial anchor device is contemplated as having a rigid element for securing the tether, a flexible (felt pad or pledget) element and a flexible collapsible sleeve sandwiched between the rigid element and the epicardial surface to address leaking problems. As a fourth component, any of these embodiments may include a tension meter or tether strain gauge as described above, for example, with respect to FIGS. 5 and 6. As a fifth component, any of these embodiments, may include a system for adjusting the length of the tether.


While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Where methods described above indicate certain events occurring in certain order, the ordering of certain events may be modified. Additionally, certain of the events may be performed concurrently in a parallel process when possible, as well as performed sequentially as described above.


Where schematics and/or embodiments described above indicate certain components arranged in certain orientations or positions, the arrangement of components may be modified. While the embodiments have been particularly shown and described, it will be understood that various changes in form and details may be made. Any portion of the apparatus and/or methods described herein may be combined in any combination, except mutually exclusive combinations. The embodiments described herein can include various combinations and/or sub-combinations of the functions, components, and/or features of the different embodiments described.

Claims
  • 1. A method, comprising: inserting a distal end portion of a catheter through an incision at a first location in a ventricular wall of a heart, through a left ventricle of the heart and through an incision at a second location in the ventricular wall while a proximal end of the catheter remains outside the incision at the first location and such that a distal end portion of the catheter is disposed at least partially parallel to a tether extending through the incision at the second location in the ventricular wall, the tether coupled at a distal end to a prosthetic mitral valve implanted within the heart;threading at least a proximal end portion of the tether through a lumen defined by the catheter until a proximal end of the tether extends out of a proximal end of the catheter outside of the heart; andpulling the catheter proximally such that the distal end portion of the catheter extends within the left ventricle of the heart with the tether extending through the lumen of the catheter outside of the heart; andadjusting a tension on the tether between the prosthetic mitral valve and the incision at the first location in the ventricular wall of the heart.
  • 2. The method of claim 1, wherein: the threading the tether includes moving a snare device distally through the lumen of the catheter until a distal end of the snare device exits the distal end of the catheter outside of the heart,snaring with the snare device a portion of the tether extending outside of the heart; andpulling the tether with the snare device into the lumen of the catheter and out a proximal end of the catheter outside of the heart.
  • 3. The method of claim 1, wherein: the threading the tether includes manually inserting the proximal end of the tether into the lumen of the catheter and threading the tether through the lumen of the catheter until the proximal end of the tether extends out the proximal end of the catheter outside of the heart.
  • 4. The method of claim 1, further comprising: securing the tether at the first location on the ventricular wall of the heart with an epicardial pad device.
  • 5. The method of claim 1, further comprising: prior to the adjusting the tension on the tether, removing the catheter from the heart leaving the tether extending through the incision at the first location in the ventricular wall of the heart.
  • 6. The method of claim 1, further comprising: after the adjusting the tension on the tether, removing the catheter from the heart leaving the tether extending through the incision at the first location in the ventricular wall of the heart.
  • 7. The method of claim 1, wherein the catheter is flexible such that the catheter can bend to extend between the incision at the first location in the ventricular wall of the heart and the incision at the second location in the ventricular wall of the heart.
  • 8. The method of claim 1, wherein the catheter includes a bend formed in the catheter such that the catheter can extend between the incision at the first location in the ventricular wall of the heart and the incision at the second location in the ventricular wall of the heart.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/619,328, filed Feb. 11, 2015, entitled “Adjustable Tether and Epicardial Pad System for Prosthetic Mitral Valve,” which claims priority to and the benefit of U.S. Provisional Patent Application No. 61/938,275, filed Feb. 11, 2014, entitled “Adjustable Tether and Epicardial Pad System for Prosthetic Mitral Valve,” each of the disclosures of which is incorporated herein by reference in its entirety. This application is also related to PCT International application Ser. No. PCT/US2014/049218, filed Jul. 31, 2014, entitled “Epicardial Anchor Devices and Methods,” (referred to herein as “the '218 PCT application”), the disclosure of which is incorporated herein by reference in its entirety.

US Referenced Citations (727)
Number Name Date Kind
2697008 Ross Dec 1954 A
3409013 Berry Nov 1968 A
3472230 Fogarty et al. Oct 1969 A
3476101 Ross Nov 1969 A
3548417 Kischer Dec 1970 A
3587115 Shiley Jun 1971 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3714671 Edwards et al. Feb 1973 A
3755823 Hancock Sep 1973 A
3976079 Samuels et al. Aug 1976 A
4003382 Dyke Jan 1977 A
4035849 Angell et al. Jul 1977 A
4056854 Boretos et al. Nov 1977 A
4073438 Meyer Feb 1978 A
4106129 Carpentier et al. Aug 1978 A
4222126 Boretos et al. Sep 1980 A
4265694 Boretos et al. May 1981 A
4297749 Davis et al. Nov 1981 A
4339831 Johnson Jul 1982 A
4343048 Ross et al. Aug 1982 A
4345340 Rosen Aug 1982 A
4373216 Klawitter Feb 1983 A
4406022 Roy Sep 1983 A
4470157 Love Sep 1984 A
4490859 Black et al. Jan 1985 A
4535483 Klawitter et al. Aug 1985 A
4574803 Storz Mar 1986 A
4585705 Broderick et al. Apr 1986 A
4592340 Boyles Jun 1986 A
4605407 Black et al. Aug 1986 A
4612011 Kautzky Sep 1986 A
4626255 Reichart et al. Dec 1986 A
4638886 Marietta Jan 1987 A
4643732 Pietsch et al. Feb 1987 A
4655771 Wallsten Apr 1987 A
4692164 Dzemeshkevich et al. Sep 1987 A
4733665 Palmaz Mar 1988 A
4759758 Gabbay Jul 1988 A
4762128 Rosenbluth Aug 1988 A
4777951 Cribier et al. Oct 1988 A
4787899 Lazarus Nov 1988 A
4787901 Baykut Nov 1988 A
4796629 Grayzel Jan 1989 A
4824180 Levrai Apr 1989 A
4829990 Thuroff et al. May 1989 A
4830117 Capasso May 1989 A
4851001 Taheri Jul 1989 A
4856516 Hillstead Aug 1989 A
4878495 Grayzel Nov 1989 A
4878906 Lindemann et al. Nov 1989 A
4883458 Shiber Nov 1989 A
4922905 Strecker May 1990 A
4923013 De Gennaro May 1990 A
4960424 Grooters Oct 1990 A
4966604 Reiss Oct 1990 A
4979939 Shiber Dec 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
4996873 Takeuchi Mar 1991 A
5007896 Shiber Apr 1991 A
5026366 Leckrone Jun 1991 A
5032128 Alonso Jul 1991 A
5037434 Lane Aug 1991 A
5047041 Samuels Sep 1991 A
5059177 Towne et al. Oct 1991 A
5064435 Porter Nov 1991 A
5080668 Bolz et al. Jan 1992 A
5085635 Cragg Feb 1992 A
5089015 Ross Feb 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5163953 Vince Nov 1992 A
5167628 Boyles Dec 1992 A
5192297 Hull Mar 1993 A
5201880 Wright et al. Apr 1993 A
5266073 Wall Nov 1993 A
5282847 Trescony et al. Feb 1994 A
5295958 Shturman Mar 1994 A
5306296 Wright et al. Apr 1994 A
5332402 Teitelbaum Jul 1994 A
5336616 Livesey et al. Aug 1994 A
5344442 Deac Sep 1994 A
5360444 Kusuhara Nov 1994 A
5364407 Poll Nov 1994 A
5370685 Stevens Dec 1994 A
5397351 Pavcnik et al. Mar 1995 A
5411055 Kane May 1995 A
5411552 Andersen et al. May 1995 A
5415667 Frater May 1995 A
5443446 Shturman Aug 1995 A
5480424 Cox Jan 1996 A
5500014 Quijano et al. Mar 1996 A
5545209 Roberts et al. Aug 1996 A
5545214 Stevens Aug 1996 A
5549665 Vesely et al. Aug 1996 A
5554184 Machiraju Sep 1996 A
5554185 Block et al. Sep 1996 A
5571175 Vanney et al. Nov 1996 A
5591185 Kilmer et al. Jan 1997 A
5607462 Imran Mar 1997 A
5607464 Trescony et al. Mar 1997 A
5609626 Quijano et al. Mar 1997 A
5639274 Fischell et al. Jun 1997 A
5662704 Gross Sep 1997 A
5665115 Cragg Sep 1997 A
5674279 Wright et al. Oct 1997 A
5697905 d'Ambrosio Dec 1997 A
5702368 Stevens et al. Dec 1997 A
5716417 Girard et al. Feb 1998 A
5728068 Leone et al. Mar 1998 A
5728151 Garrison et al. Mar 1998 A
5741333 Frid Apr 1998 A
5749890 Shaknovich May 1998 A
5756476 Epstein et al. May 1998 A
5769812 Stevens et al. Jun 1998 A
5792179 Sideris Aug 1998 A
5800508 Goicoechea et al. Sep 1998 A
5833673 Ockuly et al. Nov 1998 A
5840081 Andersen et al. Nov 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5855602 Angell Jan 1999 A
5904697 Gifford, III et al. May 1999 A
5925063 Khosravi Jul 1999 A
5957949 Leonhardt et al. Sep 1999 A
5968052 Sullivan, III et al. Oct 1999 A
5968068 Dehdashtian et al. Oct 1999 A
5972030 Garrison et al. Oct 1999 A
5993481 Marcade et al. Nov 1999 A
6027525 Suh et al. Feb 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6045497 Schweich, Jr. et al. Apr 2000 A
6063112 Sgro May 2000 A
6077214 Mortier et al. Jun 2000 A
6099508 Bousquet Aug 2000 A
6132473 Williams et al. Oct 2000 A
6168614 Andersen et al. Jan 2001 B1
6171335 Wheatley et al. Jan 2001 B1
6174327 Mertens et al. Jan 2001 B1
6183411 Mortier et al. Feb 2001 B1
6210408 Chandrasekaran et al. Apr 2001 B1
6217585 Houser et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6231602 Carpentier et al. May 2001 B1
6245102 Jayaraman Jun 2001 B1
6260552 Mortier et al. Jul 2001 B1
6261222 Schweich, Jr. et al. Jul 2001 B1
6264602 Mortier et al. Jul 2001 B1
6287339 Vazquez et al. Sep 2001 B1
6299637 Shaolian et al. Oct 2001 B1
6302906 Goicoechea et al. Oct 2001 B1
6312465 Griffin et al. Nov 2001 B1
6332893 Mortier et al. Dec 2001 B1
6350277 Kocur Feb 2002 B1
6358277 Duran Mar 2002 B1
6379372 Dehdashtian et al. Apr 2002 B1
6402679 Mortier et al. Jun 2002 B1
6402680 Mortier et al. Jun 2002 B2
6402781 Langberg et al. Jun 2002 B1
6406420 McCarthy et al. Jun 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6468660 Ogle et al. Oct 2002 B2
6482228 Norred Nov 2002 B1
6488704 Connelly et al. Dec 2002 B1
6537198 Vidlund et al. Mar 2003 B1
6540782 Snyders Apr 2003 B1
6569196 Vesely May 2003 B1
6575252 Reed Jun 2003 B2
6582462 Andersen et al. Jun 2003 B1
6605112 Moll et al. Aug 2003 B1
6616684 Vidlund et al. Sep 2003 B1
6622730 Ekvall et al. Sep 2003 B2
6629534 St. Goar et al. Oct 2003 B1
6629921 Schweich, Jr. et al. Oct 2003 B1
6648077 Hoffman Nov 2003 B2
6648921 Anderson et al. Nov 2003 B2
6652578 Bailey et al. Nov 2003 B2
6669724 Park et al. Dec 2003 B2
6706065 Langberg et al. Mar 2004 B2
6709456 Langberg et al. Mar 2004 B2
6723038 Schroeder et al. Apr 2004 B1
6726715 Sutherland Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6740105 Yodfat et al. May 2004 B2
6746401 Panescu Jun 2004 B2
6746471 Mortier et al. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6764510 Vidlund et al. Jul 2004 B2
6797002 Spence et al. Sep 2004 B2
6810882 Langberg et al. Nov 2004 B2
6830584 Seguin Dec 2004 B1
6854668 Wancho et al. Feb 2005 B2
6855144 Lesh Feb 2005 B2
6858001 Aboul-Hosn Feb 2005 B1
6890353 Cohn et al. May 2005 B2
6893460 Spenser et al. May 2005 B2
6896690 Lambrecht et al. May 2005 B1
6908424 Mortier et al. Jun 2005 B2
6908481 Cribier Jun 2005 B2
6936067 Buchanan Aug 2005 B2
6945996 Sedransk Sep 2005 B2
6955175 Stevens et al. Oct 2005 B2
6974476 McGuckin, Jr. et al. Dec 2005 B2
6976543 Fischer Dec 2005 B1
6997950 Chawla Feb 2006 B2
7018406 Seguin et al. Mar 2006 B2
7018408 Bailey et al. Mar 2006 B2
7044905 Vidlund et al. May 2006 B2
7060021 Wilk Jun 2006 B1
7077862 Vidlund et al. Jul 2006 B2
7087064 Hyde Aug 2006 B1
7100614 Stevens et al. Sep 2006 B2
7101395 Tremulis et al. Sep 2006 B2
7108717 Freidberg Sep 2006 B2
7112219 Vidlund et al. Sep 2006 B2
7115141 Menz et al. Oct 2006 B2
7141064 Scott et al. Nov 2006 B2
7175656 Khairkhahan Feb 2007 B2
7198646 Figulla et al. Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7247134 Vidlund et al. Jul 2007 B2
7252682 Seguin Aug 2007 B2
7267686 DiMatteo et al. Sep 2007 B2
7275604 Wall Oct 2007 B1
7276078 Spenser et al. Oct 2007 B2
7276084 Yang et al. Oct 2007 B2
7316706 Bloom et al. Jan 2008 B2
7318278 Zhang et al. Jan 2008 B2
7326236 Andreas et al. Feb 2008 B2
7329278 Seguin et al. Feb 2008 B2
7331991 Kheradvar et al. Feb 2008 B2
7335213 Hyde et al. Feb 2008 B1
7374571 Pease et al. May 2008 B2
7377941 Rhee et al. May 2008 B2
7381210 Zarbatany et al. Jun 2008 B2
7381218 Schreck Jun 2008 B2
7393360 Spenser et al. Jul 2008 B2
7404824 Webler et al. Jul 2008 B1
7416554 Lam et al. Aug 2008 B2
7422072 Dade Sep 2008 B2
7429269 Schwammenthal et al. Sep 2008 B2
7442204 Schwammenthal et al. Oct 2008 B2
7445631 Salahieh et al. Nov 2008 B2
7462191 Spenser et al. Dec 2008 B2
7470285 Nugent et al. Dec 2008 B2
7500989 Solem et al. Mar 2009 B2
7503931 Kowalsky et al. Mar 2009 B2
7510572 Gabbay Mar 2009 B2
7510575 Spenser et al. Mar 2009 B2
7513908 Lattouf Apr 2009 B2
7524330 Berreklouw Apr 2009 B2
7527647 Spence May 2009 B2
7534260 Lattouf May 2009 B2
7556646 Yang et al. Jul 2009 B2
7579381 Dove Aug 2009 B2
7585321 Cribier Sep 2009 B2
7591847 Navia et al. Sep 2009 B2
7618446 Andersen et al. Nov 2009 B2
7618447 Case et al. Nov 2009 B2
7621948 Herrmann et al. Nov 2009 B2
7632304 Park Dec 2009 B2
7632308 Loulmet Dec 2009 B2
7635386 Gammie Dec 2009 B1
7674222 Nikolic et al. Mar 2010 B2
7674286 Alfieri et al. Mar 2010 B2
7695510 Bloom et al. Apr 2010 B2
7708775 Rowe et al. May 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7766961 Patel et al. Aug 2010 B2
7789909 Andersen et al. Sep 2010 B2
7803168 Gifford et al. Sep 2010 B2
7803184 McGuckin, Jr. et al. Sep 2010 B2
7803185 Gabbay Sep 2010 B2
7806928 Rowe et al. Oct 2010 B2
7837727 Goetz et al. Nov 2010 B2
7854762 Speziali et al. Dec 2010 B2
7892281 Seguin et al. Feb 2011 B2
7896915 Guyenot et al. Mar 2011 B2
7901454 Kapadia et al. Mar 2011 B2
7927370 Webler et al. Apr 2011 B2
7931630 Nishtala et al. Apr 2011 B2
7942928 Webler et al. May 2011 B2
7955247 Levine et al. Jun 2011 B2
7955385 Crittenden Jun 2011 B2
7972378 Tabor et al. Jul 2011 B2
7988727 Santamore et al. Aug 2011 B2
7993394 Hariton et al. Aug 2011 B2
8007992 Tian et al. Aug 2011 B2
8029556 Rowe Oct 2011 B2
8043368 Crabtree Oct 2011 B2
8052749 Salahieh et al. Nov 2011 B2
8052750 Tuval et al. Nov 2011 B2
8052751 Aklog et al. Nov 2011 B2
8062355 Figulla et al. Nov 2011 B2
8062359 Marquez et al. Nov 2011 B2
8070802 Lamphere et al. Dec 2011 B2
8109996 Stacchino et al. Feb 2012 B2
8142495 Hasenkam et al. Mar 2012 B2
8152821 Gambale et al. Apr 2012 B2
8157810 Case et al. Apr 2012 B2
8167932 Bourang et al. May 2012 B2
8167934 Styrc et al. May 2012 B2
8187299 Goldfarb et al. May 2012 B2
8206439 Gomez Duran Jun 2012 B2
8216301 Bonhoeffer et al. Jul 2012 B2
8226711 Mortier et al. Jul 2012 B2
8236045 Benichou et al. Aug 2012 B2
8241274 Keogh et al. Aug 2012 B2
8252051 Chau et al. Aug 2012 B2
8303653 Bonhoeffer et al. Nov 2012 B2
8308796 Lashinski et al. Nov 2012 B2
8323334 Deem et al. Dec 2012 B2
8353955 Styrc et al. Jan 2013 B2
RE44075 Williamson et al. Mar 2013 E
8449599 Chau et al. May 2013 B2
8454656 Tuval Jun 2013 B2
8470028 Thornton et al. Jun 2013 B2
8480730 Maurer et al. Jul 2013 B2
8486138 Vesely Jul 2013 B2
8506623 Wilson et al. Aug 2013 B2
8506624 Vidlund et al. Aug 2013 B2
8578705 Sindano et al. Nov 2013 B2
8579913 Nielsen Nov 2013 B2
8591573 Barone Nov 2013 B2
8591576 Hasenkam et al. Nov 2013 B2
8597347 Maurer et al. Dec 2013 B2
8685086 Navia et al. Apr 2014 B2
8790394 Miller et al. Jul 2014 B2
8845717 Khairkhahan et al. Sep 2014 B2
8888843 Khairkhahan et al. Nov 2014 B2
8900214 Nance et al. Dec 2014 B2
8900295 Migliazza et al. Dec 2014 B2
8926696 Cabiri et al. Jan 2015 B2
8932342 McHugo et al. Jan 2015 B2
8932348 Solem et al. Jan 2015 B2
8945208 Jimenez et al. Feb 2015 B2
8956407 Macoviak et al. Feb 2015 B2
8979922 Jayasinghe et al. Mar 2015 B2
8986376 Solem Mar 2015 B2
9011522 Annest Apr 2015 B2
9023099 Duffy et al. May 2015 B2
9034032 McLean et al. May 2015 B2
9034033 McLean et al. May 2015 B2
9039757 McLean et al. May 2015 B2
9039759 Alkhatib et al. May 2015 B2
9078749 Lutter et al. Jul 2015 B2
9084676 Chau et al. Jul 2015 B2
9095433 Lutter et al. Aug 2015 B2
9125742 Yoganathan et al. Sep 2015 B2
9149357 Seguin Oct 2015 B2
9161837 Kapadia Oct 2015 B2
9168137 Subramanian et al. Oct 2015 B2
9232998 Wilson et al. Jan 2016 B2
9232999 Maurer et al. Jan 2016 B2
9241702 Maisano et al. Jan 2016 B2
9254192 Lutter et al. Feb 2016 B2
9265608 Miller et al. Feb 2016 B2
9289295 Aklog et al. Mar 2016 B2
9289297 Wilson et al. Mar 2016 B2
9345573 Nyuli et al. May 2016 B2
9480557 Pellegrini et al. Nov 2016 B2
9480559 Vidlund et al. Nov 2016 B2
9526611 Tegels et al. Dec 2016 B2
9597181 Christianson et al. Mar 2017 B2
9610159 Christianson et al. Apr 2017 B2
9675454 Vidlund et al. Jun 2017 B2
9730792 Lutter et al. Aug 2017 B2
20010018611 Solem et al. Aug 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20010025171 Mortier et al. Sep 2001 A1
20020010427 Scarfone et al. Jan 2002 A1
20020116054 Lundell et al. Aug 2002 A1
20020139056 Finnell Oct 2002 A1
20020151961 Lashinski et al. Oct 2002 A1
20020161377 Rabkin Oct 2002 A1
20020173842 Buchanan Nov 2002 A1
20030010509 Hoffman Jan 2003 A1
20030036698 Kohler et al. Feb 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030078652 Sutherland Apr 2003 A1
20030100939 Yodfat et al. May 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20030105520 Alferness et al. Jun 2003 A1
20030120340 Liska et al. Jun 2003 A1
20030130731 Vidlund et al. Jul 2003 A1
20030149476 Damm et al. Aug 2003 A1
20030212454 Scott et al. Nov 2003 A1
20040039436 Spenser et al. Feb 2004 A1
20040049266 Anduiza et al. Mar 2004 A1
20040064014 Melvin et al. Apr 2004 A1
20040092858 Wilson et al. May 2004 A1
20040093075 Kuehne May 2004 A1
20040097865 Anderson et al. May 2004 A1
20040127983 Mortier et al. Jul 2004 A1
20040133263 Dusbabek et al. Jul 2004 A1
20040147958 Lam et al. Jul 2004 A1
20040152947 Schroeder et al. Aug 2004 A1
20040162610 Liska et al. Aug 2004 A1
20040163828 Silverstein et al. Aug 2004 A1
20040181239 Dorn et al. Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040260317 Bloom et al. Dec 2004 A1
20040260389 Case et al. Dec 2004 A1
20050004652 van der Burg et al. Jan 2005 A1
20050004666 Alfieri et al. Jan 2005 A1
20050075727 Wheatley Apr 2005 A1
20050080402 Santamore et al. Apr 2005 A1
20050096498 Houser et al. May 2005 A1
20050107661 Lau et al. May 2005 A1
20050113798 Slater et al. May 2005 A1
20050113810 Houser et al. May 2005 A1
20050113811 Houser et al. May 2005 A1
20050119519 Girard et al. Jun 2005 A9
20050121206 Dolan Jun 2005 A1
20050125012 Houser et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050137698 Salahieh et al. Jun 2005 A1
20050148815 Mortier et al. Jul 2005 A1
20050177180 Kaganov et al. Aug 2005 A1
20050197695 Stacchino et al. Sep 2005 A1
20050203614 Forster et al. Sep 2005 A1
20050203615 Forster et al. Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050240200 Bergheim Oct 2005 A1
20050251209 Saadat et al. Nov 2005 A1
20050256567 Lim Nov 2005 A1
20050288766 Plain et al. Dec 2005 A1
20060004442 Spenser et al. Jan 2006 A1
20060025784 Starksen et al. Feb 2006 A1
20060025857 Bergheim et al. Feb 2006 A1
20060030885 Hyde Feb 2006 A1
20060042803 Gallaher Mar 2006 A1
20060047338 Jenson et al. Mar 2006 A1
20060052868 Mortier et al. Mar 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060094983 Burbank et al. May 2006 A1
20060129025 Levine et al. Jun 2006 A1
20060142784 Kontos Jun 2006 A1
20060161040 McCarthy et al. Jul 2006 A1
20060161249 Realyvasquez et al. Jul 2006 A1
20060167541 Lattouf Jul 2006 A1
20060195134 Crittenden Aug 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060229708 Powell et al. Oct 2006 A1
20060229719 Marquez et al. Oct 2006 A1
20060241745 Solem Oct 2006 A1
20060247491 Vidlund et al. Nov 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060276874 Wilson et al. Dec 2006 A1
20060282161 Huynh et al. Dec 2006 A1
20060287716 Banbury et al. Dec 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20070005131 Taylor Jan 2007 A1
20070005231 Seguchi Jan 2007 A1
20070010877 Salahieh et al. Jan 2007 A1
20070016286 Herrmann et al. Jan 2007 A1
20070016288 Gurskis et al. Jan 2007 A1
20070027535 Purdy et al. Feb 2007 A1
20070038291 Case et al. Feb 2007 A1
20070050020 Spence Mar 2007 A1
20070061010 Hauser et al. Mar 2007 A1
20070066863 Rafiee et al. Mar 2007 A1
20070073387 Forster et al. Mar 2007 A1
20070078297 Rafiee et al. Apr 2007 A1
20070083076 Lichtenstein Apr 2007 A1
20070083259 Bloom et al. Apr 2007 A1
20070093890 Eliasen et al. Apr 2007 A1
20070100439 Cangialosi et al. May 2007 A1
20070112422 Dehdashtian May 2007 A1
20070112425 Schaller et al. May 2007 A1
20070118151 Davidson May 2007 A1
20070118154 Crabtree May 2007 A1
20070118210 Pinchuk May 2007 A1
20070118213 Loulmet May 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070161846 Nikolic et al. Jul 2007 A1
20070162103 Case et al. Jul 2007 A1
20070168024 Khairkhahan Jul 2007 A1
20070185565 Schwammenthal et al. Aug 2007 A1
20070185571 Kapadia et al. Aug 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070215362 Rodgers Sep 2007 A1
20070221388 Johnson Sep 2007 A1
20070233239 Navia et al. Oct 2007 A1
20070239265 Birdsall Oct 2007 A1
20070256843 Pahila Nov 2007 A1
20070265658 Nelson et al. Nov 2007 A1
20070267202 Mariller Nov 2007 A1
20070270932 Headley et al. Nov 2007 A1
20070270943 Solem et al. Nov 2007 A1
20070293944 Spenser et al. Dec 2007 A1
20080009940 Cribier Jan 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080071361 Tuval et al. Mar 2008 A1
20080071362 Tuval et al. Mar 2008 A1
20080071363 Tuval et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080071368 Tuval et al. Mar 2008 A1
20080071369 Tuval et al. Mar 2008 A1
20080082163 Woo Apr 2008 A1
20080082166 Styrc et al. Apr 2008 A1
20080091264 Machold et al. Apr 2008 A1
20080114442 Mitchell et al. May 2008 A1
20080125861 Webler et al. May 2008 A1
20080147179 Cai et al. Jun 2008 A1
20080154355 Benichou et al. Jun 2008 A1
20080154356 Obermiller et al. Jun 2008 A1
20080161911 Revuelta et al. Jul 2008 A1
20080172035 Starksen et al. Jul 2008 A1
20080177381 Navia et al. Jul 2008 A1
20080183203 Fitzgerald et al. Jul 2008 A1
20080188928 Salahieh et al. Aug 2008 A1
20080208328 Antocci et al. Aug 2008 A1
20080208332 Lamphere et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080243150 Starksen et al. Oct 2008 A1
20080243245 Thambar et al. Oct 2008 A1
20080255660 Guyenot et al. Oct 2008 A1
20080255661 Straubinger et al. Oct 2008 A1
20080281411 Berreklouw Nov 2008 A1
20080288060 Kaye et al. Nov 2008 A1
20080293996 Evans et al. Nov 2008 A1
20090005863 Goetz et al. Jan 2009 A1
20090048668 Wilson et al. Feb 2009 A1
20090054968 Bonhoeffer et al. Feb 2009 A1
20090054974 McGuckin, Jr. et al. Feb 2009 A1
20090062908 Bonhoeffer et al. Mar 2009 A1
20090076598 Salahieh et al. Mar 2009 A1
20090082619 De Marchena Mar 2009 A1
20090088836 Bishop et al. Apr 2009 A1
20090099410 De Marchena Apr 2009 A1
20090112309 Jaramillo et al. Apr 2009 A1
20090131849 Maurer et al. May 2009 A1
20090132035 Roth et al. May 2009 A1
20090137861 Goldberg et al. May 2009 A1
20090138079 Tuval et al. May 2009 A1
20090157175 Benichou Jun 2009 A1
20090164005 Dove et al. Jun 2009 A1
20090171432 Von Segesser et al. Jul 2009 A1
20090171447 Von Segesser et al. Jul 2009 A1
20090171456 Kveen et al. Jul 2009 A1
20090177266 Powell et al. Jul 2009 A1
20090192601 Rafiee et al. Jul 2009 A1
20090210052 Forster et al. Aug 2009 A1
20090216322 Le et al. Aug 2009 A1
20090222076 Figulla et al. Sep 2009 A1
20090224529 Gill Sep 2009 A1
20090234318 Loulmet et al. Sep 2009 A1
20090234435 Johnson et al. Sep 2009 A1
20090234443 Ottma et al. Sep 2009 A1
20090240320 Tuval et al. Sep 2009 A1
20090248149 Gabbay Oct 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090287299 Tabor et al. Nov 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20090326575 Galdonik et al. Dec 2009 A1
20100016958 St. Goar et al. Jan 2010 A1
20100021382 Dorshow et al. Jan 2010 A1
20100023117 Yoganathan et al. Jan 2010 A1
20100036479 Hill et al. Feb 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100082094 Quadri et al. Apr 2010 A1
20100161041 Maisano et al. Jun 2010 A1
20100168839 Braido et al. Jul 2010 A1
20100179641 Ryan et al. Jul 2010 A1
20100185277 Braido et al. Jul 2010 A1
20100185278 Schankereli Jul 2010 A1
20100191326 Alkhatib Jul 2010 A1
20100192402 Yamaguchi et al. Aug 2010 A1
20100204781 Alkhatib Aug 2010 A1
20100210899 Schankereli Aug 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100249489 Jarvik Sep 2010 A1
20100249923 Alkhatib et al. Sep 2010 A1
20100280604 Zipory et al. Nov 2010 A1
20100286768 Alkhatib Nov 2010 A1
20100298755 McNamara et al. Nov 2010 A1
20100298931 Quadri et al. Nov 2010 A1
20110004296 Lutter Jan 2011 A1
20110015616 Straubinger et al. Jan 2011 A1
20110015728 Jimenez et al. Jan 2011 A1
20110015729 Jimenez et al. Jan 2011 A1
20110029071 Zlotnick Feb 2011 A1
20110029072 Gabbay Feb 2011 A1
20110066231 Cartledge et al. Mar 2011 A1
20110066233 Thornton Mar 2011 A1
20110112632 Chau et al. May 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110137408 Bergheim Jun 2011 A1
20110224655 Asirvatham et al. Sep 2011 A1
20110224678 Gabbay Sep 2011 A1
20110224728 Martin et al. Sep 2011 A1
20110224784 Quinn Sep 2011 A1
20110245911 Quill et al. Oct 2011 A1
20110251682 Murray, III et al. Oct 2011 A1
20110264206 Tabor Oct 2011 A1
20110288637 De Marchena Nov 2011 A1
20110319988 Schankereli Dec 2011 A1
20110319989 Lane et al. Dec 2011 A1
20120010694 Lutter et al. Jan 2012 A1
20120016468 Robin et al. Jan 2012 A1
20120022640 Gross Jan 2012 A1
20120035703 Lutter et al. Feb 2012 A1
20120035713 Lutter et al. Feb 2012 A1
20120035722 Tuval Feb 2012 A1
20120059487 Cunanan et al. Mar 2012 A1
20120089171 Hastings et al. Apr 2012 A1
20120101571 Thambar et al. Apr 2012 A1
20120101572 Kovalsky et al. Apr 2012 A1
20120116351 Chomas et al. May 2012 A1
20120123529 Levi et al. May 2012 A1
20120165930 Gifford, III et al. Jun 2012 A1
20120179244 Schankereli et al. Jul 2012 A1
20120203336 Annest Aug 2012 A1
20120215303 Quadri et al. Aug 2012 A1
20120283824 Lutter et al. Nov 2012 A1
20130030522 Rowe et al. Jan 2013 A1
20130053950 Rowe et al. Feb 2013 A1
20130066341 Ketai et al. Mar 2013 A1
20130079873 Migliazza et al. Mar 2013 A1
20130131788 Quadri et al. May 2013 A1
20130172978 Vidlund et al. Jul 2013 A1
20130184811 Rowe et al. Jul 2013 A1
20130190860 Sundt, III Jul 2013 A1
20130190861 Chau et al. Jul 2013 A1
20130197622 Mitra et al. Aug 2013 A1
20130226288 Goldwasser et al. Aug 2013 A1
20130231735 Deem et al. Sep 2013 A1
20130274874 Hammer Oct 2013 A1
20130282101 Eidenschink et al. Oct 2013 A1
20130310928 Morriss et al. Nov 2013 A1
20130317603 McLean et al. Nov 2013 A1
20130325041 Annest et al. Dec 2013 A1
20130325110 Khalil et al. Dec 2013 A1
20130338752 Geusen et al. Dec 2013 A1
20140081323 Hawkins Mar 2014 A1
20140094918 Vishnubholta et al. Apr 2014 A1
20140142691 Pouletty May 2014 A1
20140163668 Rafiee Jun 2014 A1
20140194981 Menk et al. Jul 2014 A1
20140214159 Vidlund et al. Jul 2014 A1
20140222142 Kovalsky et al. Aug 2014 A1
20140243966 Garde et al. Aug 2014 A1
20140277419 Garde et al. Sep 2014 A1
20140296969 Tegels et al. Oct 2014 A1
20140296970 Ekvall et al. Oct 2014 A1
20140296971 Tegels et al. Oct 2014 A1
20140296972 Tegels et al. Oct 2014 A1
20140296975 Tegels et al. Oct 2014 A1
20140303718 Tegels et al. Oct 2014 A1
20140309732 Solem Oct 2014 A1
20140316516 Vidlund et al. Oct 2014 A1
20140324160 Benichou et al. Oct 2014 A1
20140324161 Tegels et al. Oct 2014 A1
20140324164 Gross et al. Oct 2014 A1
20140358224 Tegels et al. Dec 2014 A1
20140364944 Lutter et al. Dec 2014 A1
20140379076 Vidlund et al. Dec 2014 A1
20150005874 Vidlund et al. Jan 2015 A1
20150011821 Gorman et al. Jan 2015 A1
20150025553 Del Nido et al. Jan 2015 A1
20150057705 Vidlund Feb 2015 A1
20150073542 Heldman Mar 2015 A1
20150073545 Braido Mar 2015 A1
20150105856 Rowe et al. Apr 2015 A1
20150119936 Gilmore et al. Apr 2015 A1
20150119978 Tegels et al. Apr 2015 A1
20150127096 Rowe et al. May 2015 A1
20150142100 Morriss et al. May 2015 A1
20150142101 Coleman et al. May 2015 A1
20150142103 Vidlund May 2015 A1
20150142104 Braido May 2015 A1
20150173897 Raanani et al. Jun 2015 A1
20150196393 Vidlund et al. Jul 2015 A1
20150196688 James Jul 2015 A1
20150202044 Chau et al. Jul 2015 A1
20150216653 Freudenthal Aug 2015 A1
20150216660 Pintor Aug 2015 A1
20150223820 Olson Aug 2015 A1
20150238729 Jenson et al. Aug 2015 A1
20150272731 Racchini et al. Oct 2015 A1
20150305860 Wang et al. Oct 2015 A1
20150305864 Quadri et al. Oct 2015 A1
20150305868 Lutter et al. Oct 2015 A1
20150327995 Morin et al. Nov 2015 A1
20150328001 McLean Nov 2015 A1
20150335424 McLean Nov 2015 A1
20150335429 Morriss et al. Nov 2015 A1
20150342717 O'Donnell et al. Dec 2015 A1
20150351903 Morriss et al. Dec 2015 A1
20150351906 Hammer et al. Dec 2015 A1
20160008131 Christianson et al. Jan 2016 A1
20160067042 Murad et al. Mar 2016 A1
20160074160 Christianson et al. Mar 2016 A1
20160106537 Christianson et al. Apr 2016 A1
20160113764 Sheahan Apr 2016 A1
20160143736 Vidlund May 2016 A1
20160151155 Lutter et al. Jun 2016 A1
20160206280 Vidlund et al. Jul 2016 A1
20160242902 Morriss Aug 2016 A1
20160262879 Meiri et al. Sep 2016 A1
20160317290 Chau Nov 2016 A1
20160324635 Vidlund et al. Nov 2016 A1
20160331527 Vidlund et al. Nov 2016 A1
20160346086 Solem Dec 2016 A1
20160367365 Conklin Dec 2016 A1
20160367367 Maisano et al. Dec 2016 A1
20160367368 Vidlund et al. Dec 2016 A1
20170079790 Vidlund et al. Mar 2017 A1
20170100248 Tegels et al. Apr 2017 A1
20170128208 Christianson et al. May 2017 A1
20170181854 Christianson et al. Jun 2017 A1
20170196688 Christianson et al. Jul 2017 A1
20170252153 Chau et al. Sep 2017 A1
20170266001 Vidlund et al. Sep 2017 A1
Foreign Referenced Citations (116)
Number Date Country
1486161 Mar 2004 CN
1961845 May 2007 CN
2902226 May 2007 CN
101146484 Mar 2008 CN
101180010 May 2008 CN
101984938 Mar 2011 CN
102639179 Aug 2012 CN
102869317 Jan 2013 CN
102869318 Jan 2013 CN
102869321 Jan 2013 CN
103220993 Jul 2013 CN
2246526 Mar 1973 DE
19532846 Mar 1997 DE
19546692 Jun 1997 DE
19857887 Jul 2000 DE
19907646 Aug 2000 DE
10049812 Apr 2002 DE
10049813 Apr 2002 DE
10049815 Apr 2002 DE
102006052564 Dec 2007 DE
102006052710 May 2008 DE
102007043831 Apr 2009 DE
0103546 Mar 1984 EP
1057460 Dec 2000 EP
1088529 Apr 2001 EP
1469797 Oct 2004 EP
2111800 Oct 2009 EP
2193762 Jun 2010 EP
2278944 Feb 2011 EP
2747707 Jul 2014 EP
2918248 Sep 2015 EP
2788217 Jul 2000 FR
2815844 May 2002 FR
2003505146 Feb 2003 JP
2009514628 Apr 2009 JP
1017275 Aug 2002 NL
1271508 Nov 1986 SU
9217118 Oct 1992 WO
9301768 Feb 1993 WO
8929057 Jul 1998 WO
9940964 Aug 1999 WO
9947075 Sep 1999 WO
2000018333 Apr 2000 WO
2000030550 Jun 2000 WO
200041652 Jul 2000 WO
200047139 Aug 2000 WO
2001035878 May 2001 WO
2001049213 Jul 2001 WO
2001054624 Aug 2001 WO
2001054625 Aug 2001 WO
2001056512 Aug 2001 WO
2001061289 Aug 2001 WO
200176510 Oct 2001 WO
2001082840 Nov 2001 WO
2002004757 Jan 2002 WO
2002022054 Mar 2002 WO
2002028321 Apr 2002 WO
2002036048 May 2002 WO
2002041789 May 2002 WO
2002043620 Jun 2002 WO
2002049540 Jun 2002 WO
2002076348 Oct 2002 WO
2003003943 Jan 2003 WO
2003030776 Apr 2003 WO
2003047468 Jun 2003 WO
2003049619 Jun 2003 WO
2004019825 Mar 2004 WO
2005102181 Nov 2005 WO
2006014233 Feb 2006 WO
2006034008 Mar 2006 WO
2006070372 Jul 2006 WO
2006113906 Oct 2006 WO
2006127756 Nov 2006 WO
2007081412 Jul 2007 WO
2008005405 Jan 2008 WO
2008035337 Mar 2008 WO
2008091515 Jul 2008 WO
2008125906 Oct 2008 WO
2008147964 Dec 2008 WO
2009024859 Feb 2009 WO
2009026563 Feb 2009 WO
2009045338 Apr 2009 WO
2009132187 Oct 2009 WO
2010090878 Aug 2010 WO
2010098857 Sep 2010 WO
2010121076 Oct 2010 WO
2011017440 Feb 2011 WO
2011022658 Feb 2011 WO
2011069048 Jun 2011 WO
2011072084 Jun 2011 WO
2011106735 Sep 2011 WO
2011109813 Sep 2011 WO
2011159342 Dec 2011 WO
2011163275 Dec 2011 WO
2012027487 Mar 2012 WO
2012036742 Mar 2012 WO
2012095116 Jul 2012 WO
2012177942 Dec 2012 WO
2013045262 Apr 2013 WO
2013059747 Apr 2013 WO
2013096411 Jun 2013 WO
2013175468 Nov 2013 WO
2014121280 Aug 2014 WO
2014144937 Sep 2014 WO
2014162306 Oct 2014 WO
2014189974 Nov 2014 WO
2015051430 Apr 2015 WO
2015058039 Apr 2015 WO
2015063580 May 2015 WO
2015065646 May 2015 WO
2015120122 Aug 2015 WO
2015138306 Sep 2015 WO
2016112085 Jul 2016 WO
2016126942 Aug 2016 WO
2016168609 Oct 2016 WO
2016196933 Dec 2016 WO
Non-Patent Literature Citations (48)
Entry
“Shape Memory Alloys,” Retrieved from the Internet: <http://webdocs.cs.ualberta.ca/˜database/MEMS/sma.html>, Feb. 5, 2016, 3 pages.
Al Zaibag, Muayed, et al., “Percutaneous Balloon Valvotomy in Tricuspid Stenos's,” British Heart Journal, Jan. 1987, vol. 57, No. 1, pp. 51-53.
Al-Khaja, N. et al., “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications,” European Journal of Cardiothoracic Surgery, Jun. 30, 1989, 3:305-311.
Almagor, Y. et al., “Balloon Expandable Stent Implantation in Stenotic Right Heart Valved Conduits,” Journal of the American College of Cardiology, Nov. 1, 1990, 16(6)1310-1314.
Andersen, H. R. et al., “Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs,” European Heart Journal, 1992, 13(5):704-708.
Andersen, H. R., “History of Percutaneous Aortic Valve Prosthesis,” Herz, Aug. 2009, 34(5):343-346.
Andersen, H. R., “Transluminal catheter implanted prosthetic heart valves,” International Journal of Angiology, 1998, 7(2):102-106.
Ashton, R. C., Jr. et al., “Development of an Intraluminal Device for the Treatment of Aortic Regurgitation: Prototype and in Vitro Testing System,” Journal of Thoracic and Cardiovascular Surgery, 1996, 112:979-983.
Benchimol, A. et al., “Simultaneous Left Ventricular Echocardiography and Aortic Blood Velocity During Rapid Right Ventricular Pacing in Man,” The American Journal of the Medical Sciences, Jan.-Feb. 1977, 273(1):55-62.
Bernacca, G. M. et al., “Polyurethane heart valves: Fatigue failure, calcification, and polyurethane structure,” Journal of Biomedical Materials Research, Mar. 5, 1997, 34(3):371-379.
Boudjemline, Y. et al., “Steps Toward the Percutaneous Replacement of Atrioventricular Valves: An Experimental Study,” Journal of the American College of Cardiology, Jul. 2005, 46(2):360-365.
Buckberg, G. et al., “Restoring Papillary Muscle Dimensions During Restoration in Dilated Hearts,” Interactive cardiovascular and Thoracic Surgery, 2005, 4:475-477.
Chamberlain, G., “Ceramics Replace Body Parts,” Design News, Jun. 9, 1997, Issue 11, vol. 52, 5 pages.
Shoo, S. J. et al., “Aortic Root Geometry: Pattern of Differences Between Leaflets and Sinuses of Valsava,” The Journal of Heart Valve Disease, Jul. 1999, 8:407-415.
Declaration of Malcolm J. R. Dalrymple-Hay, Nov. 9, 2012, pp. 1-11; with Curriculum Vitae, Oct. 4, 2012.
Dotter, C. T. et al., “Transluminal Treatment of Arteriosclerotic Obstruction. Description of a New Technic and a Preliminary Report of its Application,” Circulation, Nov. 1964, 30:654-670.
Drawbaugh, K., “Feature—Heart Surgeons Explore Minimally Invasive Methods,” Reuters Limited, Jul. 16, 1996, 3 pages.
Gray, H., The Aorta, Anatomy of the Human Body, 1918, Retrieved from the Internet <http://www.bartleby.com/107/142.html>, Dec. 10, 2012, 5 pages.
Gray, H., The Heart, Anatomy of the Human Body, 1918, Retrieved from the Internet <http://education.yahoo.com/reference/gray/subjects/subject/138>, Aug. 10, 2012, 9 pages.
Greenhalgh, E. S., “Design and characterization of a biomimetic prosthetic aortic heart valve,” 1994, ProQuest Dissertations and Theses, Department of Fiber and Polymer Science, North Carolina State University at Raleigh, 159 pages.
Inoue, K. et al., “Clinical Application of Transvenous Mitral Commissurotomy by a New Balloon Catheter,” The Journal of Thoracic and Cardiovascular Surgery, 1984, 87:394-402.
Jin, X. Y. et al., “Aortic Root Geometry and Stentless Porcine Valve Competence,” Seminars in Thoracic and Cardiovascular Surgery, Oct. 1999, 11(4):145-150.
Kolata, G., “Device That Opens Clogged Arteries Gets a Failing Grade in a New Study,” New York Times [online], <http://www.nytimes.com/1991/01/03/health/device-that-opens-clogged-ar- teries-gets-a-faili . . . ,>, published Jan. 3, 1991,retrieved from the Internet on Feb. 5, 2016, 3 pages.
L. L. Knudsen et al., “Catheter-Implanted Prosthetic Heart Valves. Transluminal Catheter Implantation of a New Expandable Artificial Heart Valve in the Descending Thoracic Aorta in Isolated Vessels and Closed Chest Pigs,” International Journal ofArtificial Organs, 1993, Issue 5, vol. 16, pp. 253-262.
Lawrence, D. D., “Percutaneous Endovascular Graft: Experimental Evaluation,” Radiology, 1987, 163:357-360.
Lozonschi L. et al.“Transapical mitral valved stent implantation: A survival series in swine,” The Journal of Thoracic and Cardiovascular Surgery, 140(2):422-426 (Aug. 2010) published online Mar. 12, 2010, 1 page.
Lutter, Georg, et al., Mitral valved stent implantation, European Journal of Cardio-Thoracic Surgery, 2010, vol. 38, pp. 350-355.
Ma, L. et al., “Double-crowned valved stents for off-pump mitral valve replacement,” European Journal of Cardio-Thoracic Surgery, Aug. 2005, 28(2): 194-198.
Moazami, N. et al., “Transluminal aortic valve placement: a feasibility study with a newly designed collapsible aortic calve,” ASAIO Journal, Sep./ Oct. 1996, 42(5):M381-M385.
Orton, C., “Mitralseal: Hybrid Transcatheter Mitral Valve Replacement,” Retrieved from the Internet: <http:/www.acvs.org/symposium/proceedings2011/data/papers/102.pdf>, pp. 311-312.
Pavcnik, M.D., Ph.D., Dusan, et al. “Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Cardiovascular Radiology 1992; 183:151-154.
Porstmann, W. et al., “Der Verschluß des Ductus Arteriosus Persistens ohne Thorakotomie,” Thoraxchirurgie Vaskuläre Chirurgie, Band 15, Heft 2, Stuttgart, Apr. 1967, pp. 199-203.
Rashkind, W. J., “Creation of an Atrial Septal Defect Without Thoracotomy,” The Journal of the American Medical Association, Jun. 13, 1966, 196( 11 ): 173-174.
Rashkind, W. J., “Historical Aspects of Interventional Cardiology: Past, Present, Future,” Texas Heart Institute Journal, Dec. 1986, 13(4):363-367.
Reul, H. et al., “The Geomety of the Aortic Root in Health, at Valve Disease and After Valve Replacement,” J. Biomechanics, 1990, 23(2):181-191.
Rosch, J. et al., “The Birth, Early Years and Future of Interventional Radiology,” J Vasc Intery Radiol., Jul. 2003, 4:841-853.
Ross, D. N., “Aortic Valve Surgery,” Guys Hospital, London, 1968, pp. 192-197.
Rousseau, E P. M. et al., “A Mechanical Analysis of the Closed Hancock Heart Valve Prosthesis,” Journal of Biomechanics, 1998, 21(7):545-562.
Sabbah, A. N. et al., “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview,” Dec. 1989, Journal of Cardiac Surgery, 4(4):302-309.
Selby, M.D., J. Bayne, “Experience with New Retrieval Forceps for Foreign Body Removal in the Vascular, Urinary, and Biliary Systems,” Radiology 1990; 176:535-538.
Serruys, P.W., et al., “Stenting of Coronary Arteries. Are we the Sorcerer's Apprentice?,” European Heart Journal (1989)10, 774-782, pp. 37-45, Jun. 13, 1989.
Sigwart, U., “An Overview of Intravascular Stents: Old and New,” Chapter 48, Interventional Cardiology, 2nd Edition, W.B. Saunders Company, Philadelphia, PA, © 1994, 1990, pp. 803-815.
Tofeig, M. et al., “Transcatheter Closure of a Mid-Muscular Ventricular Septal Defect with an Amplatzer VSD Occluder Device,” Heart, 1999, 81:438-440.
Uchida, Barry T., et al., “Modifications of Gianturco Expandable Wire Stents,” AJR:150, May 1988, Dec. 3, 1987, pp. 1185-1187.
Watt, A.H., et al. “Intravenous Adenosine in the Treatment of Supraventricular Tachycardia; a Dose-Ranging Study and Interaction with Dipyridamole,” British Journal of Clinical Pharmacology (1986), 21, pp. 227-230.
Webb, J. G. et al., “Percutaneous Aortic Valve Implantation Retrograde from the Femoral Artery,” Circulation, 2006, 113:842-850.
Nheatley, M.D., David J., “Valve Prostheses,” Rob & Smith's Operative Surgery, Fourth Edition, pp. 415-424, ButtenNorths 1986.
Yoganathan, A. P. et al., “The Current Status of Prosthetic Heart Valves,” In Polymetric Materials and Artificial Organs, Mar. 20, 1983, pp. 111-150, American Chemical Society.
Related Publications (1)
Number Date Country
20180263618 A1 Sep 2018 US
Provisional Applications (1)
Number Date Country
61938275 Feb 2014 US
Continuations (1)
Number Date Country
Parent 14619328 Feb 2015 US
Child 15986066 US